• Aucun résultat trouvé

Solving elliptic problems with discontinuities on irregular domains – the Voronoi Interface Method

N/A
N/A
Protected

Academic year: 2021

Partager "Solving elliptic problems with discontinuities on irregular domains – the Voronoi Interface Method"

Copied!
20
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 15779

To link to this article : DOI:10.1016/j.jcp.2015.06.026

URL :

http://dx.doi.org/10.1016/j.jcp.2015.06.026

To cite this version : Guittet, Arthur and Lepilliez, Mathieu and

Tanguy, Sébastien and Gibou, Frédéric Solving elliptic problems with

discontinuities on irregular domains – the Voronoi Interface Method.

(2015) Journal of Computational Physics, vol. 298. pp. 747-765. ISSN

0021-9991

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Solving

elliptic

problems

with

discontinuities

on

irregular

domains

the

Voronoi

Interface

Method

Arthur Guittet

a

,

,

Mathieu Lepilliez

c

,

d

,

e

,

Sebastien Tanguy

c

,

Frédéric Gibou

a

,

b

aDepartmentofMechanicalEngineering,UniversityofCalifornia,SantaBarbara,CA93106-5070,UnitedStates bDepartmentofComputerScience,UniversityofCalifornia,SantaBarbara,CA93106-5110,UnitedStates cInstitutdeMécaniquedesFluidesdeToulouse,2bisalléeduProfesseurCamilleSoula,31400Toulouse,France dCentreNationald’EtudesSpatiales,18AvenueEdouardBelin,31401ToulouseCedex9,France

eAirbusDefence&Space,31AvenuedesCosmonautes,31402ToulouseCedex4,France

a

b

s

t

r

a

c

t

Keywords:

Level-set

Ellipticinterfaceproblems Discontinuouscoefficients Irregulardomains Voronoi Finitevolumes Quad/octrees

Adaptivemeshrefinement

We introduce asimple method, dubbedthe Voronoi InterfaceMethod, to solve Elliptic problems with discontinuities across the interface of irregular domains. This method producesalinearsystemthatissymmetricpositivedefinitewithonlyitsright-hand-side affected by the jump conditions.The solution and the solution’s gradients are second-order accurateand first-order accurate, respectively, inthe L∞ norm, even inthe case of large ratios in the diffusion coefficient. Thisapproach is alsoapplicable to arbitrary meshes. Additionaldegrees offreedom are placedclose tothe interface and aVoronoi partitioncentered ateachofthesepointsisused todiscretizethe equations inafinite volumeapproach.BoththelocationsoftheadditionaldegreesoffreedomandtheirVoronoi discretizationsarestraightforwardintwoandthreespatialdimensions.

1. Introduction

WefocusontheclassofEllipticproblemsthatcanbewrittenas:

∇ · (β∇

u

)

+

ku

=

f in



∪ 

+

,

[

u

] =

g on

,

[β∇

u

·

n

] =

h on

,

(1)

wherethe computational domain



iscomposed oftwo subdomains,



− and



+, separatedby a co-dimensionone in-terface



(see Fig. 1), withn the outward normal. Here,

β

= β(

x

),

with x

∈ R

n (n

∈ N

), is boundedfrom below by a positiveconstant and

[

q

]

=

q+

q indicates adiscontinuityinthe quantityq across

,

f is inL2, g,h andk aregiven. Notethatthisgeneralformulationincludespossiblediscontinuitiesinthediffusioncoefficient

β

andinthegradientofthe solution

u. DirichletorNeumann boundaryconditionsare appliedon theboundaryof

,

denoted by

∂.

Thisclassof equations,wheresome orall ofthe jumpconditionsare non-zero,isa cornerstone inthemodeling ofthedynamics of

*

Correspondingauthor.

(3)

Fig. 1. Geometry of the problem.

importantphysicalandbiologicalphenomenaasdiverseasmultiphaseflowswithandwithoutphasechange,biomolecules’ electrostatics,electrokinetics(Poisson–Nerntz–Planck)modelswithsourcetermorelectroporationmodels.

Giventheimportanceofthisclassofequations,severalapproacheshavebeenpursuedtocomputationallyapproximate their solutions,each withtheirown prosandcons.The finiteelementmethod(FEM)isone oftheearliest approachesto solvethisproblem[4,10,12,19,32,35]andhastheadvantageofprovidingasimplediscretizationformalismthatguarantees the symmetryanddefinitepositiveness ofthe correspondinglinearsystem, eveninthecaseofunstructuredgrids. Italso provides a framework whereapriori errorestimatescan be usedto bestadaptthe meshinorder tocapturesmallscale details.However,theFEMisbasedonthegenerationofmeshesthatmustconformtotheirregulardomain’sboundaryand must satisfy some restrictive quality criteria, a taskthat is difficult,especially in three spatial dimensions. The difficulty is exacerbatedwhen thedomain’sboundaryevolves during thecourseofacomputation, asit isthecaseformostofthe applicationsmodeledbytheseequations.Meshgenerationisthefocusofintenseresearch[58],asthecreationofunwanted sliverelementscandeterioratetheaccuracyofthesolution.

Methods based on capturing the jump conditions do not depend on the generation of a mesh that conformsto the domain’s boundary, hence avoiding the mesh generation difficulty altogether. However, they must impose the boundary conditions implicitly,which isa non-trivialtask.A popularapproach isthe ImmersedInterfaceMethod(IIM) of Leveque and Li[36], andthe morerecent development ofImmersed FiniteElement Method(IFEM) andImmersedFinite Volume Method (IFVM)[40,27,23]. Thebasis of the IIMisto use Taylorexpansionsofthe solution oneach side of theinterface andmodifythestencilslocaltotheinterfaceinordertoimposethejumpconditions.Assuch,solutionscanbeobtainedon simpleCartesiangridsandthesolutionissecond-orderaccurateintheL∞norm.Thecorrespondinglinearsystem,however, isasymmetricunlessthecoefficient

β

hasnojumpacrosstheinterface.Anotherdifficultyistheneedtoapproximatesurface derivativesalong



aswellastheevaluationofhigh-order jumpconditions.Thesedifficultieshavebeenaddressedinthe Piecewise-polynomial InterfaceMethod ofChenand Strain[11] andseveral other approacheshaveimproved theefficacy of theIMM[38,39,64,9,1–3].We notealso thattheearliest approachon Cartesiangrid isthat ofMayo[43],whoderived an integral equation tosolve thePoissonandthebi-harmonic problemswithpiecewise constantcoefficientson irregular domains; thesolution issecond-order accurate in the L∞ norm.We alsorefer the interested researcherto the matched interfaceandboundary(MIB)method[66,65].

Thefiniteelementcommunityhasalsoproposedembeddedinterface approaches,includingdiscontinuous Galerkinand theeXtendedFiniteElementMethod(XFEM)[37,29,48,17,8,47,33,22,28,62].Thebasicideaistointroduceadditionaldegrees offreedom1 neartheinterfaceandaugmentthestandardbasis functionson theseelements withbasis functionsthatare combinedwithaHeavisidefunctioninordertohelpcapturethejumpconditions.

In[16],theauthorsintroduceasecond-orderaccuratediscretizationinthecaseof,possiblyadaptive,Cartesianmeshes using acut-cell approach.The jumpcondition is imposedby determiningthe fluxesonboth sideof theinterface, which are constructedfromacombinationofleastsquaresandquadraticapproximations.In[51],theauthorsalsouseacutcell approachbutimposethejumpwiththehelpofacompact27-pointstencil.

The GhostFluidMethod(GFM), originallyintroduced toapproximatetwo-phasecompressibleflows [21],hasbeen ap-pliedtothesystemproblem(1)in[41].Thebasicideaistoconsiderfictitiousdomains andghostvaluesthatcapturethe jumpconditionsinthediscretizationatgridnodesneartheinterface.Anadvantageofthisapproachisthatonlythe right-hand-sideofthelinearsystemisaffectedbythejumpconditions.However,inordertoproposeadimension-by-dimension approach,theprojectionofthenormaljumpconditionsmustbeprojectedontotheCartesiandirections.Asaconsequence, the tangential componentof thejump isignored. Nonetheless, themethodhas beenshownto be convergent with first-orderaccuracy[42].TheGFMwasalsoshowntoproducesymmetricpositivedefinitesecond-orderaccuracy[25] andeven fourth-order accuracy[24],butforadifferentclassofproblem, namelyforsolving Ellipticproblemsonirregular domains withDirichletboundaryconditions.Infact,symmetricpositivedefinitesecond-orderaccuratesolutionscanalsobeobtained inthecasewhereNeumannorRobinboundaryconditionsareimposedonirregulardomains[55,50,53,54].Thesemethods canbetriviallyextendedtothecaseofadaptiveCartesiangridsandwerefertheinterestedreaderstothereviewofGibou, MinandFedkiw[26]formoredetails.Inthecaseofjumpconditions,CocoandRusso[14]havealsousedafictitiousdomain

(4)

approach,wherearelaxationschemeisusedtoimposetheboundarycondition;thesolutionissecond-orderaccurate.The sameauthorshavealsointroducedamethodtoconsiderDirichlet,NeumannandRobinboundaryconditionsonanirregular interface [15].Latigeet al.[46] havealso presenteda methodbased on fictitiousdomains usinga piecewise polynomial representationofthesolutiononadualgrid,alsoobtainingsecond-orderaccurate solutions.Finally,[31] haveappliedthe ghostfluidideainavariationalframework.

Relatedideasareusedinmethodscombiningfictitiousdomainsandvariationalformulations[49,7],dubbedvirtualnodes approaches.SomeoftheseapproachescanbeconsideredsimilartoXFEMmethods[30,60,18],whileothersaredifferentand offer advantages when considering under-resolved, possibly non-smooth, interfaces [49,59,56]. This philosophy has been used in[34],which introduces a virtual node algorithm forsolving Elliptic problems onirregular geometries withjump conditionsas well asDirichletor Neumannboundary conditionsimposed on

.

Thesolutions are second-order accurate inthe L∞ normandthe approachprovides a unifyingtreatment forDirichlet, Neumannandjump boundaryconditions; howeversacrificingsimplicity.

Ratherrecently,CisterninoandWeynans[13]introducedasecond-orderaccuratemethodthatusesadditionaldegreesof freedomonthedomain’sboundaryandusethemtodiscretizethePoissonoperatorwithjumpconditionsina dimension-by-dimension framework. The authors also present how to carefully approximate the gradients. The method produces second-order accuratesolutions andanonsymmetric linearsysteminpartbecauseoftheneed tochangethe sizeofthe stencilfornodesadjacenttothedomain’sboundary.

Weintroduce acapturingcomputational approach,theVoronoiInterfaceMethod,that producessecond-order accurate solutionsinthe L∞ norm.ThisapproachisbasedonbuildingaVoronoidiagramlocaltotheinterface,whichenablesthe directdiscretization ofthejumpconditions inthenormaldirection. The linearsystemissymmetricpositive definiteand the jump conditionsonly influence the right-hand-side. The construction ofthe local Voronoimesh is a straightforward andparallelizableprocessandcanbebuiltwithexistinglibrariesthatarefreelyavailable.Inthepresentwork,weusethe excellent

Voro++

libraryinthreespatialdimensions[57].Thismethodisdifferentfrombody-fittedmethodsinthatitrelies onthepost-processingofanexisting backgroundmesh,thusavoidingthestandard difficultiesassociatedwithbody-fitted approaches.WenotethatpreviousworkshavedevelopedsolversforthePoissonequationonVoronoidiagrams(see[63,61]

andthereferencestherein);howeverdiscontinuitiesacrossanirregularinterfacewerenotconsidered.

2. Thegeometricaltools 2.1. Thelevel-setmethod

The level-set method[52] isa powerful wayof representingirregular interfaces asthe zero contourof a continuous function.Thisrepresentationisconvenientinthatitcanbeappliedtothecaseofmovingboundariesthatcanchangetheir topology.Italsoprovidesaframeworkthatlendsitselftodesignsharp discretizations.

We use the level-set set framework to capture the irregular interface on which the discontinuities are enforced. We definealevel-setfunction

φ

onthedomain



suchthattheirregularinterface



isdescribedby



= {

x

∈ R

n

∈ 

|

φ (

x

)

=

0

}

and

φ

isnegative onone sideoftheinterfaceandpositiveon theotherside,aspicturedinFig. 1.Eventhough infinitely manyfunctionssatisfythiscriteria,itisconvenienttoworkwithasigneddistancefunctiontotheirregularinterface,i.e.a functionthatisnegativeononesideoftheinterface,positiveontheothersideandsuchthatitsmagnitudeateverypoint isthe distancefromthe pointto theinterface.Constructing a signeddistancefunctionfroman arbitraryfunctioncan be doneforexamplebyfollowingtheprocedureexplainedin[44].Thenormaltotheinterfaceisthenobtainedas

n

=

∇φ

∇φ

,

andthecurvatureas

κ

= ∇ ·

n

.

Notethatifthelevel-setfunctionisasigneddistancefunction,

∇φ

=

1,andtheprojection onto



ofanygivenpointx

iseasilycomputedas:

x

=

x

− φ(

x

)

∇φ(

x

).

(2)

2.2. Voronoidiagrams

ThesolverwepresentisbasedonVoronoidiagrams,whichcanbegeneratedlocallywithexistingproceduresandfreely availablelibraries.Inthiswork,weusetheexcellent

Voro++

library[57].Forthesakeofclarity,weintroducetheVoronoi diagram:givenasetofpoints,whichwecallseeds,theVoronoicellofagivenseedconsistsofallthepointsofthedomain that are closer to that seed than to anyother seed.Hence, the collection ofall theVoronoi cellsof a set of seeds is a tessellationofthedomain,i.e.atilingthatfillsthedomainanddoesnotcontainanyoverlaps.

Givenacomputationalmesh,whichweconsidertobeuniforminthissectionforclarity,weproposetomodifythemesh sothattheirregularinterfacecoincideswiththeedgesofthenewmeshandthedegreesoffreedomclosetotheinterface arealllocatedatthesamedistancefromtheinterface.

(5)

Fig. 2. IllustrationoftheprocedureforgeneratingaVoronoidiagrambasedcomputationalmesh.Theleftfigurepresentstheoriginaluniformmeshandthe rightfigureshowsthefinalcomputationalmesh.Thepurplesquaredegreesoffreedomhavebeenremovedandtheorangedotsdegreesoffreedomhave beenaddedclosetotheinterface.

Fig. 3. ExampleofaVoronoimeshwhereadegreeoffreedomisconnectedtomorethanoneotherdegreeoffreedomlocatedontheothersideofthe irregularinterface.Thesmoothingprocedureisillustratedontheright.

The procedure is illustrated inFig. 2.Starting from auniform grid,we find the projection ofthe degreesoffreedom whose control volumeis crossedby the irregularinterface ontothe interface using(2),andwe removethose degreesof freedom from the original list of unknowns. If a projected point is within

diag

/5 of

a previously computed projected point, where

diag

isthelengthofthediagonalofthesmallestgridcell,we skipthispoint.Otherwise,weadd twonew degrees offreedom located ata distance d of theinterface in the normaldirectionon either side ofthe interface. We

repeat this procedure for all projected points. The new set of degrees of freedom is therefore made up of the original degreesoffreedom whosecontrolvolume isnotcrossed bythe interfaceandofthenewdegreesoffreedomaddednext to theinterface. Thisconstitutesthe setofseeds forthe Voronoidiagramcomputational meshonwhich weperformthe computations.EachVoronoicell canthenbe generatedindependentlybasedonthelocalneighborhood ofeachdegree of freedom,makingthegenerationoftheVoronoimeshembarrassinglyparallel.

Notethatallthenewdegreesoffreedomareplacedatthesamedistanced fromtheinterface.Thisisafreeparameter

ofourmethod,andexperimentingwithvariousreasonablevaluesshowslittleimpactonthenumericalresults.Wechoose

d

= diag/

5. This simple procedure will be shown in Sections 4.1 and 4.2 to be sufficient to construct second-order

accuratesolutionsintheL∞ norm.

2.3. Smoothingthemesh

Thealgorithmdescribedintheprevioussectioncanleadtoundesirablegeometricalconfigurationsinthecasewhenthe interface isnotsufficientlyresolved.Fig. 3presentsonesuchconfiguration.Thecontrolvolumesofsomeofthedegreesof freedomareconnectedbyafacethatisnotcapturingproperlytheinterface.

It ispossibletoremediatethisissueby modifyingtheVoronoipartition inapost-processing step.Thecontrolvolume of anydegree offreedom that has beenadded next tothe interface should be connectedto exactly one control volume associated toadegreeoffreedom ontheotherside oftheirregularinterface.Consequently,ifmorethanoneneighbor is foundacrosstheinterface,wedisconnecttheundesiredonesbyremovingtheconnectingedgeasshowninFig. 3.Theedge anditstwoassociatedverticesarethenreplacedbyasinglevertexlocatedinthemiddleoftheremovededge.Thecontrol volumeofallthedegreesoffreedomoftheresultingmeshareconnectedtoatmostonecontrolvolumeontheotherside oftheinterfaceandtheinterfaceiscapturedproperly.

(6)

Fig. 4. Nomenclatureforthefinitevolumediscretization forthedegreeoffreedomi.Foreachneighboringdegreeoffreedom j,wecalldi jthedistance betweeni andj,si jthelengthoftheedge(orsurfaceofthepolygoninthreespatialdimensions)connectingi andj,andui jthevalueofu atthemiddle ofthesegment[i,j].Notethatbyconstructionui jcanbeconsideredtobeexactlyontheirregularinterface,inwhichcasewedefineu+i jandui j.

However, this procedure alters the mesh which is no longer a Voronoi diagram, and the edge between two degrees of freedom is not guaranteed to be orthogonal to the line connecting the two degrees of freedom. The impact of this post-processing algorithm is analyzed in Sections4.1 and 4.2 anddoes not seem to improvethe method, we therefore recommendnotusingit.

2.4. Interpolatingbacktotheoriginalmesh

Ingeneral,ifsolvingadiffusionequationwithdiscontinuitiesispartofalargersolver,itisnecessarytointerpolatethe solutionfromtheVoronoimeshbacktotheoriginalmesh.Thisisaneasytaskgivensomebasicbookkeepinginformation linking the original degreesoffreedom to the onesgeneratedfor theVoronoi mesh.Withthis information,thesolution on theVoronoi meshcan be accessedforthe samecost than accessingthe dataon theoriginal mesh.The algorithm to interpolatethesolutionatagivenpoint

(

x

,

y

)

fromtheVoronoimeshisthenasfollows:

1. locatethecelloftheoriginalmeshcontaining

(

x

,

y

),

2. usingthebookkeepinginformation,identifytheVoronoidegreeoffreedom v

(

x

,

y

)

closestto

(

x

,

y

),

3. findthetwoneighborsofv

(

x

,

y

)

closestto

(

x

,

y

)

andonthesamesideoftheinterface,

4. computethemultilinearinterpolationofthesolutionusingthosethreedegreesoffreedomandevaluateitat

(

x

,

y

).

Thissimpleprocedureproducesasecond-orderinterpolationatanygivenpoint

(

x

,

y

).

3. SolvingaPoissonequationonVoronoidiagrams

Wediscretizeequation(1)withafinitevolumeapproachontheVoronoidiagramintroducedinSection2.2.Weusethe notationsfromFig. 4.Weconsiderthedegreeoffreedomi withthesetofVoronoineighbors

{

j

}

.Applyingafinitevolume approachtotheproblemati,wecanwrite



C

∇ · (β∇

u

)

dV

=



∂C

u

)

·

nCdl



j si j

β

i ui j

ui di j

/

2

,

wherenC istheouternormaltothe faceof

C

connectingi and j,si j isthelengthofthat face(orarea ofthesurfacein

threespatialdimensions)anddi j isthedistancebetweenthedegreesoffreedomi and j.Forthecasewheni and j areon eithersideoftheinterfacewith

φ

i

>

0,where

φ

i isthevalue ofthelevel-setfunctionatthedegreeoffreedomi,wecan

matchthefluxattheirregularinterfaceasfollows, si j

β

i u+i j

ui di j

/

2

=

si j

β

j uj

ui j di j

/

2

si j



β

u

·

n



.

Wealsoknowthatu+i j

=

ui j

+ [

u

]

.Injectingthisintothepreviousexpressiongives si j

β

i u+i j

ui di j

/

2

=

si j

β

j uj

u+i j

+ [

u

]

di j

/

2

si j



β

u

·

n



u+i j

i

+ β

j

)

= β

juj

+ β

iui

+ β

j

[

u

] −

di j 2



β

u

·

n



u+i j

=

1

β

i

+ β

j



β

juj

+ β

iui

+ β

j

[

u

] −

di j 2



β

u

·

n



.

(7)

Inthecasewheni and j areonthesamesideoftheinterface,thederivationisthesamebutthecontributionsfromthe discontinuities vanish.The contributionfrom theinteraction betweenthe degreesof freedom i and j,in the casewhen

φ

i

>

0,tothefinitevolumediscretizationof(1)canthenbewritten

β

isi j u+i j

ui di j

/

2

=

2

β

i

β

i

+ β

j si j di j



β

juj

+ β

iui

− (β

i

+ β

j

)

ui

+ β

j

[

u

] −

di j 2



β

u

·

n



=

2

β

i

β

j

β

i

+ β

j si j uj

ui di j

2

β

i

β

j

β

i

+ β

j si j di j



−[

u

] +

di j 2

β

j



β

u

·

n



= ˜β

i jsi j uj

ui di j

− ˜β

i j si j di j



−[

u

] +

di j 2

β

j



β

u

·

n



,

where

˜β

i j istheharmonicmeanbetween

β

iand

β

j,i.e.

˜β

i j

=

i

| + |φ

j

|

i

|/β

i

+ |φ

j

|/β

j

=

2

β

i

β

j

β

i

+ β

j

.

Thecontributionoftheinteractionbetweenthedegreesoffreedom i and j tothelinearsystemistherefore

˜β

i jsi j

uj

ui

di j

,

whilethecontributiontotheright-handsideis

˜β

i j si j di j



−[

u

] +

di j 2

β

j



β

∇u

·

n



.

Note that we made useof the fact that

φ

is a distancefunction and ui j ismidway between i and j tosimplify the

expression.Similarly,wecanderivethecontributionoftheinteractionbetweeni and j forthecasewhen

φ

i

<

0 andobtain

thegeneralexpressionfortheinteractionbetweenanydegreesoffreedomi and j

˜β

i jsi j uj

ui di j

+ Vol(

C

)

·

ki

·

ui

= ˜β

i j si j di j



sign

i

)

[

u

] +

di j 2

β

j



β

u

·

n



+ Vol(

C

)

·

fi

,

where

Vol

(

C)

isthe volume ofthe Voronoicell associated tothe degree offreedom i andki and fi are the respective values of k and f at the degree of freedom i. This discretization is entirelyimplicit and leads to a symmetric positive definite matrix.Thediscontinuities contributeonlytothe right-handsideofthelinearsystem. Notethatthisformulation is identicaltotheGhostFluidMethodof[41] inthecasewheretheirregularinterface isorthogonalto thefluxbetween the two degreesof freedom and located midway. In fact, the Voronoi Interface Method can be interpreted as a Ghost FluidMethodwherethefluxbetweentwo degreesoffreedomisguaranteedtobeorthogonaltothefaceconnectingtheir respectivecontrol volumes.Wesolve thelinearsystemwiththeConjugateGradientiterativesolverprovidedbythePetsc libraries[5,6]andpreconditionedwiththeHypremultigrid[20].WeenforceDirichletboundaryconditionson

∂.

4. Numericalvalidationonuniformmeshes

Inthissection,wevalidatetheadditionofthedegreesoffreedomalongtheirregularinterfaceandanalyzethe conver-genceofourmethodonvariousexamples.Inordertodemonstratethatoursolvercapturesthediscontinuitiesproperly,all theresultsinthissectionarepresentedonmeshesthatareuniformawayfromtheinterface.Doingso,wemakesurethat the errorontheinterface dominatestheoverall error.Sincethedegreesoffreedom aretheseeds oftheVoronoicells, it isconvenienttocompute thegradientofthesolutionateverypointlocatedinthemiddleoftwodegreesoffreedom,i.e.

ui j

·

ni j

= (

uj

ui

)/

di j whereni j isthenormaltotheedgeoftheVoronoicellconnectingthedegreesoffreedomi and j.

Theerrorspresentedarenormalized.

4.1. ValidationoftheconstructionoftheVoronoidiagramsclosetotheinterface

In thisfirst example,weare interested intheinfluenceofthequality ofthemeshcloseto theinterface.We consider three differentpossibilities, representedinFig. 5 fora circularirregularinterface described by

φ (

x

,

y

)

= −



x2

+

y2

+

r

0,

withr0

=

0.5,inadomain



= [−

1,1

]

2.

For thefirst case, we placethe newdegreesoffreedom atregular intervalson theirregular interface, making useof theexplicitparametricexpressionavailableforacircle.WechoosetoplaceN

=

1.5

2πr0

min(xmin,ymin)

newdegreesoffreedom

on eitherside oftheinterface, ata distance

diag

/5 from

theinterface with

diag

=

x2min

+

y2min.Forthe secondcase, we placethe newdegreesof freedom accordingto the procedure described inSection 2.2, ata distance diag

(8)

Fig. 5. Visualization of the three different meshes on a resolution 24×24for Section4.1.

Fig. 6. Left:representationofthesolutionforExample 4.1.Right:visualizationofthelocalizationoftheerroronanon-smoothedmesh(case2)ofresolution 27×27.

Table 1

ConvergenceoftheerroronthesolutionintheL∞normforExample 4.1.Thefirstcasecorrespondstothedegreesoffreedomplacedalongtheinterface usingtheexplicitparametrization,thesecondcasecorrespondstothemeshobtainedfollowingthemethoddescribedinSection2.2,andthethirdcaseis thesmoothedversionofcase 2.

Resolution Explicit Non-smoothed Smoothed

Solution Order Solution Order Solution Order

23 3 .66·10−3 1 .27·10−2 1 .20·10−2 24 1 .79·10−3 1.03 2 .34·10−3 2.44 2 .20·10−3 2.45 25 5.77·10−4 1.63 6.17·10−4 1.92 6.02·10−4 1.87 26 1.56·10−4 1.89 1.62·10−4 1.93 1.61·10−4 1.91 27 4.32·10−5 1.86 4.45·10−5 1.87 4.23·10−5 1.86 28 1.13·10−5 1.94 1.14·10−5 1.97 1.14·10−5 1.96 29 2.83·10−6 1.99 2.96·10−6 1.95 2.95·10−6 1.94 210 7 .19·10−7 1.98 7 .46·10−7 1.99 7 .45·10−7 1.98

interface.Finally,forthethirdcase,we startfromthepartitionobtainedwiththesecond caseandmodifyitaccordingto theproceduredescribedinSection2.3toobtainasmoothedmesh.

Wemonitortheconvergenceofourmethodonthesethreemeshesforthefollowingsolutiontakenfrom[64], u

(

x

,

y

)

=

1

+

log

(

2



x2

+

y2

)

if

φ (

x

,

y

) <

0

,

1 if

φ (

x

,

y

) >

0

,

and

β(

x

,

y

)

=

1.Notethatforthiscasewehave

[

u

]

=

0 and

[∇

u

·

n

]

=

2,withcontinuous

β

andadiscontinuityintheflux acrosstheinterface.ArepresentationofthesolutionisgiveninFig. 6togetherwithavisualizationofthelocalizationofthe error.WereporttheconvergenceofthesolveronthisexampleforthethreedifferentmeshesinTables 1 and 2.Weobserve second-order convergence forthe solution andfirst-order convergence forthe gradient ofthe solution, andvery similar errorsforall three meshes.We concludethat smoothingthemeshobtainedwiththe procedureexplained inSection 2.3

doesnotseemtoimprovetheaccuracyofthesolver.

4.2. Influenceofthesmoothingofthemesh

WefurtherconsidertheinfluenceofthesmoothingproceduredescribedinSection2.3.Thistime,weconsideran inter-facedescribedby

φ (

x

,

y

)

= −



x2

+

y2

+

r0

+

r1cos(5θ ),withr0

=

0.5,r1

=

0.15 and

θ

theanglebetween

(

x

,

y

)

and

(1,

0),

(9)

Table 2

ConvergenceoftheerroronthegradientofthesolutionintheL∞ normforExample 4.1.Thefirstcasecorrespondstothedegreesoffreedomplaced alongtheinterfaceusingtheexplicitparametrization,thesecondcasecorrespondstothemeshobtainedfollowingthemethoddescribedinSection2.2, andthethirdcasecorrespondstoitssmoothedversion.

Resolution Explicit Non-smoothed Smoothed

Gradient Order Gradient Order Gradient Order

23 4.60·10−2 4.71·10−2 4.24·10−2 24 3.28·10−2 0.49 2.40·10−2 0.98 2.36·10−2 0.84 25 1.79·10−2 0.87 1.23·10−2 0.96 1.23·10−2 0.94 26 9.56·10−3 0.91 8.34·10−3 0.56 8.35·10−3 0.56 27 5 .15·10−3 0.89 3 .94·10−3 1.08 3 .94·10−3 1.08 28 2 .56·10−3 1.01 2 .12·10−3 0.90 2 .12·10−3 0.90 29 1.30·10−3 0.98 1.12·10−3 0.92 1.12·10−3 0.92 210 6.61·10−4 0.98 5.61·10−4 1.00 5.61·10−4 1.00

Fig. 7. Visualization of the non-smoothed (left) and smoothed (right) meshes on a resolution 24×24for Section4.2.

Fig. 8. Left: representation of the solution forExample 4.2. Right: visualization of the error on a non-smoothed mesh and for a resolution 27×27.

inadomain



= [−

1,1

]

2.Sincewedonothaveanexplicitparametrizationoftheinterfacethatwouldenabletoplacethe

degreesoffreedom atregularintervals, weonlyconsiderthemeshgeneratedformtheproceduredescribedinSection2.2

andits smoothed version obtainedbyapplying theprocedure describedin Section 2.3. Fig. 7givesa visualization ofthe meshesobtained.

Forthissection,wechoosetoworkwiththeexactsolutiontakenfrom[9]

u

(

x

,

y

)

=

0 if

φ (

x

,

y

) <

0

,

excos

(

y

)

if

φ (

x

,

y

) >

0

,

with

β

= β

+

=

1.ThesolutionisrepresentedinFig. 8.WemonitortheconvergenceofthesolverinTable 3andobserve second-orderconvergenceforthesolutionandfirst-orderconvergenceforthegradientofthesolutioninbothcases.Given thatthesmoothingalgorithmrequiresadditionalprocessinganddoesnotseemtoimprovetheaccuracy(infact,wenotice forthisparticularexamplethatthenon-smoothedresultsaremoreaccurate),wechoosetowork withthenon-smoothed meshconstructedasdescribedinSection2.2fortheremainingofthisarticle.

(10)

Table 3

ConvergenceoftheerroronthesolutionanditsgradientintheL∞normforExample 4.2.

Resolution Non-smoothed Smoothed

Solution Order Gradient Order Solution Order Gradient Order

23 2.39·10−3 3.01·10−2 2.00·10−2 1.06·10−1 24 1.06·10−3 1.17 5.08·10−1 4.07 1.44·10−2 0.47 5.27·10−1 2.32 25 3 .43·10−4 1.63 8 .42·10−3 5 .91 4.21·10−3 1.78 2 .84·10−2 4 .21 26 6 .82·10−5 2.33 3 .95·10−3 1 .09 1.62·10−3 1.38 1 .66·10−2 0 .78 27 2.79·10−5 1.29 2.93·10−3 0.43 4.55·10−4 1.83 8.03·10−3 1.04 28 7.35·10−6 1.92 1.40·10−3 1.06 1.11·10−4 2.03 2.66·10−3 1.59 29 1.89·10−6 1.96 6.31·10−4 1.15 2.76·10−5 2.01 9.62·10−4 1.47 210 4.75·10−7 1.99 3.28·10−4 0.94 6.86·10−6 2.01 3.34·10−4 1.53

Fig. 9. Two examples of solutions forExample 4.3. Left:β−=1 andβ+=10. Right:β−=10 andβ+=1.

4.3. Examplewithadiscontinuityinthediffusioncoefficient

Wenowconsidertheexactsolution

u

(

x

,

y

)

=

x(ρ+1)−x(ρ−1)r20/r2 ρ+1+r2 0−1) if

φ (

x

,

y

) <

0

,

2x ρ+1+r20−1) if

φ (

x

,

y

) >

0

,

withr0

= .

5,r

=



x2

+

y2,

φ (

x

,

y

)

= −

r2

+

r2

0 and

ρ

= β

+

−inthedomain



= [−

1,1

]

2.ThiscorrespondstoExample 7.3

from[64].Inthiscase, u iscontinuous,butthediffusioncoefficient

β

experiencesalargejumpacrosstheirregular inter-face

.

We alsohave

[∇

u

·

n

]

=

0.Avisualization ofthe solutionisgivenin Fig. 9.The gradientof thesolutionis given by

u

(

x

,

y

)

=

1 ρ+1+r2 0−1)



ρ

+

1

r2 0

(

ρ

1

)

y2x2 (x2+y2)2 r20

(

ρ

1

)

2xy (x2+y2)2



if

φ (

x

,

y

) <

0

,

1 ρ+1+r20−1)



2 0



if

φ (

x

,

y

) >

0

.

The errors on the solution andits gradient are monitored inTable 4 which shows second-order convergenceon the solutionandfirst-orderconvergenceonitsgradient.Fig. 10providesavisualizationofthelocalizationoftheerror.Wealso monitorthe evolutionofthe 1-normcondition numberofthematrix ofthelinear systemasthemeshis refinedin and presenttheresultsinTable 5.Theconditionnumberdependsonthemeshresolutionandonthediffusioncoefficient.When thediffusioncoefficientislarge,the conditionnumbergetslargerapidly.However, thediscontinuitiesattheinterface are entirelycapturedbytherighthandsideandthereforedonotaffecttheconditioningofthematrix.

4.4. Acompleteexample

Thisexampleismeanttotestourmethodtoitsfullcapacity,withdiscontinuitiesinallfourquantities(thesolution,its gradient,thediffusioncoefficientandthefluxacrosstheinterface),andwithacomplexirregularinterface.Wechoosethe exactsolution

u

(

x

,

y

)

=

ex if

φ (

x

,

y

) <

0

,

(11)

Table 4

ConvergenceonthesolutionanditsgradientforExample 4.3,fortwodifferentcombinationsofdiffusioncoefficients.

Resolution β−=1,β+=105 β=105,β+=1

Solution Order Gradient Order Solution Order Gradient Order

23 1 .10·10−2 3 .84·10−2 1 .74·10−2 1 .14·10−1 24 3 .42·10−3 1.68 1 .93·10−2 1.00 4 .70·10−3 1.89 5 .65·10−2 1.01 25 1.39·10−3 1.30 1.17·10−2 0.72 1.26·10−3 1.90 2.54·10−2 1.15 26 3.82·10−4 1.86 6.19·10−3 0.92 3.39·10−4 1.90 1.77·10−2 0.53 27 1.34·10−4 1.51 3.59·10−3 0.79 1.05·10−4 1.69 8.06·10−3 1.13 28 3.43·10−5 1.97 1.84·10−3 0.96 2.67·10−5 1.98 4.87·10−3 0.73 29 9.76·10−6 1.81 1.05·10−3 0.82 7.55·10−6 1.82 2.40·10−3 1.02 210 2 .58·10−6 1.92 5 .41·10−4 0.95 1 .96·10−6 1.95 1 .25·10−3 0.94 Table 5

EvolutionoftheconditionnumberasthemeshisrefinedforExample 4.3.Theconditionnumberdependssolelyonthediffusioncoefficientβandonthe resolutiononthemeshsincethediscontinuitiesarecapturedbytherighthandsideofthelinearsystem.

Resolution β−=1,β+=105 β=105,β+=1 β= β+=105 β= β+=1 23 2.38·106 2.02·106 5.59·106 1.72·102 24 1.17·107 5.09·106 1.23·107 8.11·102 25 4.86·107 1.57·107 2.69·107 3.66·103 26 2 .09·108 7 .18·107 5 .72·107 1 .58·104 27 8 .52·108 3 .14·108 1 .19·108 6 .59·104 28 3.86·109 1.32·109 2.42·108 2.70·105 29 1.48·1010 5.43·109 4.89·108 1.09·106 210 6.59·1010 2.20·1010 9.84·108 4.39·106

Fig. 10. VisualizationofthelocalizationoftheerrorintheL∞normonagridofresolution27×27forExample 4.3.Left:β=1 andβ+=105.Right:

β−=105andβ+=1.

inadomain



= [−

1,1

]

2 with

φ (

x

,

y

)

= −



x2

+

y2

+

r

0

+

r1cos(n

θ ),

wherer0

=

0.5,r1

=

0.15 andn

=

5,andwedefine

thediffusioncoefficientas

β(

x

,

y

)

=

y2ln

(

x

+

2

)

+

4 if

φ (

x

,

y

) <

0

,

ey if

φ (

x

,

y

) >

0

.

Note that with our method,each degree of freedom hasa control volume that is entirely on one side ofthe irregular interface,andthereforewecaneasilydefineaforcingtermforanyanalyticalsolution.Theexactsolutionandthediffusion coefficient are represented inFig. 11. The convergenceis summarized in Table 6and once againindicates second-order convergenceforthesolutionandfirst-orderconvergenceforthegradientofthesolution.Avisualizationofthelocalization oftheerroronthesolutionisgiveninFig. 12.

Fig. 13 presentsthe percentageofthe runtimeconsumedby thefour principalcomponents ofthealgorithm, i.e con-structingtheVoronoimesh,assemblingthematrix,computingtherighthandsideandsolvingthelinearsystem.Forcoarse grids, thebottleneckofthecomputationistheconstructionoftheVoronoimesh,butforhighresolutionweobservethat invertingthelinearsystemisthecostliest.Theseresultscorrespondtoourimplementationintheabsenceofparallelization. Thefinestresolutionof1024

×

1024 takes18 sonasinglecoreofanInteli7-26003.40 GHzcpu.

4.5. Addingsubdomains

We nowpropose an examplewithmultiplesubdomains. Notethat themethodwe proposeleads naturally toa linear system with N rows, the number of degrees of freedom. This number increases slightly as the number of subdomains increasesandadditionaldegreesoffreedomareaddednexttotheirregularinterfaces.

(12)

Fig. 11. Left: visualization of the solution u forExample 4.4. Right: visualization of the diffusion coefficientβ.

Fig. 12. Visualization of the localization of the error forExample 4.4on a resolution of 27×27.

Table 6

ConvergenceonthesolutionanditsgradientforExample 4.4.

Resolution Solution Order Gradient Order

23 3.97·10−3 4.37·10−1 24 9.98·10−4 1.99 5.01·10−1 0.20 25 2.90·10−4 1.78 3.67·10−3 7.09 26 8 .84·10−5 1.71 1 .73·10−3 1 .09 27 2 .06·10−5 2.10 9 .84·10−4 0 .81 28 5.22·10−6 1.98 4.77·10−4 1.05 29 1.33·10−6 1.97 2.45·10−4 0.96 210 3.39·10−7 1.97 1.23·10−4 0.99

Forsimplicity,we choose towork withnon-intersectingirregularinterfaces,butourmethod issuitedfor anygeneral configuration.Wedividethecomputationaldomain



= [−

1,1

]

2 in4subdomainsrepresentedinFig. 14andseparatedby thethreecontoursdefinedby



0

=

(

x

,

y

), φ

0

(

x

,

y

)

=

x2

+

y2

0

.

2



,



1

=

(

x

,

y

), φ

1

(

x

,

y

)

=

x2

+

y2

0

.

5

+

0

.

1 cos

(

5

θ )



,



2

=

(

x

,

y

), φ

2

(

x

,

y

)

=

x2

+

y2

0

.

8



,

where

θ

istheanglebetween

(

x

,

y

)

andthex-axis.Wechoosetheexactsolution

u

(

x

,

y

)

=

ex

+

1

.

3 if

(

x

,

y

)

∈ 

0

,

cos

(

y

)

+

1

.

8 if

(

x

,

y

)

∈ 

1

,

sin

(

x

)

+

0

.

5 if

(

x

,

y

)

∈ 

2

,

x

+

ln

(

y

+

2

)

if

(

x

,

y

)

∈ 

3

,

(13)

Fig. 13. Representationofthecomputationtimeconsumedbythefourmainsectionsofourimplementation,constructingthemesh,assemblingthematrix, computing therighthandsideandsolvingthelinearsystemforExample 4.4.Forcoarsegrids,buildingtheVoronoipartitiontakesthemosttime,butas theresolutionofthegridincreases,theinversionofthelinearsystembecomesthecostliest.

Fig. 14. Illustration of the division of the computational domain into four subdomains, together with the Voronoi mesh generated, forExample 4.5.

andthediffusioncoefficient

β(

x

,

y

)

=

y2

+

1 if

(

x

,

y

)

∈ 

0

,

ex if

(

x

,

y

)

∈ 

1

,

y

+

1 if

(

x

,

y

)

∈ 

2

,

x2

+

1 if

(

x

,

y

)

∈ 

3

.

ThesolutionandthediffusioncoefficientarerepresentedinFig. 15.

The convergenceofthesolverispresentedinTable 7.Weobservesecond orderconvergenceforthesolutionandfirst orderconvergenceforitsgradient.

4.6. Applicationtothreespatialdimensions

We now present an example in three spatial dimensions and with a spherical interface of radius 0.5 in a domain



= [−

1,1

]

3.Weworkwiththeexactsolution

u

(

x

,

y

,

z

)

=

ez if

φ (

x

,

y

,

z

) <

0

,

cos

(

x

)

sin

(

y

)

if

φ (

x

,

y

,

z

) >

0

,

andthediffusioncoefficient

β(

x

,

y

,

z

)

=

y2ln

(

x

+

2

)

+

4 if

φ (

x

,

y

,

z

) <

0

,

ez if

φ (

x

,

y

,

z

) >

0

.

Thegeometry,togetherwithasliceofthesolutionandofthediffusioncoefficient,isrepresentedinFig. 16.Table 8presents thenumericalresultsandindicatessecond-orderconvergenceforthesolutionandfirst-orderconvergenceforitsgradient.

(14)

Fig. 15. Visualization of the solution (left) and the diffusion coefficient (right) forExample 4.5.

Table 7

ConvergenceonthesolutionanditsgradientintheL∞normforExample 4.5.

Resolution Solution Order Gradient Order

24 1.00·10−3 3.33·10−3 25 2.33·10−4 2.11 1.01·10−3 1.72 26 6.23·10−5 1.90 3.46·10−4 1.54 27 1.56·10−5 2.00 1.59·10−4 1.12 28 4 .00·10−6 1.96 6 .82·10−5 1.22 29 1 .01·10−6 1.99 4 .00·10−5 0.77 210 2.55·10−7 1.99 2.24·10−5 0.84

Fig. 16. Left:representationoftheirregularinterfaceandtheassociatedVoronoimeshonaresolution24×24×24forExample 4.6.Center:visualization ofthesolutionontheslicex=0.Right:visualizationofthediffusioncoefficientontheslicex=0.Notethatthesurfaceshavebeentranslatedtofacilitate thevisualization.

Table 8

ConvergenceonthesolutionanditsgradientintheL∞normonasphere(Example 4.6).

Resolution Solution Order Gradient Order

23 3 .61·10−3 1 .13·10−2 24 1.21·10−3 1.58 7.69·10−3 0.56 25 3.04·10−4 1.99 3.83·10−3 1.01 26 7.74·10−5 1.98 2.43·10−3 0.66 27 1.97·10−5 1.98 1.24·10−3 0.98

(15)

Fig. 17. Representation of the irregular interface and the associated Voronoi mesh on a resolution 24×24×24forExample 4.7. 4.7. Acomplexgeometryinthreespatialdimensions

Foramorecomplicatedgeometry,weselecttheintricatecontourborrowedfrom[34]andparametrizedby



trefoil

=



R 3



(

2

+

cos

(

3t

))

cos

(

2t

)

(

2

+

cos

(

3t

))

sin

(

2t

)

sin

(

3t

)



,

t

∈ [

0

,

]



,

where R

=

0.7 isthemajorradiusofthetrefoil.Wethendefine



+

=



x

∈ R,

min y∈trefoil



x

y



2

<

r



,

withr

=

0.15 theminorradiusofthetrefoil.ThecontourisrepresentedinFig. 17. Forthisexample,weusetheexactsolution

u

(

x

,

y

,

z

)

=

yz sin

(

x

)

if

φ (

x

,

y

,

z

) <

0

,

xy2

+

z3 if

φ (

x

,

y

,

z

) >

0

,

andthediffusioncoefficient

β(

x

,

y

,

z

)

=

y2

+

1 if

φ (

x

,

y

,

z

) <

0

,

ex+z if

φ (

x

,

y

,

z

) >

0

.

Slices of the solution and of the diffusion coefficient are displayed in Fig. 18. The convergence of our method on this complexirregular interfaceisreportedinTable 9andonce moreindicatessecond orderconvergenceforthesolutionand firstorderconvergenceforitsgradient.

4.8. ThescreenedPoissonequation

Thisexampleandthefollowingoneaddanon-zerok tothepreviousExample 4.7.Inthisexample,wechoosek

<

0 as k

(

x

,

y

,

z

)

=

ex if

φ (

x

,

y

,

z

) <

0

,

cos

(

y

)

sin

(

z

)

2 if

φ (

x

,

y

,

z

) >

0

.

TheconvergenceresultsarepresentedinTable 10andshowsecondorderconvergencewitherrorsverysimilartotheones obtainedwhenk

=

0.

4.9. TheHelmholtzequationcase

Our last example on a uniform base mesh is exactly the same than the one from the previous section but for the Helmholtzequationcase,i.e.k

(

x

,

y

,

z

)

>

0.Weset

k

(

x

,

y

,

z

)

=

ey if

φ (

x

,

y

,

z

) <

0

,

cos

(

x

)

sin

(

z

)

+

2 if

φ (

x

,

y

,

z

) >

0

.

Inthiscase, thelinearsystemobtainedismorecomplicatedtosolvebecausethematrixisnolongerdiagonallydominant, meaningthattheproblemisnotconvexanditerativesolverssuchastheConjugateGradientusedsofararenotguaranteed toconverge.Instead,wesolvethelineardirectlywithanLUdecomposition.ThenumericalresultsarepresentedinTable 11

andarealmostidenticaltotheresultsfromtheprevioussection,illustrating thesecond orderconvergenceofourmethod fortheHelmholtzequation.

(16)

Fig. 18. Visualizationofthesolution(toprow)andthediffusioncoefficient(bottomrow)onthreeslicesforExample 4.7.Theslicesaretaken,fromleftto right,atx=0.3,x= −0.3 andx= −0.5.Notethatthesurfacesofthediffusioncoefficienthavebeentranslatedtofacilitatethevisualization.

Table 9

ConvergenceonthesolutionanditsgradientintheL∞normonacomplexthree-dimensionalcontour(Example 4.7).

Resolution Solution Order Gradient Order

24 3.89·10−3 1.44·10−1 25 1.34·10−3 1.54 2.56·10−2 2.67 26 3 .45·10−4 1.96 9 .75·10−3 1.21 27 8 .25·10−5 2.07 5 .04·10−3 0.95 Table 10

Convergenceonthesolutionanditsgradientinthe L∞normonacomplexthree-dimensionalcontourforthescreenedPoisson equation(Example 4.8).

Resolution Solution Order Gradient Order

24 3 .87·10−3 1 .44·10−1 25 1 .34·10−3 1.53 2 .25·10−2 2.67 26 3.44·10−4 1.96 9.74·10−3 1.21 27 8.22·10−5 2.06 5.04·10−3 0.95 Table 11

ConvergenceonthesolutionanditsgradientintheL∞normonacomplexthree-dimensionalcontourfortheHelmholtzequation (Example 4.9).

Resolution Solution Order Gradient Order

24 3.91·10−3 1.44·10−1

25 1.35·10−3 1.54 2.26·10−2 2.67

26 3.46·10−4 1.96 9.75·10−3 1.21

(17)

Fig. 19. Example of a Quadtree grid.

Fig. 20. Left:visualizationofthesolutionforExample 5.2withα=10.Highervaluesofαnarrowthepeaks.Right:representationoftheerrorinterpolated onthebaseQuadtreemeshoflevel8/10 forα=50.

5. Extensiontoadaptivemeshes

Intheprevioussectionwedemonstratedtheefficiencyofourmethodbasedonuniformmeshesinbothtwoandthree spatialdimensions.However,itcanbeappliedstraightforwardlytoanymeshandinthissectionweproposean implemen-tationonQuad/Oc-trees.

5.1. IntroductiontotheQuad/Oc-treedatastructure

A Quad/Oc-tree grid refers to a Cartesian grid that uses the Quad/Oc-tree datastructure forits storagein two/three spatial dimensions. Starting froma rootcellcorresponding to theentiredomain, four(eight inthree spatial dimensions) children are created ifthecell satisfies a givensplittingcriterion. The process isiterated recursively untilthe maximum allowed levelisreached.Therootcellhaslevel0andthefinestcells havethemaximumlevelallowed.We denotea tree withcoarsestleveln andfinestlevelm byleveln

/

m.Theprocess isillustratedinFig. 19.Thisdatastructureprovidesan

O

(ln(

n

))

accesstothe datastoredattheleaves. Werefer thereaderto[45] forfurtherdetails ontheQuad/Oc-tree data structureandtheassociateddiscretizationtechniques.

Since thisarticleis aproof ofconcept andwe knowtheexact solutioninall the numericalexamplewe propose,we makeuseofthisknowledgeintheconstructionofthetree.Wewillusesolutionsoftheform

u

(

x

)

=

eαxx022

,

andanygivenleaf

L

ofthetreewithcentercoordinatesxc issplitif



x0

xc



2

< λ

· diag

,where

diag

isthelengthof

thediagonalof

L

and

λ

controlsthespreadofthemesharoundthepeaksofthesolution.

5.2. SolutiononaQuadtreemesh

Forthisexample,weconsidertheexactsolution,representedinFig. 20, u

(

x

,

y

)

=



e−50((x+0.7)2+(y−0.7)2) if

φ (

x

,

y

) <

0

,

e−50((x−0.1)2+(y+0.1)2) if

φ (

x

,

y

) >

0

,

with

β

= β

+

=

1 andonthedomain



= [−

1,1

]

2.WeusethesamegeometryasinSection4.4,i.e.

φ (

x

,

y

)

= −



x2

+

y2

+

Figure

Fig. 2. Illustration of the procedure for generating a Voronoi diagram based computational mesh
Fig. 4. Nomenclature for the finite volume discretization for the degree of freedom i. For each neighboring degree of freedom j, we call d i j the distance between i and j, s i j the length of the edge (or surface of the polygon in three spatial dimensions)
Fig. 6. Left: representation of the solution for Example 4.1. Right: visualization of the localization of the error on a non-smoothed mesh (case 2) of resolution 2 7 × 2 7 .
Fig. 8. Left: representation of the solution for Example 4.2. Right: visualization of the error on a non-smoothed mesh and for a resolution 2 7 × 2 7 .
+7

Références

Documents relatifs

Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm.. Brezis, Elliptic equations with limiting

Boni, On the asymptotic behavior of solutions for some semilinear parabolic and elliptic equations of second order with nonlinear boundary con- ditions, Nonl.. Boni,

Caldiroli, A New Proof of the Existence of Homoclinic Orbits for a Class of Autonomous Second Order Hamiltonian Systems in R N.. Montecchiari, Homoclinic orbits for second

Gradient constraints, active set strategy, regularization, semi-smooth Newton method, primal-dual active set method.. 1 Chemnitz University of Technology, Faculty of Mathematics,

The IFE method relies on the partition of the infinite domain into a bounded sub-domain, in which usual finite elements are used, and an unbounded sub-domain which is mapped into

In this paper we study the approximation of solutions to linear and nonlinear elliptic problems with discontinuous coefficients in the Discrete Duality Finite Volume framework..

Moreover, we briefly consider how the regularization parameter of the mixed QR method should be chosen in the case of noisy data and demonstrate how the method can be discretized

Murat , Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, Equations aux ´ d´ eriv´ ees partielles et