• Aucun résultat trouvé

Méthodes de Galerkin Discontinu pour la résolution du système de Maxwell sur des maillages localement raffinés non-conformes

N/A
N/A
Protected

Academic year: 2021

Partager "Méthodes de Galerkin Discontinu pour la résolution du système de Maxwell sur des maillages localement raffinés non-conformes"

Copied!
137
0
0

Texte intégral

(1)Méthodes de Galerkin Discontinu pour la résolution du système de Maxwell sur des maillages localement raffinés non-conformes Nicolas Canouet. To cite this version: Nicolas Canouet. Méthodes de Galerkin Discontinu pour la résolution du système de Maxwell sur des maillages localement raffinés non-conformes. Mathématiques [math]. Ecole des Ponts ParisTech, 2003. Français. �NNT : 2003ENPC0009�. �pastel-00000555�. HAL Id: pastel-00000555 https://pastel.archives-ouvertes.fr/pastel-00000555 Submitted on 10 Sep 2010. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) Ecole Nationale des Ponts et Chauss´ ees. M´ ethodes de Galerkin Discontinu pour la r´ esolution du syst` eme de Maxwell sur des maillages localement raffin´ es non-conformes ` THESE pr´esent´ee et soutenue publiquement le 15 d´ecembre 2003 pour l’obtention du. Diplˆ ome de Doctorat Sp´ ecialit´ e: Math´ ematiques Appliqu´ ees par.  . Composition du jury Pr´esident :. Jean-Michel Ghidaglia. Rapporteurs :. Eliane B´ecache Peter Monk. Directeur de th`ese :. Loula F´ezoui. Examinateurs :. Isabelle Terrasse Claude Dedeban.

(3)      

(4) .

(5)        

(6)            

(7)                                .      

(8)  

(9)      

(10)                          .      

(11)  

(12)  

(13)                 

(14)                                !          .  . . .  .              

(15)            

(16)       

(17)         "                        # 

(18)     

(19)          .              .    # 

(20)       

(21)                

(22)                  

(23)            

(24) 

(25)       ! $  $ # 

(26)          $

(27)   % # % !

(28)    .  

(29)    

(30)       % %   %  % &   #.             #         

(31)           '                 ( $

(32)      

(33) .     . .

(34) .

(35)    

(36)   

(37)      " 

(38)         .                                  !  !                          # """ 

(39)        .       . 

(40)           #   !                       $  "% !                         & '%  

(41)   

(42) 

(43)   

(44)                            &                                & ''"  (                                  &                                     ' % )                                   !*  

(45)   )     .  

(46) +)                    "%     !   !,                     **"        

(47)                           '                                        ! *%  *-% .  .                            !        !   *%"                              "" *' !                                    "% 2 / 01"   .   

(48)                                    "*. β. β. .

(49)    . "" "!"    

(50)                               ""#                                   # """""%            .    -                        "%%&                              ""' " "'    

(51)                 .           %%%%    !              " "' "           .  -          %' "% "!%      

(52)                               %%!   ! "%" " %"    

(53)                       %&                            %& ""%%"""% !           

(54)                   ''"

(55)                 ""%%'%        !   .  -                  '%       .  -                 '' ""%%''"  (                            '''                            ! " %' %                            '# "' "!'                                      ''&   !                                  & " ' "                              !" "! !                                         !"        1 % %           

(56)                              !**                                 !  %%"%           .                           !$   !                               !$ % ' #     

(57)                              !$ %%"% !

(58)                                     !&*                                  %' %! '      

(59)                             **!   !                                  $. .

(60) %''" ! 

(61)  

(62)                               *$ %  % )     

(63)     

(64)              *& %!   (                                 #" %!                                     #'% %%!"%          

(65)                          # ! !                               #! % !' .     

(66)                            #! %*    

(67)                                 ## %%**" (   . 

(68)        . 

(69)                      ##

(70) %%**'%         

(71)     .    -               $$%                    $& %# !                                         &

(72)       2 1 '' (         .                          &% " #     

(73)                                  &* '% '!

(74)                                      

(75)

(76) ! %                               ! ' %" )    

(77)                             

(78) # '' #     .  -                          

(79) & '!    

(80)                                 " ''! . 

(81)  - 

(82)                             " !" .                              % '* !                                      ! '*                                 ! ' *" .     

(83)                            # '# !                                         $    2   1 0 2 !"      .                                """% ! #                                . . α. . . P2div. .

(84)    . !% !%    

(85)                                 "*                                "* !!%%"% ! 

(86) . 

(87)                                %%

(88) !!%%'!    

(89)                                %%!& !' !                                         '!  1  11    . . .

(90)   . .               

(91)   

(92)      .        !  

(93)                  

(94)      

(95)           .                                              !       

(96)    

(97)                  

(98)   .                           .         

(99)              

(100)            -  %     

(101)  

(102)       .       .                    

(103)        

(104)  

(105)                 .     .    -   %           (              

(106)            %   (     .         .                  

(107)   -            $         

(108)   .  

(109)  

(110)           '         

(111)   $            .  

(112)     -                         

(113)    

(114)  (-      "        .                            

(115) 

(116)      

(117)          * % '

(118)  % !

(119)    

(120)                  %"  !  

(121)              (    .    

(122) 

(123)                                  

(124)

(125)      

(126)   %  .  

(127)  !      .             

(128)  

(129)  .                  .    .    -    + .   %    % .-        ( ,

(130) 

(131)    )   . 

(132) !      +) !% !',

(133)               ! 

(134)         .     

(135)               .   #      

(136)              !     .     . .

(137)   .    .            .            

(138)   

(139)                   .  

(140)         (         %      

(141)           

(142) !    %      β

(143)    %                                               β       β              .            

(144)   %   

(145)                        

(146)  %        

(147)      .               .    

(148)                    &.             

(149) 

(150)        .     #               

(151)             

(152) 

(153)       

(154)                            

(155)  .    .                             

(156)                                 .        %  .                    .        

(157)        .        %  

(158)       % .      .      %   %   %     

(159)          .    

(160)      .     

(161)               

(162)  

(163)    %   %  

(164)    %    .  

(165)    %   %    ! % .                  .      

(166)                 ! 

(167)                

(168)     .          

(169)          .      .    %                    .     .   !       .        $        

(170)                           %               

(171)  

(172)                          %        

(173)           

(174)    

(175)                                

(176)     P1  Q1 

(177)        .  

(178) 

(179) 

(180)                                

(181)   

(182)                                    

(183)                     .                   

(184)  

(185)   .       %           .             

(186)  

(187)  

(188)               

(189)                               !  

(190)      

(191)  

(192)   .   . . +. -. &#%. ). !!. % ! "* % # &  " *" ( +, (. . ) ,.  #. !". %. '. .. * $. "$ "&. %#. (. .. ". -.

(193) (.       % .           

(194)           .     (  

(195)  

(196)       .             

(197)             

(198)    (   .             

(199)   %      .                         

(200) .  

(201)            .                  . .. -. %.

(202)   .    . '.

(203)     . . .

(204)    .    !  !  " $%&%$ '()*+,-./ 01 2*34155 *) /1./ 01/ 0,/+6,7)+,-./ % % % % % % % % % % $%&%& 9-.0,+,-./ *)3 5,:,+1/ ;-)6 ).1 <6-.+,=61 :>+*55,()1 % % % % % % % $%&%@ 9-.0,+,-./ *)3 5,:,+1/ ;-)6 ).1 <6-.+,=61 *7/-67*.+1 % % % % % % %. B CDD!E  FG" E"  . I J!D "FE  F $%K%$ L,M>61.N1/ O,.,1/ % % % % % % % % % % % % % % % % % % % % % % % % % % % $%K%& '5>:1.+/ O,.,/ % % % % % % % % % % % % % % % % % % % % % % % % % % % % $%K%@ P-5):1/ O,.,/ % % % % % % % % % % % % % % % % % % % % % % % % % % % % %.  Q D  "G EG . R S !EF" T" U F VTUW $%X%$ Y6>/1.+*+,-. 0) /NZ>:* % % % % % % % % % % % % % % % % % % % % % % % $%X%& Y6-;6,>+>/ % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % $%X%@ \*].1:1.+ 01 :*,55*^1 % % % % % % % % % % % % % % % % % % % % % % % $%X%K 9-.N5)/,-. % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % _`_ ab   c def .  # 8 ? A H H A $$ $$. . B $K $[ $[ &@.  

(205)       

(206)              

(207)  

(208)     E % D % H  B

(209)     

(210)        

(211)  %

(212)       

(213)      ρ +  

(214) .  

(215) ,  j +      

(216) ,. !.

(217)    .   .    .  .  

(218)      .     .  

(219)   .    .  %.    .  %.      

(220)  %.     

(221)  . ∂D − rot H + j = 0 ∂t ∂B + rot E = 0 ∂t div D − ρ = 0 div B = 0.              

(222)        .     .  %            

(223) . +,. ∂ρ = div j. ∂t.  

(224)      .     -      

(225)  E % D % H  B                    $                      %           . +",. D = ε(x)E, B = µ(x)H,.      ε(x)      µ(x)              .   % 

(226)               10−9 F/m, 36π µ0 = 4π.10−7 H/m. ε0 =.               c = √ 1 = 3.10 m/s                 εµ         %      j  

(227)    

(228)  E                         

(229) %        .    

(230)  0. *. j = σE,. 8. 0 0.

(231)  . .                .         σ           .    %  

(232)      .          ε(x). ∂E − rot H + j = 0, ∂t. µ(x). ∂H + rot E = 0, ∂t. div ε(x)E − ρ = 0,. +%, +', +!, +*,.   %  

(233)    +!,  +*,      +    t    ,         (      

(234)  

(235) 

(236)          

(237)          

(238)    +%,  +', $      

(239)   %

(240)   

(241)      

(242)        (  

(243)    +!,  +*,   

(244)       div µ(x)H = 0.. _` c  c  . c   e    

(245)      

(246)      

(247)   .      

(248)                   

(249)              

(250)      .                                                  .   

(251)           .  +  

(252)     ,      S   +   n, . 

(253)  TT           A       S %         T    A. A. A. div(TA ) = div(A) + n.[A]S δS , rot(TA ) = rot(A) + n × [A]S δS ,. +#,.              S  [A]S     A   δS  S           .              

(254)     %  %       

(255)                   S                     

(256)   

(257)     

(258)   

(259)  ρS TρTρ = ρ + ρS         ρ     . +. + %, + ', + !, + *, ,. #.

(260)    .   .    .  .  

(261)  Tj   %  

(262)      .           ε(x). ∂E − rot H − n × [H]S = −j − jS δS , ∂t µ(x). ∂H + rot E + n × [E]S = 0, ∂t. div ε(x)E + n.[ε(x)E]S = ρ + ρS δS , div µ(x)H + n.[µ(x)H]S = 0.. +$, +&, +

(263) , +,.  (      

(264)      .        %                   S n × [H]S = jS , n × [E]S = 0, n.[ε(x)E]S = ρS , n.[µ(x)H]S = 0.. +", +%, +', +!,.  %      j %      .  

(265)    

(266)    

(267)               %     

(268)  %        

(269)    

(270)    

(271)           S.   .   

(272)    

(273) 

(274)     

(275) .        . 

(276)        (          σ    ( 

(277)                 

(278)  

(279)            #    ES. ,. +.  HS 

(280)    

(281)    

(282)        %          n × H S = jS ,  n × ES = 0, ρS  n.ES = , ε  n.HS = 0.     

(283)  jS  

(284)   

(285)  ρS          

(286)                     $       

(287)         . + *, + #, + $, + &,. $. + *, + #,.

(288)              .   

(289)    

(290) 

(291)     . 

(292)           ( %              

(293) 

(294)                +              ( . , $                              #  .  n×E = −. r. +"

(295) ,. µ0 n × (n × H). ε0.   

(296) %                                    .                                 " % %&      % .    

(297)          

(298)     (   -      +    

(299)  ,      !  $    

(300)           

(301)                      _` .    b.     

(302)  

(303)   

(304)      .          .   +       e ,        

(305)   

(306)           

(307)      

(308)         '      %  

(309)         

(310)          

(311)   .  "' % %!  .                +     ,    % 

(312)         

(313)   %           

(314)    .                          

(315)              

(316)       

(317)     

(318)   ( %   .  

(319)  

(320)  + 

(321)  ,                        

(322)            

(323)      . .       _`    c  c    iωt.    .      . (. +. . , "+. ( *%. !  

(324)                   .                

(325)   "      

(326)                  .          

(327)         

(328)  E  H             

(329)                     . (. , ",. +. 0. f (x0 ) =. f (x0 + h/2) − f (x0 − h/2) + O(h2 ). h. &.

(330)    .   .    .  .  

(331)      %           '                             *

(332) 

(333)     +  

(334)   !,       -       

(335)          

(336)         !   . +",. r 1 1 1 C∆t ( + + ) ≤ 1, 2 2 ∆x ∆y ∆z 2.  C = 1/√εµ              ∆x % ∆y % ∆z                                        .   (                .        .      

(337)               .                    . 

(338)      

(339)  

(340)              k =t(kx ,ky ,kz ) %                ω  ω 2 = |k|2 C 2 .            (   

(341)   " . -. -. + "",. C 2 |k|4 ω 2 = C 2 |k|2 + 12. kx4 ∆x2 + ky4 ∆y 2 + kz4 ∆z 2 C 2 ∆t2 − |k|4. !. +"%,. + O(∆4 ).. 

(342)     .                         .              %      ∆t     %       

(343)  ∆t       .                    

(344)    %                                               .                                     

(345)   "         % 

(346)  % 

(347)           

(348)                 

(349)  

(350)                     %   .  

(351)                             .  %              

(352)      !  

(353)                         .          

(354)     

(355)              %                      %          %          !          

(356)  

(357)        ∆t   

(358)         $ 

(359)    

(360)      

(361)                    . 

(362) %              

(363)        

(364)     (     !  

(365)    .        .   

(366)       

(367)                 

(368)            

(369)  . -. -. . 

(370). -. -. -. + * ' !. (. "". (. ,. %". %.

(371)         . ).    

(372)             

(373)                   .   

(374) 

(375)  .   

(376)   

(377)      %                    .   

(378)        %  .   .   

(379)        .   .   

(380)  %           .  . (.      

(381)                        .   

(382)      .         

(383)            

(384)      .     %                                         %                

(385)   

(386)   .        .  

(387)    

(388)        !  

(389)           

(390)           .         

(391)  

(392)                 . %  

(393) % (     

(394) 

(395)       .  

(396)         %                  

(397) 

(398)                

(399)     .      

(400)  %  

(401) 

(402)          '       (             %   %                   . 

(403)  

(404)  

(405)        .                    

(406)  

(407)          

(408)    .       %    !   

(409)       " %   

(410)    . 

(411)                             %     

(412) 

(413)    .       %        

(414)   

(415)                               .                          . 

(416)             %  

(417) 

(418)   

(419)              %      . . (. '' '# -. '! '*. (. -. "#" '% '#. %% '".    .    .  

(420).        .                .          

(421)      .  

(422)     .  .  +         

(423)   .    ,          

(424)  

(425)                  

(426)  )      +# % !$    ,          .     %  

(427)                         (  %   .          . 

(428)      

(429) %                  .    . .

(430)    .   .    .  .

(431)                  # 

(432)             (    #         $

(433)               

(434) (    .  .   

(435)  )   !  +) !,   

(436)            

(437)          !'          .         .             

(438)   % .     "          .    

(439)       "     .   

(440)                 

(441)            .  +    ,             -  .             .       *  

(442)   .      -   +.   % 

(443) .     

(444)    

(445) 

(446)   -    

(447)    ,               .       

(448)  ) ! +β = 0    β 

(449)                

(450)      , . _`. d            e. - + -.      .   

(451)  

(452)         .  .                       

(453)      .   %

(454)    (   % %   .             

(455)   

(456)   .    

(457)   

(458)   

(459) 

(460)        

(461) . . %                             (  %                   .   (                         .           .          .                      

(462)  .                 .    

(463)   

(464)                %      %             (                             (    .                          %      1 : n %  .                        n   (               (         . %%. -. %" ". - ". (. ,. +. -. ". -. . -. % ,  -. '".

(465)    . 1.     .  . 1 ’Grille’. ’Grille’. 0.8. 0.8. 0.6. 0.6. 0.4. 0.4. 0.2. 0.2. 0. 0 0. 0.2. 0.4. 0.6. 0.8. 1. 0. 0.2. 0.4. 

(466)  . . _`.  . . ". 0.6. 0.8. 1.  

(467)     .    .      . . . .   .  . .           ! ". . ) !' ..        

(468)  !      .     .        

(469)                .   ! 

(470)              .    $  .       

(471)   

(472)              

(473)           . -. %.

(474)        .   .    .  .     

(475) .   . . #       .    E  H. +"',.  ∂E     ε(x) ∂t = rot(H),.     µ(x) ∂H = − rot(E). ∂t.       

(476) 

(477)      V.  . . Z  Z ∂E  ε(x) = rot(H),    V ∂t V Z Z   ∂H   µ(x) =− rot(E). ∂t V V. +"!,.   

(478)  ε % µ  

(479)       

(480) 

(481)  .   V                     

(482)   %     1 ∂E  = ε(x)    ∂t V  . V. 0.   ∂H 1     µ(x) ∂t = − V. X.    V X. Z. ∂V ∩∂V 0. Z. +"*,. n × H∂V ∩∂V 0 ,. n × E∂V ∩∂V ,    ∂V ∩∂V   V V  n          V              .   !             HV + HV  H∂V ∩∂V = . 2  

(483)                 V. .. 0. 0. +. 0. 0. ,. 0.  ∂E     ε ∂t = Ψ1 (H),.     µ ∂H = −Ψ2 (E), ∂t. . .. + "#, +"$,.  Ψ1  Ψ2        

(484)   E  H        

(485)              

(486)         

(487)          

(488)     . '.  1   En+1 = En + ∆tΨ1 (Hn+ 2 )/ε,.   Hn+ 32 = Hn+ 21 − ∆tΨ (En+1 )/µ. 2. ". +"&,.

(489)    .     .  .  .   1  1 1.   .  . .   .     .    

(490)         # (          

(491)        

(492)         !   r . +%

(493) ,.      "       

(494)      +",       

(495)  ! "   C∆t (. 1 1 1 + + ) ≤ 2. 2 2 ∆x ∆y ∆z 2.   12.    

(496)   

(497)    

(498)    * %    

(499)   

(500)                .       .   12  1  1  01      '&

(501)   

(502)           .          .            ( +%, L2. V. V. 0. ∆t. 0. ∆t2 < 16. VV 0 0 0 min(εµ ,ε µ), PP.  V       .   V  P        !         

(503)   .       . 11 2      

(504)  

(505)       .        k =t (kx ,ky ,kz ) %            (   

(506)  !     ω. ). +%",          

(507)  .   

(508)   "    %          "  

(509)     " %  .        

(510)  ) !     "     (     

(511)  (  (     (%      "                

(512)                             C 2 |k|4 ω 2 = C 2 |k|2 + 12. kx4 ∆x2 + ky4 ∆y 2 + kz4 ∆z 2 C 2 ∆t2 − 4 |k|4. !. + O(∆4 ).. ∆t.       . .      1 11                 

(513)  ) !   .     $  .    

(514)   

(515)  ) !        .  .  

(516) . !    . .

(517)    .   .    .  . .. ".                   

(518)      

(519) 

(520)          ∂u ∂v  =c ,  ∂t ∂x   ∂v = c ∂u . ∂t ∂x. +. ,. +%%,.        .        (  ∆x  #  .  .  %  

(521)  !       . ). + %%,. +%',.  c∆t n+1/2 n+1/2  = unj + (v − vj−1 ),  un+1 j ∆x j+1   v n+3/2 = v n+1/2 + c∆t (un+1 − v n+1 ), j j j−1 ∆x j+1.  n       j      !

(522) 

(523)             . + %',. +%!,.   unj = U ei(ωn∆t − kj∆x) , . n+1/2 vj. = V ei(ω(n + 1/2)∆t − kj∆x) ,.   

(524)   ω  (   U  V          . U. 2i sin(ω∆t/2)  ∆t   −ic sin(k∆x) ∆x.  −ic sin(k∆x)  ∆x  2i sin(ω∆t/2)  ∆t. U V. !. = 0..  V                        2∆x | sin(ω∆t/2)| = | sin(k∆x)|. c∆t. +%*, +%#, ,. 

(525)               +     +%#,  (           c∆t/∆x = 2 ω∆t 2. *.  . k∆x.  =. −k∆x.  =. k∆x + π. =. π − k∆x.. =.

(526)    .     .  .  .   %    +%*,        U  V . 2∆x sin(ω∆t/2) U = . V c∆t sin(k∆x). +%$,. + %',   .     ( 

(527)            .   unj = U ei(ωn∆t − kj∆x) ,    n+1/2 vj = V ei(ω(n + 1/2)∆t − kj∆x) ,     U = V,   unj = U ei(ωn∆t + kj∆x) ,    n+1/2 = V ei(ω(n + 1/2)∆t + kj∆x) , vj     U = −V,   unj = (−1)j U ei(ωn∆t − kj∆x) ,    n+1/2 vj = (−1)j V ei(ω(n + 1/2)∆t − kj∆x) ,     U = −V,  i(ωn∆t + kj∆x) , n j   uj = (−1) U e   n+1/2 vj = (−1)j V ei(ω(n + 1/2)∆t + kj∆x) ,     U = V.. +%&,. #.

(528)    .   .    .  . x=0. ∆x. ∆y. j=−2. j=−1. j=0. j=1. Zone 1. . Zone 2. %.   .    . .     .          +( %,         

(529)    ∆x.    "     ∆y              w (x < 0) c−.      +%#,    k− =. . k+ =. w (x > 0). c+. +'

(530) ,. sin(k+ ∆y) sin(k− ∆x) = ∆y ∆x. 

(531) 

(532)      

(533)  ) !                 +%&, 

(534)                      %        .     .

(535)  +      .

(536)    +   ,  

(537)    .  (     R ,       +   T ,    P    +   Q , 

(538) 

(539)  (                

(540)                     

(541)  =⇒. $. k+ = k− + O(∆2 )..    n iωn∆t e−ik − j∆x + (R + (−1)j P )eik − j∆x ,  u = e  j+1/2   j < 0, n+1/2 iωn∆t e−ik − j∆x − (R − (−1)j P )eik − j∆x ,  v = e  j+1/2. +',.

(542)    .     .  .  .             #           ) −k ∆x −→  .

(543) .  % ) k ∆x ←−  .

(544)    ) π + k ∆x ← )  "   −k ∆y −→    . % )  π − k ∆y ,→ −. −. −. +.  . . +. .         . +'",.    + +   unj+1/2 = eiωn∆t T e−ik j∆y + (−1)j Qe−ik j∆y , j ≥ 0,     v n+1/2 = eiωn∆t T e−ik+ j∆y − (−1)j Qe−ik+ j∆y . j+1/2.       .               .         u  v  x = 0  !     %               n+1/2 n+1/2 un−1/2 + un1/2  n+1/2 v−1/2 + v1/2 unx=0 = vx=0 = . 2 2                   α α 6= 0 % α 6= 1         vn+1/2 = αvn+1/2 + (1 − α)vn+1/2 .  unx=0 = αun−1/2 + (1 − α)un1/2 x=0 −1/2 1/2    .   j = −1  j = 0 %  

(545)     . .. +.  ∆x n+1 n+1/2 n+1/2 n+1/2 n+1/2   (u−1/2 − un−1/2 ) + αv−1/2 + (1 − α)v1/2 − (v−1/2 + v−3/2 )/2 = 0,   ∆t     ∆x n+3/2  n+1/2 n+1 n+1 n+1  (v − v−1/2 ) + αun+1  −1/2 + (1 − α)u1/2 − (u−1/2 + u−3/2 )/2 = 0, ∆t −1/2  ∆y n+1 n+1/2 n+1/2 n+1/2 n+1/2   (u1/2 − un1/2 ) − αv−1/2 − (1 − α)v1/2 + (v1/2 + v3/2 )/2 = 0,   ∆t     ∆y n+3/2 n+1/2  n+1 n+1 n+1  (v1/2 − v1/2 ) − αun+1 −1/2 − (1 − α)u1/2 + (u1/2 + u3/2 )/2 = 0. ∆t. , + '%, +'',.          +',  +'",   

(546)    +'',%       2i∆x sin(ω∆t/2) 1 1   U−1/2 + α − V−1/2 + (1 − α)V1/2 − V−3/2 = 0,    ∆t 2 2       2i∆x sin(ω∆t/2) 1 1   V−1/2 + α − U−1/2 + (1 − α)U1/2 − U−3/2 = 0,  ∆t 2 2   2i∆y sin(ω∆t/2) 1 1    U1/2 + α − V1/2 − αV−1/2 + V3/2 = 0,   ∆t 2 2       2i∆y sin(ω∆t/2) 1 1   V1/2 + α − U1/2 − αU−1/2 + U3/2 = 0,  ∆t 2 2. +'!, &.

(547)    .   .    .  .   − − − −  U−3/2 = e−ik 3∆x/2 + eik 3∆x/2 (R + iP ), V−3/2 = e−ik 3∆x/2 + eik 3∆x/2 (−R + iP ),        U−1/2 = e−ik− ∆x/2 + eik− 3∆x/2 (R + iP ), V−1/2 = e−ik− ∆x/2 + eik− 3∆x/2 (−R + iP ), +   U1/2 = e−ik ∆y/2 (T − iQ),       U = e−ik+ ∆y/2 (T + iQ), 3/2. (. V1/2 = e−ik. + ∆y/2. (T + iQ),. V3/2 = e−ik. + ∆y/2. (T − iQ).. + '!, ,.                        (              R % P % T  Q     %       R % P % T % Q      

(548) . -. +. 1/2.   α − 1/2     0  −α. α − 1/2 1/2 −α 0. 1−α. 0. . 1 + R + iP.    1 − R + iP    1/2 α − 1/2   T − iQ  α − 1/2 1/2 T + iQ 1−α. 0. . . . 1. .      1      =  .      0     0. +'*,.        +'*,       α                  α % T = 1 % P = 0 % Q = 0  R = 0       

(549)  ∀α 6= 0 T = 1 + O(∆),. +'#,. P = O(∆), Q = O(∆), R = O(∆)..  

(550)               

(551) . 

(552)               

(553) 

(554)               

(555)    % %  Q           R % P % T  Q       R  PT. "

(556). ∗. ∗. ∗. ∗.

(557)    . "     +'!,      . ∆x/2.   (α − 1/2)∆x     0  −α∆x. (α − 1/2)∆x ∆x/2 −α∆x 0. (1 − α)∆y. 0.     . .  . −ik− ∆x/2(1 + R∗ + iP ∗ ).    −ik− ∆x/2(1 − R∗ + iP ∗ )    ∆y/2 (α − 1/2)∆x   T ∗ − iQ∗  (α − 1/2)∆y ∆y/2 T ∗ + iQ∗ (1 − α)∆y. 0. . 0.   0  =   −ik+ ∆y/2  −ik+ ∆y/2. .    .   . +'$,. # α 6= 0  α 6= 1 %    +'$,   

Références

Documents relatifs

Dans cette perspective, notre objectif de travail est consisté de l’étude d’effet des déférentes doses de fertilisation NPK sur les paramètres de

 Favoriser un échange entre allochtones et autochtones  Favoriser la collaboration aux soins de la santé entre.

In [16], the transient stability of the neighbor zone of the HVDC link is assessed for different direct current (DC) power levels, which indicates how the HVDC transmission can

The Kato—Katz method resulted in a significantly higher mean number of eggs per gram of stool (155.8 EPG) compared with the FLOTAC (37.7 EPG) and ether concentration (5.7 EPG)

In order to confront the general discrete asynchronous dynamics, given by the transition graph G (see Defi- nition 3) with biological experiments, one has to be a little bit

W e have shown in the present work that, for a prototypi al lass of parametrized ell problems (with pie ewise ane os illating oe ients), the redu ed-basis approa h applies

Ce même protocole sert aussi à transférer les données de l'appel aux serveurs de gestion des services comme les numéros verts pour obtenir la traduction du numéro logique appelé

Representing and evolving smooth manifolds of arbitrary dimension embedded in as the intersection of hypersurfaces: The vector distance functions José Gomes and Olivier