• Aucun résultat trouvé

Bioconversion of wastes (wastewater sludge, glycerol) to biodiesel.

N/A
N/A
Protected

Academic year: 2021

Partager "Bioconversion of wastes (wastewater sludge, glycerol) to biodiesel."

Copied!
28
0
0

Texte intégral

(1)

Bioconversion of wastes (wastewater

sludge, glycerol) to biodiesel

R.D. TYAGI

Canada Research Chair

(2)

Why biofuels? ---Energy crisis

Fossil fuel-

80%

of world energy demand

50%

of available oil – exhausted

(3)

Why biodiesel?

3

Biodiesel

Renewable

Bio-degradable

Compatible

with diesel

engines

Comparable

energy

density

Non-toxic

Sustainable

(4)

What is biodiesel?

Oil/fat Alcohol Biodiesel (FAMEs) 100 Kg 10Kg Glycerol Catalyst

Transesterification

Alcohol: methanol (cheaper)

Catalyst: base or acid (FFA)

expensive

Fatty acid methyl esters

(5)

Problem of Glycerol?

5 0 200 400 600 800 1000 1200 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Millio n g allon s

Global glycerol production

(6)

Alternative feedstock

Microbial oils:

Accumulate

high

lipid

(80% w/w)

Rapid

growth rate

Easy

to control

Does Not

require

arable

land

Problem

(7)

Affordable substrates

7

Wastewater Sludge:

Naturally

produced

Cost

free

(waste)

Rich in

C & nutrients

Disposal problem

Crude glycerol:

By-product

of biodiesel production

Cost

low

(

0.15 US$/kg

) or can be

free

Simple

Carbon

Oil Soap Glycerol

(8)

Process

Sludge Sludge+crude glycerol

Fermenter

Extraction

Transesterification

Glycerol +

Biodiesel

Sterilization 1210C, 30 min Oleaginous microbes

(9)

Process (fermentation)

9 Sludge Sludge+crude glycerol

Fermenter

Sterilization 1210C, 30 min Oleaginous microbes 0 5 10 15 20 25 30 35 40 45 0 20 40 60 SS an d Gl yc e ro l c o n ce n tr ation (g/L), lip id c o n te n t (% ) Time (h)

Washed sludge+40 g/L glycerol

SS Lipid Glycerol

Higher SS was obtained with washed sludge (31 g/L) than unwashed sludge (23 g/L).

0 5 10 15 20 25 30 35 40 45 0 20 40 60 SS an d Gl yc e ro l c o n ce n tr ation (g/L), lip id c o n te n t (% ) Time (h)

Unwashed sludge+40 g/L glycerol

(10)

Sludge effect on lipid accumulation

Initial conditions: sludge SS=30 g/L; Alkaline thermal treated ; 10% innoculation

SS0 Pre-tretmant Glucose (g/L) Glycerol (g/L)

Washed Unwashed SSf Lipid

(%w/w) Lipid (g/L) 30 AT - - - UW 21.1 28 5.9 30 AT - 25 - UW 29.2 32 9.3 30 AT 25 - - UW 31.9 35 11.2 30 AT - 50 - UW 30.2 33.6 10.1 30 AT - 100 - UW 27.2 33.3 9.1 30 AT - 150 - UW 27.2 33.1 9.0 30 AT 40 W - 29.2 40.4 11.8 30 AT - 40 UW 22.5 35.2 7.9 35 AT - - W - 22.7 35 8 35 AT - 40 W - 48.0 40 19.2 MOR1 70 10.68 75.8 8.1

(11)

Process

11 Sludge Sludge+crude glycerol

Extraction

Ultrasonication 60 Hz, 2800 W 60 Hz, 2800 W T. oleaginous Fungi-SK5

(12)

Profile of biodiesel

Major:

Suitable for biodiesel

0 5 10 15 20 25 30 35 40 C 6:0 C8:0 C 10 :0 C 11 :0 C 12 :0 C 13 :0 C 14 :0 C 14 :1 C 1 5 :0 C 15 :1 C 16 :0 C 16 :1 C 17 :0 C 18 :0 C 18 :1 C 1 8 :2 C 18 :3 C 20 :0 C 20 :1 C 20 :2 C 21 :0 C 22 :0 C 22 :1 C 22 :2 C 23 :0 C 24 :0 C 24 :1 Fa tty ac id c o mp o sitio n fr ac tio n s (%)

lipid from original sludge

lipid from solo sludge fermentation lipid from sludge+glycerol fermentation lipid from sludge+glucose fermentation

(13)

Energy balance and Greenhouse Gas Emissions

(1 tonne sludge utilized)

GHG

emissions

13 sludge - extraction - transesterification Sludge - fermentation - extraction –transestrification

Energy balance

0 2 4 6 8 10 12 Residue to landfill Residue to land application Residue for fermentation Sludge fermentation Pre-treated sludge fermentation Ne t ene rg y gai n per t onn e sl udg e us ed ( G J) -30000 -25000 -20000 -15000 -10000 -5000 0 5000 10000 G HG g ene ra tion per t onn e sl udg e us ed ( kg C O2 )

(14)

Comparison of Energy Ratio

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ener

gy

r

atio (Outpu

t/I

np

ut

)

(15)

Cost of biodiesel production from sludge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Co st o f b io d ie sel p ro d u ction (US $/ kg) 1.0 US $/kg: Cost of biodiesel production Sludge (11% p/p) - extraction - transesterification Sludge - fermentation - extraction –transestrification Alkaline+thermal sludge 15 LF= landfill LA=land application

(16)

Cost estimation of crude glycerol for biodiesel

production

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 L0.4 -2%-7 2 h -5 0LC-ch L0.4 -2%-7 2 h -6 0LC-ch L0.4 -2%-7 2 h -7 0LC-ch L0.4 -2%-7 2 h -7 0LC-ch L0.4 -2%-4 8 h -7 0LC-ch L0.4 -2%-3 6 h -7 0LC-ch L0.4 -2%-7 2 h -7 0LC-ch L0.4 -2%-7 2 h -7 0LC-slu d ge L0.4 -2%-4 8 h -6 0LC-slu d ge L1-2% -48 h -6 0LC-slu d ge L1.8-2% -48 h -6 0LC-slud ge L5-2% -48 h -6 0LC-slu d ge L1-2% -48 h -6 0LC-slu d ge L1-15 % -4 8h -60 LC -slu d ge L1-30 % -4 8h -60 LC-slu d ge L1-2% -48 h -6 0LC-slu d ge-0 .6 3 L1-2% -48 h -6 0LC-slu d ge-0 .6 0 L1-2% -48 h -6 0LC-slu d ge-0 .5 0 L1-2% -48 h -6 0LC-slu d ge-0 .4 L1-2% -48 h -6 0LC-slu d ge-$ L1-15 % -4 8h -60 LC-slu d ge-$ L1-30 % -4 8h -60 LC-slu d ge-$ H u ile d e p al me H u ile d e can o la H u ile d e to u rn eso l H u ile d e soj a Li p id p rod u ct ion co st ($/ kg )

lipide content Time Nutrients Scale Methanol Yield Gycerol Cost (0.15$/kg)

0.4 million kg lipid/yr 1 million kg lipid/yr

1.11$/kg lipid

(17)

Conclusions

17

Medium

Sludge

Glycerol

Sludge

+

glycerol

Washed

sludge

+

glycerol

Quantity used 1 tonne sludge 1 tonne 1 tonne sludge

+ 1.3 tonne Glycerol 1 tonne sludge + 1.3 tonne Glycerol

Biodiesel

(product) 198 kg 220Kg 263 kg 411 kg

Glycerol

(by-product) 20 kg 22Kg 26 kg 41 kg

(18)
(19)

Energy balance of biodiesel production

(heterotrophic microalage)

Biodiesel produced from microalage cultivated in wastewater

Tra

Cultivation

Harvesting

Extraction

Recovery

Transportation

Drying

(20)

Wastewater

Sludge

Residual solid

Transesterification

Biodiesel

Biodiesel production from sludge

(one-step)

(21)

SEM images after ultrasonication

(glycerol medium) Trichosporon oleaginosus SKF-5 Before Before 520 kHz, 40 W 60 Hz, 2800 W 60 Hz, 2800 W 520 kHz, 40 W 21 Ultrasonication Ultrasonication

a

b

c

d

e

f

(22)

Energy balance and Greenhouse Gas Emissions

(1 tonne biodiesel produced)

GHG emission

-5 0 5 10 15 20 25 30 35 En e rg y b al an ce o f p e r to n n e b io d ie sel p ro d u ce d (GJ) -60000 -50000 -40000 -30000 -20000 -10000 0 10000 e n e rate d p e r to n n e b io d ie e l p ro d u ce d (k g CO 2 ) sludge - extraction

- transesterification Waste - fermentation - extraction –transestrification CO2 - fermentation

- extraction –transesterification

(23)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ener

gy

r

atio (Outpu

t/I

np

ut

)

(24)
(25)

Biodiesel production from sludge

(two-step)

Wastewater

Sludge

Extraction

Residual solid

Lipid

Transesterification

Biodiesel

Step 2

Step 1

(26)

Different medium effect on lipid accumulation

0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 1.00E+09 0 5 10 15 20 25 30 35 0 12 24 36 48 60 72 SS co n ce n tr ation (g/L) an d li p id c o n te n t (% ) Time (h) SS Lipid content CFU CFU (/ m L) Sludge medium 2.00E+09 4.00E+09 6.00E+09 8.00E+09 1.00E+10 1.20E+10 5 10 15 20 25 30 35 40 u co se, S S co n ce n tr ation (g/L) an d lip id c o n te n t (% ) SS Lipid content Glucose CFU CFU (/ m L) Sludge +glucose 35% lipid w/w 0.00E+00 2.00E+08 4.00E+08 6.00E+08 8.00E+08 1.00E+09 1.20E+09 1.40E+09 0 5 10 15 20 25 30 35 0 12 24 36 48 60 72 Gl yc e ro l, SS c o n ce n tr ation (g/L) an d li p id co n te n t (% ) Time (h) SS Lipid content Glycerol CFU CFU (/ m L) Sludge+crude glycerol 32% lipid w/w 28% lipid w/w

Initial conditions: sludge SS=30 g/L; Alkaline treated; Glucose/glycerol conc.=25 g/L; 10% innocul.

Curde glycerol for lipid accumulation is comparable with glucose

(27)

Glycerol concentration effect on lipid

accumulation

27 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 0 12 24 36 48 60 72 SS c o n c. (g/L) an d Li p id c o n te n t (% ) Time (h)

Original glycerol conc. 50 g/L

SS Lipid content Glycerol Gl yc e ro l c o n c. (g/L) 0 20 40 60 80 100 120 0 5 10 15 20 25 30 35 40 0 12 24 36 48 60 72 SS c o n c. (g/L) an d Li p id c o n te n t (% ) Time (h)

Original glycerol conc. 100 g/L

SS Lipid content Glycerol Gl yc e ro l c o n c. (g/L) 0 20 40 60 80 100 120 140 160 0 5 10 15 20 25 30 35 40 0 12 24 36 48 60 72 SS c o n c. (g/L) an d Li p id c o n te n t (% ) Time (h)

Original glycerol conc. 150 g/L

SS Lipid content Glycerol Gl yc e ro l c o n c. (g/L)

(28)

Sludge effect on lipid accumulation

Initial conditions: sludge SS=30 g/L; Alkaline treated ; 10% innoculation

0 5 10 15 20 25 30 35 40 45 0 20 40 60 SS an d Gl yc e ro l c o n ce n tr ation (g/L), lip id c o n te n t (% ) Time (h)

Washed sludge+40 g/L glycerol

SS Lipid Glycerol 0 5 10 15 20 25 30 35 40 45 0 20 40 60 SS and Gl yce rol co n ce n tr ati on (g /L), lip id c o n te n t (% ) Time (h)

Unwashed sludge+40 g/L glycerol

SS Lipid Glycerol

Références

Documents relatifs

Boudjella, Hadjira and Zitouni, Abdelghani and Coppel, Yannick and Mathieu, Florence and Monje, Marie-Carmen and Sabaou, Nasserdine and Lebrihi, Ahmed Antibiotic R2, a

LE CONGRES DE LA SOCIETE HISTORIQUE DE CANADA, 1983 Le Congrès de la SHC, 1983, aura lieu à Vancouver à 1 'Université de la Colombie-Britannique. Le comité du programme

Aujourd‘hui, les statuts des tribunaux pénaux internationaux ad hoc pour l‘ex-Yougoslavie (« TPIY ») et le Rwanda (« TPIR ») et le Statut de Rome de la Cour pénale

A 14-Year Multi-sites and High-Frequency Monitoring of Salinity in the Tidal Garonne River (S-W France) Reveals Marked Inter-annual Variability in Marine Intrusion. Nguyen K.,

Table 1 Overview of oleaginous microorganisms for biodiesel production grown on di ff erent types of urban wastewater worldwide, extraction methods, lipid content and productivity,

Depending on the stage of wastewater treatment where biodiesel would be extracted, it may cover up to 20% of the current European biodiesel demand.. Further

In particular, oleaginous biomass from biological wastewater treatment (BWWT) plants represents a potentially important feedstock for the pro- duction of third-generation

2.3 Exemple d’un graphe pour minimiser l’énergie d’une droite de trois pixels avec deux profondeurs possibles à chaque fois.. A gauche, on fait apparaître les cases du