• Aucun résultat trouvé

Adsorption of DNA on biomimetic apatites: Toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA

N/A
N/A
Protected

Academic year: 2021

Partager "Adsorption of DNA on biomimetic apatites: Toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA"

Copied!
10
0
0

Texte intégral

(1)

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

Identification number: DOI : 10.1016/j.apsusc.2013.12.063

Official URL:

http://dx.doi.org/10.1016/j.apsusc.2013.12.063

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 12054

To cite this version:

Grunenwald, Anne and Keyser, Christine and Sautereau, Anne-Marie and

Crubézy, Eric and Ludes, Bertrand and Drouet, Christophe Adsorption of DNA

on biomimetic apatites: Toward the understanding of the role of bone and tooth

mineral on the preservation of ancient DNA. (2014) Applied Surface Science,

vol. 292 . pp. 867-875. ISSN 0169-4332

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

(2)

Adsorption

of

DNA

on

biomimetic

apatites:

Toward

the

understanding

of

the

role

of

bone

and

tooth

mineral

on

the

preservation

of

ancient

DNA

A.

Grunenwald

a,b

,

C.

Keyser

b

,

A.M.

Sautereau

a

,

E.

Crubézy

c

,

B.

Ludes

b

,

C.

Drouet

a,∗

aCIRIMATCarnotInstitutePhosphates,Pharmacotechnics,Biomaterials,UniversityofToulouse,CNRS/INPT/UPS,ENSIACET,4alléeEmileMonso,31030

ToulouseCedex4,France

bInstituteofLegalMedicine,AMISLaboratory,CNRSUMR5288,UniversityofStrasbourg,11rueHumann,67085StrasbourgCedex,France

cMolecularAnthropologyandImageSynthesisLaboratory(AMIS),CNRSUMR5288,UniversityofToulouse,37alléeJulesGuesde,31000Toulouse,France

Keywords: Nanocrystallineapatite Hydroxyapatite AncientDNA Polyelectrolyteadsorption Temkinisotherm Elovich

a

b

s

t

r

a

c

t

InordertoshedsomelightonDNApreservationovertimeinskeletalremainsfromaphysicochemical viewpoint,adsorptionanddesorptionofDNAonawellcharacterizedsyntheticapatitemimickingbone anddentinbiomineralswerestudied.Batchadsorptionexperimentshavebeencarriedouttodetermine theeffectofcontacttime(kinetics),DNAconcentration(isotherms)andenvironmentallyrelevantfactors suchastemperature,ionicstrengthandpHontheadsorptionbehavior.Theanalogyofthenanocrystalline carbonatedapatiteusedinthisworkwithbiologicalapatitewasfirstdemonstratedbyXRD,FTIR,and chemicalanalyses.Then,DNAadsorptionkineticswasfittedwiththepseudo-firstorder,pseudo-second order,Elovich,Ritchieanddoubleexponentialmodels.ThebestresultswereachievedwiththeElovich kineticmodel.TheadsorptionisothermsofpartiallyshearedcalfthymusDNAconformed satisfacto-rilytoTemkin’sequationwhichisoftenusedtodescribeheterogeneousadsorptionbehaviorinvolving polyelectrolytes.Forthefirsttime,theirreversibilityofDNAadsorptiontowarddilutionandsignificant phosphate-promotedDNAdesorptionwereevidenced,suggestingthataconcomitantionexchange pro-cessbetweenphosphateanionicgroupsofDNAbackboneandlabilenon-apatitichydrogenphosphate ionspotentiallyreleasedfromthehydratedlayerofapatitecrystals.Thisworkshouldprovehelpfulfor abetterunderstandingofdiageneticprocessesrelatedtoDNApreservationincalcifiedtissues.

1. Introduction

Boneand toothremains oftenrepresentthe only– butalso thebest–biologicalmaterialsavailablefordeoxyribonucleicacids (DNA)typinginanthropologyandmayadditionallybeexploited in forensicsciences [1,2]. Inancient samples,DNAarisingfrom degradedcellsisgenerallystronglyfragmented,withameansize around200basepairs, anditsamplification maybelimitedby thepresenceofsubstancespersistingafterpurification,and inhib-itingPCR[3].Althoughhardtissue samplesarecommonlyused asa sourceofancient DNAsequences,theprocessesof ancient DNApreservationinthesemineralizedtissueshavereceivedlittle systematicattention,bothregardingqualitativeandquantitative aspects.

Correspondingauthorat:CIRIMATCarnotInstitute,ENSIACET,4alléeEmile Monso,31432ToulouseCedex4,France.Tel.:+33034323411;

fax:+33034323499.

E-mailaddress:christophe.drouet@ensiacet.fr(C.Drouet).

Calciumphosphateapatitesarethemaincomponentsofhuman boneandteeth.Thephysico-chemicalfeaturesofenamelhighly resemblethoseofstoichiometrichydroxyapatiteCa10(PO4)6(OH)2,

both in terms of crystallographic structure and composition. In contrast, bone and dentin minerals are composed of non-stoichiometricapatitenanocrystals.Severalstudieshave shown thepossibilitytoprepare,underclose-to-physiologicalconditions (temperature, pH), syntheticanalogs tobiological apatites that mimictheirphysico-chemicalcharacteristics[4–6].Forboth bio-logical specimens and biomimetic analogs, the surface of the nanocrystals was found toexhibit a structured but metastable non-apatitichydratedlayer[7–9],containinglabileions(e.g.Ca2+,

HPO42−,CO32−...)leading to an exceptional surface reactivity,

either in terms of ionic exchanges or of molecular adsorption

[10–13]. Furthermore, the possibility to control, for synthetic biomimeticapatites,thematurationstateofthenanocrystalswas evidencedbymodifyingexperimentalconditionssuchas temper-ature,pHormaturationtimeinsolution[7,14,15].Thesefindings thenenablethepreparationofsamplesmimickingeithernewly formedormaturebonemineral.

(3)

The role of the mineral apatitic matrix, potentially acting asa physical and a chemical barrier against DNA deterioration (throughmicrobiologicalactivityandenvironmentalfactors)has beenwidelymentionedintheliteraturetoexplaintheexceptional preservationofDNAinhardtissues[16–18].Infact,eveninthe absenceofbacterialattack,thedecayof freeDNA moleculesin aqueoussolutionsiscompletelyachievedoverfewthousandyears, based onspontaneoushydrolysis [17].The presence of ancient DNAinsamplesagedover600000yearsappearsthenconsistent withthehypothesisofanadsorptionofDNAfragmentsonbone andtoothapatiticmatrix,thuslimitingthepossibilityof chemi-caldegradationandtheaccessibilityofbacteriaandtheirenzymes

[19].

Inanothercontext,theabilityofhydroxyapatitetoadsorbDNA hasbeenshownsince1957forchromatographicpurposes,using phosphatesolutionswithaconcentrationgradientasmobilephase

[20–22]. More recently,apatites and other calciumphosphates nanoparticleshavebeeninvestigatedasdrugcarrierstodeliver geneticmaterialstoeukaryoticcells[23,24].Okasakietal.[25]have alsoexaminedthecrystalgrowthofhydroxyapatiteinthe pres-enceofDNAandsuggestedanaffinitybindingphenomenonbased uponelectrostaticinteractionbetweennegativelycharged phos-phategroupsofthebackboneofDNAandcalciumionsfromthe apatitesurface.

However,inspiteofthesevariousapplications,thechemical interactionbetweenapatitesandDNAisgenerallyassumedapriori, withoutanin-depthunderstandingofthenatureofthebinding mechanisminvolved;moreoververyfewquantitativedatawere reportedto-dateonapatite/DNAinteractions.

The adsorptionof several biological (macro)molecules other than nucleic acids (e.g. bovine serum albumin and other pro-teins,antibiotics,aminoacids...)onsyntheticbiomimeticapatites has on the contraryalready been the object of various works

[11,12,26–28].Interestingly,adsorptionprocessesonbiomimetic apatiteswasfoundtoinvolveinsomecasesmorecomplex mech-anismsthansolelybasedonthedepositionofthemoleculeonthe surfaceofthesolidphase:insomeinstancesindeed,thereleaseof surfaceionswasfoundtooccursimultaneouslytotheadsorption process[11,29,30].Moreover,considerablevariationsofadsorption parametersareboundtobeobserveddependingonthe physico-chemicalcharacteristicsoftheapatitecrystals.

Basedontheseconsiderations,wereportinthiscontributiona firstphysico-chemicalinsightontheinteractionbetweenDNAand abiomimeticapatitemimickingboneanddentinbiominerals,with thegoaltoexplainthediageneticpersistenceofDNAextractedfrom skeletalremains.Thisexperimentalmodelwasaimedat determin-ingadsorptionand desorptionfeatures (usingcalf thymusDNA asmodelDNA),andatcomparingtheobtaineddatawithreports dealingwithotherbiologicalmolecules.

2. Materialsandmethods

2.1. Synthesisofapatiteanalogoustodentinandbonemineral

Abiomimeticcarbonated apatitesample,referred toas hac-1w,wassynthesizedbydoubledecompositionaccordingtothe proceduredescribed byRey etal. [8].Briefly, a calciumnitrate Ca(NO3)2·4H2Osolution(52.2gin750mlofdeionizedwater)was poured at room temperature (20◦C) into a solution of

ammo-niumhydrogenophosphate(NH4)2HPO4andsodiumbicarbonate

NaHCO3(90gofeachin1500mlofdeionizedwater).Theexcess

ofphosphateinthesecondsolutionwasusedtobufferthepHof thesolutionataclose-to-physiologicalvalue,namely7.2. Matura-tioninsolutionhasthenbeencarriedoutfor7days(1week).The pHofthemediumwasfoundtoremainconstantduringthewhole

maturationprocess.Thesuspensionwasthenfilteredona Büch-nerfunnel,thoroughlywashedwithdeionizedwater,freeze-dried andstoredinafreezer(−18◦C)soastoavoidanyalterationofthe

apatitenanocrystals.

Theapatitepowderwasthensieved,andthesizefractioninthe rangeof100–200mmwasusedforallfurtherexperiments (adsorp-tion/desorption).

2.2. DNA

Adsorptionanddesorptionexperimentswereperformedwith DNAsolutionspreparedfromshearedcalfthymusDNAsolutions (Trevigen).Accordingtothemanufacturer,theconcentrationofthe mothercalfthymusDNAsolutionisprovidedat10mg/mlinTE buffer(10mMTris,1mMEDTA,pH8)withafragmentsizerange of500–1000bp.

2.3. Physico-chemicalcharacterization

Thechemicalcompositionoftheapatitecompoundsynthesized wasdeterminedfromtitrationscarriedoutbycomplexometryfor thedeterminationofthecalciumcontent,byspectrophotometry forthetotalphosphatecontent(determinationofthesumofPO43−

andHPO42−ions,usingthephospho-vanado-molybdenicmethod

[31])andbycoulometricmethod(UIC,Inc.CM5014coulometer withCM5130acidificationunit)forthecarbonatecontent.

Thecrystalstructureofthesampleswascheckedbypowder X-ray diffractionusing an Inel diffractometer CPS120 and the monochromaticCoKaradiation(Co=1.78892 ˚A).

Thespecificsurfacearea,Sw,wasdeterminedusingafivepoints

BET method(nitrogen adsorption) ona Tristar IIMicromeritics apparatus.

Fouriertransforminfrared(FTIR)analyseswereperformedona PerkinElmer1700spectrometerwitharesolutionof4cm−1,using

theKBrpelletmethod.

TheamountofadsorbedDNA,atequilibrium,afteradsorption experimentswasdrawnbycomparisonoftheconcentrationsin DNAbeforeandafteradsorption,usingtheUVabsorptionofthe bandatca.260nmfollowedbyspectrophotometry(Thermo Scien-tificNanoDrop2000cspectrophotometer).

Theamountsofcalciumand(inorganic)phosphateionspresent inthesupernatantsafteradsorptionordesorptionweretitrated respectively byatomic absorption(ContrAA 300, AnalytikJena) andbyspectrophotometryusingthephospho-vanado-molybdenic methodasmentioned above.Priortotheseanalyses, the resid-ualDNAmoleculespresentinthesupernatantswereremovedby pretreatmentinacidicmediumandcentrifugation.

2.4. Adsorptionanddesorptionexperiments

Forallexperiments,theamountofapatitepowderandvolume ofDNAsolution(inglassflasks)werekeptconstantatrespectively 10mgand7.5ml.DNAsolutionswerepreparedatincreasing con-centrationsrangingfrom0to500mgDNA/ml,indeionizedwater. Thisconcentrationrangehasbeenchosentoremaininthelinear zoneofBeerLambertLawandavoidhighsolutionviscosity,which couldinterferewithadsorptionprocesses.

Adsorptionkineticswasfollowed,atroomtemperatureandpH 7,overaperiodof4weekswithaDNAsolutionofintermediate concentration(160–195mg/ml).

For the establishment of adsorption isotherms, experiments werecarried out withvariouspHvalues (byadding eitherHCl 0.1MorNaOH0.1M),ionicstrengths(byaddingKCl)and tem-peratures, under constant mild stirring. Thenthe mixture was centrifuged(20minat1850gandthesupernatantwasretrieved byfiltrationwithAcrodisc®syringefilterswithnylonmembrane

(4)

Fig.1.XRDpatterns(2between20◦and70)of(a)biomimeticcarbonatedapatite sample,hac-1w(maturationof1week),ascomparedtobonespecimens:(b)rat(12 months),(c)human(man57y.o.).

(0.45mm,25mm).Eachpointwasdoneintriplicatetocheckthe reproducibilityofourexperimentalmodel.

Whenmentionedinthetext,theeventualdesorptionof pre-adsorbedDNAmoleculeswasexamined–inthesameconditionsof temperatureandcontacttimeasfortheadsorptionexperiments– byinvestigatingtheeffectofdilutionbyafactor5,where80vol.%of thesupernatantwerereplacedbydeionizedwater,withorwithout additionofKH2PO4atafinalconcentrationof18mM.

3. Resultsanddiscussion

3.1. Physico-chemicalcharacterizationofapatitesample

The apatite sample hac-1w synthesized in this work was characterized by way of X-ray diffraction (XRD) analysis and Fourier-transforminfrared(FTIR)spectroscopy.

TheXRDpatternobtained(Fig.1)wasfoundtobe characteris-ticofsingle-phasedapatite,asnosecondarycrystallizedphasewas detected.Acomparisonwiththepatternsobtainedonbone speci-mens,namelyhumanfemur(man,57y.o.)andratbone(12months old),asillustratedinFig.1,confirmedthebiomimeticcharacter ofthehac-1wsample.Ascanbenotedinallcases,thepatterns exhibitthefeaturesofapatitewitharatherlowcrystallinitystate characteristicofbiologicalapatites(exceptfortoothenamel).The application of Scherrer’sformula todiffraction lines(002) and (310),leadingrespectivelytoanestimateofthemeanlengthand widthoftheapatitecrystals,gavemeancrystallitedimensionsof 15.7nmlengthand4.9nmwidth.Thesevaluesareclearlyinthe nanometerscalethusconferringanadditionalelementinfavorof thebone-ordentin-likecharacterofthisapatitecompound.

TheapatitenatureofthesamplewasalsoconfirmedbyFTIR analysis(Fig.2).Severaldifferencescouldhowever,asexpected,be evidencedbycomparisontostoichiometrichydroxyapatite(HA).In particular,thepresenceofcarbonateabsorptionbandswaspointed outinthecaseofthesamplehac-1wintheranges1350–1550cm−1

(assignable to the 3(CO3) vibration mode) and 840–910cm−1

(attributableto2(CO3)).Incontrast,absorptionbandsat3572and

632cm−1 typicalofapatiticOHionsarenotclearly detectable

onthespectrumofhac-1w(seeforexampleinletofFig.2).This observationindicatesthatthisapatitesampleislargelydepleted inOH−ions.Thistypeofnonstoichiometryiscommonfor

biolog-icalapatites(e.g.[32]), andistypicallyaccompaniedbycationic vacancies(lackofcalciumions)andthesubstitutionofPO43−ions

bydivalentHPO42− orCO32−.Beside thealreadyassessed

pres-enceofcarbonatespecies intheapatitelattice,theexistenceof

Fig.2. FTIRspectraforbiomimeticapatite(hac-1w)andforreferencestoichiometric hydroxyapatite(HA)showinglocalizationofapatitichydroxylions,phosphatesions (1–3)andcarbonatesions(2,3,hac-1wonly).Inset:spectraldecompositionof the4(PO4)vibrationdomainforhac-1wintherange400–800cm−1,revealingin particularthevibrationofnon-apatitichydrogenphosphatelabileions.

HPO42− ionscan indeed beestablishedhere onthebasis of IR

absorptionappearingasashouldertothe4(PO4)bands,around

535–550cm−1(seeinset,Fig.2).

Thechemicalcompositionofthisapatitesamplewasthen inves-tigated.In particular,theCa/(P+C) molarratioofthesolid was determinedfromthechemicaltitrationofcalcium,carbonateand orthophosphateions,leadingtothevalue1.36.ThisCa/(P+C)ratio isnoticeablylowerthan1.67,whichischaracteristicof stoichio-metricHA,andthisfindingconfirmsthenonstoichiometryofthis compoundalreadysuggestedbyFTIRanalyses.

Alltheresultsreportedabovethereforeassessthebiomimetic characteroftheapatitesamplehac-1w,withbone-ordentin-like characteristics,thusmakingofitanadequatesubstrateforDNA adsorptionanalysesinourcontext.

Takingintoaccount theimportance ofthesurfaceofapatite exposedtotheDNAsolutioninadsorptionexperiments,thesample wassieved(between100and200mm)andthespecificsurfacearea oftheresultingpowderfractionwasfoundtobeofSw=180m2/g

asdeterminedbynitrogenadsorption(BETmeasurement).

3.2. Adsorptionkinetics

ThekineticsofadsorptionofcalfthymusDNAonthehac-1w biomimeticapatitesamplepreparedabovewasfirstfollowed,with theobjectivetodetermineexperimentalconditionsallowingus toreachthethermodynamicequilibrium.Tothisaim,adsorption experimentswerecarriedout(atroomtemperatureandpH7–7.5) starting from DNA solutions witha concentrationin the range 160–195mg/ml.

Fig.3a reports the experimentaldatapoints byplotting the amountof DNAadsorbed,denoted Nads(given inmg DNA/g of apatite),asafunctionofcontacttimeandoveraperiodof4weeks. ThiskineticcurveshowsasteepincreaseofNadsduringthefirst

dayofcontactbetweenDNAmoleculesandtheapatitesubstrate, followedbyaprogressivestabilization(uptoabout110–120mg DNA/gapatiteforthisDNAconcentrationrange).Theanalysisofthe firstderivative(seeinsetonFig.3a)allowsonetoexamineinmore detailsthevariationofNadsduringthefirst24hofapatite/DNA con-tact.Ascanbeseen,thevastmajorityofDNAmoleculesappeartobe adsorbedwithinthefirst2–3hofcontact–reachingcoverageofthe orderof70–80%(relativelytothemaximumequilibratedadsorbed amount).Thesefindingssuggestthattheadsorptionprocessisnot

(5)

Fig.3.KineticsofDNAadsorptionfollowedover3weeksatroomtemperature, neutralpH,onbiomimeticapatitehac-1w.Adsorptioniscompletewithin3days, withatrendfollowingElovich’sequation(dottedline):(a)Nads=f(t),inset:first derivativeoffirstdaydatapointsshowingthattheadsorptionprocessisalmost completewithin3h,(b)linearregressionusingElovich’sequation,Nads=f(Ln(t)). particularlyhindered,duringthisfirststageofadsorption,bysteric hindranceoftheDNA macromoleculesatthesurface ofapatite nanocrystals.However,beyondthisstage,such phenomenacan probablycontributetothemodificationofslopeobserved(upto reachingthermodynamicequilibrium)andtheratherslow evolu-tionbeforefinalstabilization.

Theshape ofthe adsorptionkinetic curveNads=f(t)appears

roughlywithalogarithmicshape,andthistypeofvariationwas indeed confirmed by the rather good linearity (R2=0.9463) of

theNads=f(Ln(t))plotasshowninFig.3b.Suchabehavior isin

particularrepresentativeofkineticprocessesfollowingElovich’s mathematicalmodel[33]:

Nads= 1

bLn(t+t0)+ 1

bLn(ab) (1)

where“t0”(pre-Elovichperiod)isoftenfoundtobeclosetozero

(whichmayreasonablybeconsideredheretakingintoaccountthe linearityfoundinFig.3b).Thisequationderivesinfactfromthe descriptionoftheadsorptionratera=dNads/dt:

ra=dNads

dt =a·exp (−b·Nads(t)) (2) Interestingly,theElovichmodelwasfrequentlyconsideredto describethekineticsofadsorptionof(bio)moleculeson hetero-geneoussurfaces[34,35],especiallywhenthefinalstabilizationis ratherslowtooccur(suchasforexamplethecaseofthe adsorp-tionofhydrogenonmixedoxides[36]).Basedonourfindings,this

modelthusappearstosimulateratherwelltheadsorptionofDNA onbiomimeticapatite.Aratherslowstabilizationisindeedlikelyto happenheretakingintoaccountthelengthofthemacromolecules ofDNAandpotentialmodificationsofconformationupon adsorp-tion.

Otherkineticmodelshavehoweveralsobeentestedinthiswork inviewofevaluatingtheirpotentialpertinence.Thegeneralmodel proposedbyRitchie[37,38]wasinparticulartested,beingbased onanequationofthetype:

d

dt =kn(1−)

n (3)

where“”representsthecoverageofthesurfaceattime“t”,and “n”istheorderofthereaction.Outofthisgeneralequation,two modelsareindeedoftenencounteredinliteraturestudiesrelatedto kineticsofadsorption,namelythepseudo-firstorderand pseudo-secondorderkineticmodels:

Nads=Ne·[1−exp(−k1·t)] (pseudo-firstorder) (4)

Nads=Ne·

h

1−



1 1+k2·t

i

(pseudo-secondorder) (5) Theapplicationofthesetwotypesofequationtoour experi-mentaldatahoweverdidnotallowustoreachasatisfactoryfit overthewholetimerange.Inallcases,thefitsobtainedpredicted astabilizationatsignificantlyshortercontacttimesascompared totheexperimentaldata.Theuseofadouble-exponentialmodel (DEM):

Nads=Ne−a1·exp (−k1·t)−a2·exp (−k2·t) (6) proposedintheliterature[39]fordescribingtherateof adsorp-tionoftwovariantsofnucleotidesonmontmorillonitealsofailed tosimultaneouslydescribeadequatelythedifferentstagesofthe kineticadsorptioncurveobserved inthepresent case(both for shortandlongercontacttimes).

TheabovefindingsthussuggestthattheElovichmodelremains thebestmodeltestedhere,fordescribingsatisfactorilythekinetics ofadsorptionofDNAmacromoleculesonbiomimeticapatite.

3.3. Adsorptionisothermanddesorptionstudy

Takingintoaccounttheprecedingkineticdata,thefollowing sub-sectionswillaimatestablishingDNAadsorptionisotherms. Onthebasisoftheabovekineticsstudy,anapatite/DNAcontact timeof3dayshasbeenselectedforallexperiments.Inafirststage, theisothermrelativetoso-called“reference”conditions–namely roomtemperature,neutralpHanddeionizedwatermedium–was determined.Insubsequentsteps,thepotentialeffectsofpH,ionic strengthandtemperaturewereexaminedforderivinggeneral ten-denciesontheadsorptionprocess.

3.3.1. Referenceadsorptionisotherm(roomtemperature,neutral pH,deionizedwatermedium)

Areferenceadsorptionisothermwasbuiltby measuringthe amountNadsofDNAadsorbed(eithergiveninmg/mgorinmg/m2)

onthehac-1wcarbonatednanocrystallineapatitesample(Fig.4) asafunctionoftheequilibriumconcentrationofDNAinthe super-natantCeq(mg/ml).Theseexperimentswerecarriedoutatroom

temperature(∼22◦C),neutralpH(initialvaluecloseto7.4)andin

deionizedwater.

TheprofileofthisNads=f(Ceq)curveistypicalofanadsorption

isothermplottendingtowardamonolayer-likecoverage,witha steepincreaseoftheadsorbedamountoveranarrowrangeinCeq

followedbytheobtainmentofaplateau(aroundNm≈160mg/g). It maybenoted howeverthat experimentaldatapointsshow a

(6)

Fig.4.ThereferenceadsorptionisothermofcalfthymusDNA(0.75–4.5mg, ini-tialconcentrationrange40–600mg/ml)onbiomimeticcarbonatedapatitehac-1w (10mg)instandardconditions(roomtemperature,3daysofincubation,neutralpH) fitswithTemkinlogarithmiccurve(straightline)

rather highdispersion, which canberelatedtorelative hetero-geneityinDNAfragmentlengthsandapatiteparticlesize(despite preliminarysieving).Adispersionofphysico-chemical character-isticsamongbiologicalapatitesishoweveralsonaturallyobserved invivoduetovaryingstatusinmineralremodeling/agingstates. Inaddition,somevariabilityinDNAfragmentlengthalso presum-ablyoccursinpostmortemevents.Therefore,suchexperimental adsorptionisothermsareexpectedtoapproximatereasonablywell thevariabilityofactualdiageneticphenomena.

In ordertoshed somemorelight onthetype ofadsorption behaviorobservedherebetweenDNAmoleculesandbiomimetic apatitecrystals,severaladsorptionmodelsweretestedonthebasis ofmathematicallinearizationofthedata.TheLangmuirmodelas wellastwoderivatives,namelyFreundlichandTemkin,were suc-cessivelytestedbyplotting1/Nads=f(1/Ceq)forLangmuir(Eq.(7)),

Ln(Nads)=f(Ln(Ceq))forFreundlich(Eq.(8))andNads=f(Ln(Ceq))for

Temkin(Eq.(9)),referringtotheisothermequations: Nads=Nm



KL·Ceq 1+KL·Ceq



(7) Nads=KF·C1/neq (8) Nads=B·Ln(A)+B·Ln(Ceq) (9) whereKL,Nm,KF,n,AandBarethecorrespondingconstants(at

fixedtemperature).

After fitting our data toeach of these three equations (see

Table1),onlya poorfit wasfoundwiththeLangmuirequation (correlationR2coefficient∼0.20),thusstronglysuggestingthatthe associatedhypothesesofthismodel(uniqueheatofadsorptionfor alladsorptionsites,nointeractionbetweenadsorbatemolecules) do not strictly apply here.In contrast,a significantly better fit (R2>0.5)wasfoundfortheothertwomodels,i.e.Freundlichand

Table1

Adsorptionparametersandcorrelationcoefficientscalculatedaccordingtothe the-oreticalmodelstestedinthiswork.

Adsorption model Fittedadsorption parameters Correlation coeff. Langmuir Nm=114.9mg/g KL=3.0ml/mg R2=0.201 Freundlich KF=74.66mg/g(ml/mg)n n=7.17 R2=0.561 Temkin A=450.078ml/mg B=13.416 R2=0.671

Temkin,whichtakeintoaccountheterogeneousheatsofadsorption (thelatterbeingrelatedtothelocalaffinityofsurfacesitesfor spe-cificmolecularfunctionalgroup).Inparticular,thebestagreement wasfoundwiththeTemkinmodel(R2 coefficientcloseto0.67),

whichtheoreticallysupposesaproportionalvariationof adsorp-tionenthalpiesasa functionof thecoverage.Theseresultscan beparalleledtoliteratureresultsdealingwiththeadsorptionof ionicadsorbentsonheterogeneoussurfaces[40–43],whereTemkin isothermwasalsooftenlinkedtoanElovich-typekineticmodel.

Fig.4pointsout asituationwhere themaximalDNA cover-agereachedonourapatiticsubstratehac-1wiscloseto160mg/g. Althoughitappearsappealingtocomparethisadsorption parame-terwithreportedvaluesmeasuredonapatitesforothermolecules, itshouldberemindedherethatcareshouldbetakenforsuch com-parisonssincesuchsubstratesprobablydonotexhibitthesame surface features, due todifferent synthesis histories. Indeed, it waspreviouslysuggestedthattheapatitematurationstage (lead-ingtomodifiedsurfaceandbulkcharacteristics[15])mayhavea directsignificantinfluenceonadsorptionprocesses[11,12,26,29]. Also, when DNA macromolecules areinvolved, it appears diffi-culttoexpresstheadsorbedamountsintermsofmoles(rather thangrams)duetothepolydispersityofthemolecularweightof DNA fragments(typicallyintherange 10–1000bpinourcase). Inthehypothesisofasamplemadeofanaverageof500bp,an approximatedvalueforDNAmolecularweightwouldbe330kDa; thereforethemeasuredNmvalueof160mg/gwouldbeequivalent

toabout0.49mmol/g.Forinformationonly,themaximumadsorbed amountofanothermacromolecule–bovineserumalbumin–on a nanocrystalline apatite substrate (non-carbonated but with a rathersimilarmaturationstate)reached11.4mmol/g(764mg/g)

[12].

BasedonaTemkin-likebehavior,thelogarithmicfitof exper-imentaldatapointswasaddedinFig.4.Althoughcareshouldbe takenatthisstagefordrawingconclusivestatementsonthe distri-butionofsurfacesitesforDNAadsorption,thesefindingssuggestan evolutionoftheanchoringbehaviorofDNAmacromoleculesalong theadsorptionprocess(i.e.uponcoverageincrease),whichmayin turnberelatedtotheir3Dconformation(s).

3.3.2. Desorptionstudy

Inordertoshedsomemorelightontheadsorptionmechanism forsuchDNA/apatitesystems,thepotentialdisplacementofDNA macromoleculesoutoftheapatiticsurface(desorption)was inves-tigatedbyfollowingtheeffectofdilutionontheresidualadsorbed amount.

A first set of experiments was carried out by performing a dilution by a factor 5 in deionized water, and the results are reportedonFig.5a.Interestingly,asisshowninthisfigure,thedata essentiallyindicatetheabsenceofdesorptioninsuchconditions. Thesefindingsmayprobablybeparalleledwithpreviousworkson theadsorptionofbisphosphonateonapatites[11,29]wherethe absenceofdesorptionupondilutionwasalsoevidenced(pointing outanon-reversibleadsorptionprocessassociatedtoagenuine “anchoring”ofthemoleculesonthesurfaceofthesubstrate).In thecaseofbisphosphonates,thisnon-reversibilitywasrelatedby theauthorstothereleaseofphosphateionsfromthesolidsurface simultaneouslytothemoleculargraftingprocessviaaphosphate end-group.

In the present case, the lack of significant desorption upon dilution could possibly be related toa rather similarscenario, where anionic phosphate groups from the DNA backbonemay interactwithphosphateionsfromthesurface ofthe nanocrys-tals.Calcium andphosphateionsweretitratedfromadsorption supernatants(retrievedafteradsorptionexperimentsforvarious increasingvaluesofCeq)aswellasina“blank”experiment

(7)

Fig.5. Effectofdilutionin(a)deionizedwateror(b)inthepresenceofphosphate ions([P]=18mM),pH7,ontheadsorptionofDNAonbiomimeticapatite.(a)After3d ofadsorption,80%ofthesolutionwasreplacedwithdeionizedwater(dilutionstep) for3moredays:the“desorption”datapointsdonotfollowtheisothermdespite thedilutionofthemedium,Nadsremainingessentiallyunchangedforeachpoint, indicatingthequasi-absenceofDNAdesorption.(b)Sameexperimentwithdilution byneutralphosphatesolution.Partialdesorptionofca.30–50%ofDNAisobserved after3days.

cases,ourresultsindicatedthepresenceofbothtypesofionsin solution,andinincreasingamountsasafunctionoftheadsorbed amount,withaconcentrationrangeofphosphorusandcalcium inthesupernatants,respectivelybetweenca.0.3–0.8mmol/land 0.4–1.3mmol/l(datanotshown).Thesefindingscould hypothet-ically be attributed to the (partial) dissolution of the apatitic substrateand/or totherelease ofions fromthesurfacedue to theadsorptionprocessitself.Theconcomitantpresenceof both calcium cations and phosphate anions, however, strongly sup-portsatleastsomeextentofapatitedissolution.Atthispoint,it isdifficulttodifferentiatebetweenthetwotypesofcontributions (dissolution-relatedoradsorption-related);especiallytakinginto accountthenon-congruenceofdissolutionprocessesfor nonstoi-chiometricapatites[29,30].

Additional“desorption”testswerenonethelessruninthe pres-enceofphosphateionsinthemedium(byadditionof KH2PO4,

seeSection2),whilekeepingthepHvalueneutral.Remarkably, inthiscase,theresidualadsorbedamountsweresystematically foundtosharplydecrease(Fig.5b).Thistypeofbehaviorwas pre-viouslyobservedforexampleforbisphosphonates[44]wherethe adsorptionprocesswasaccompaniedbya releaseof phosphate ions.Takingallthesestatementsin consideration,andalthough additional investigation dedicated to these aspects (e.g. to the

Fig.6.EffectofpHontheadsorptionprocessinstandardconditionsofDNAonto biomimeticnanocrystallinecarbonatedapatite(6<pH<9.5).

incongruenceofapatitedissolution)willbeneeded,ourdata sug-gestinthepresentcasethatphosphateionscompetewithDNA moleculesforsurfacesitesofapatitecrystals.

3.3.3. EffectofpHonDNAadsorption

ThemaximumadsorptionamountNmofDNAontothepoorly

crystallinebiomimeticapatitesamplehac-1wwasthenfollowed (stillat22◦C)asafunctionoftheinitialpHofthemedium(inthe

range6–9.5).Indeed,pHmaypresumablyplayanon-negligiblerole inadsorptionprocessesinvolvingioniccrystalssuchasapatites. Also,pHmayalsovaryuponpostmortemconditions.

AsshowninFig.6,thevalueofNmwasfoundtoincreaseupon

acidification (ca.+13%at pH6)of themedium, andconversely todecreaseuponalkalinization(ca.−23%atpH9.5).Several fac-torsmaypotentiallycomeintoplayforexplainingthisbehavior. In particular,partial apatite(surface) dissolutionis expectedto increaseuponacidification[45],thusmodifyingexposedsurface characteristics.Toalesserextent,acidificationcouldbeseenasa meanstofacilitatethereleaseofHPO42−ionsfromthesurfaceof

apatitenanocrystals,astheseionsareknowntobethepredominant formofphosphateionsonsuchsurfaces[46,47].Inturn,suchan increasedmobilityofHPO42−ionscouldthenfacilitatethe

anchor-ingofDNAphosphategroupsontothesurfaceofthecrystals(see discussioninSection3.3.2).Anotherpotentialexplanationforthis pHeffectonNm couldberelatedtoachangeinDNA

conforma-tionuponacidification/alkalinization,thusmodifyingtheprofileof thegraftedmolecules.IncontrastitappearsthatthesepHeffects maynotberelatedtothespeciationofthephosphategroups(main ionizationsiteofdouble-strandedDNA)fromtheDNAbackbone. Indeed,theirpKavalueofca.1.5[48]pointstoasituationwhere

thesephosphategroupsareionizedforanypH>1.5.

ItisinterestingtoremarkhoweverthattheexperimentalpH valuesofthemediaafteradsorption(datanotshown)showedthe generaltendencytoevolvetowardneutrality,independentlyofthe initialpHvalue(whetheracidicofalkaline).Thiseffectmaybeboth due(1)toasurfaceequilibrationphenomenonoftheapatitecrystal surfaceand(2)totheadsorptionprocessitselfleadingto phos-phateionrelease,asindicatedintheprevioussub-section.Indeed, thereleaseofphosphateions(whicharemostlyprotonatedonthe surfaceofbiomimeticapatites,namelyeitherHPO42−orH2PO4−)

inamediumexhibitingapHvaluebetweenca.5and10isexpected toevolvetowardneutralizationduetothebufferingeffectofthe H2PO4−/HPO42−acido-basiccouple(pKa=7.2)[49].

(8)

Fig.7. EffectofionicstrengthonDNAadsorptionwithincreasingamountofKCl (0–300mM)instandardconditions.

Inthediageneticcontext,ourobservationsoftheroleofpHon theadsorbedDNAamountsonbiomimeticapatitemayinciteone tohastilyconcludeona“positive”effectofacidicenvironmentson DNApreservation;howeveritshouldbekeptinmindthatapatitic substratesareboundtodegradefasterinsuchconditions,thusnot favoringlong-termDNApreservation[17,50].

3.3.4. Roleofionicstrength

The influence of the overall salinity of the solution (varied herebyincorporationofvariousamountsofKClintheadsorption medium,with[KCl]=1–300mM)wasalsocheckedat22◦C.Indeed,

ionicstrengthisanotherparameterlikelytoinfluenceadsorption processes[51],aswellasDNAdecay[52].Theobtaineddata(see maintrendsonFig.7)indicateacleartendencytowardincreasing DNAadsorbedamountswhenincreasingtheionicstrengthofthe medium.

Thesefindingscouldbelinkedtoadecreaseininter-molecular interaction,thusfacilitatingtheadsorptionprocessontoapatite crystalssurfaces.Again,avariationinDNAconformationmayplay arole intheseobservations.Theimpactoftheconcentrationin DNA of a givensolution onitsconformation and onmolecular inter-penetration wasaddressed in past studies [53,54]. In the presentcase–aswellasinusualdiageneticprocesses–the den-sityofDNAmoleculesishoweverexpectedtoberatherlimited, thuscorrespondingto“dilute”systemsratherthanhighly concen-tratedones:intheseconditions,eachmoleculemaythushavea tendencytoactasaseparateentity,assuggestedbyTomicetal.

[54]. It should alsobeadded that the “criticalrole of counter-ionvalenceinmodulatinginter-polyionforces”hasbeenrecently underlined,especiallyinthecaseofDNAmacromolecules[54–56]. Thismaythuscomplicatefurthertheunderstandingandmodeling ofDNA moleculardynamicsundermodifiedsalinity conditions; and additional data are probably needed onthis field prior to drawmechanisticconclusionsontheeffectof ionicstrength on DNA conformation and consequently on adsorption. Neverthe-less,ourexperimentaldata,obtainedinthepresenceofKCl,point out a measurable impact onadsorption capabilities of DNA on biomimeticapatite,thussuggestingthatsalinityshouldbe consid-eredasanon-negligibleinfluentialparameterinsuchadsorption processes.

3.3.5. Roleoftemperature

TheeffectoftemperatureonDNAadsorptiononthehac-1w sample wasthenexamined. In viewofshedding somelight on

Fig.8. EffectoftemperatureonDNAequilibriumadsorptionofat4◦C(5d incu-bation)andat37◦C(3dincubation).Forcomparison, theTemkinfitatroom temperatureisalsoshown

the effect of temperature on DNA adsorption on apatite, dat-apoints were obtained at three temperatures covering a wide range betweenbody temperatureand near-permafrost temper-ature, namely 37, 22 and 4◦C and the results are reported in

Fig.8. Asmaybenoticed, thevalues ofNads obtainedat22 or 37◦Cdonotdifferdrastically,in contrasttodatacorresponding

to 4◦C. Such “cold”conditions (duringthe adsorptionprocess)

indeedleadtonoticeablyloweramountsofadsorbedDNA,fora givenDNA concentrationat equilibrium.Theisothermobtained at 4◦C also appears to display a different profile compared

to “warmer” conditions, and linearization tests corresponding to the Temkin, Freundlich or Langmuir models indicated in this case a better correlation with the latter model (correla-tion coefficient R2=0.8515 for Langmuir as opposed to 0.7832 and0.7583respectivelyforFreundlichandTemkin).This obser-vation then points out some modifications in the type of molecule/molecule and/or of molecule/substrate interactions in such a colder situation. It is however difficult, at this stage, to propose a more advanced modeling for this phenomenon as additional information would be needed for instance on the evolution of the surface reactivity (e.g. exchangeability of HPO42− surface ions) of apatitic substrates versus

tempera-ture.

4. Concludingremarks

The present contribution aimed at shedding some light, for thefirsttime ona physico-chemicalpointofview,onthetype of interaction existing between biomimetic apatites and DNA macromolecules,orrelevancebothinforensicandanthropologic contexts.

Ourexperimentalfindingsstronglysupportthegeneral empiri-calhypothesis,oftenemittedintheancientDNAcommunity,after whichDNAstrandscouldinteractwithapatitefoundinhardtissues thusconsiderablylimitingitsdegradationwithtime.Thestudyof thekineticsofDNAadsorptiononasyntheticbiomimeticapatite sample showed that the datacould be adequately fitted toan Elovichianequation,oftenfoundforratherslowadsorption pro-cesses.Theshapeoftheadsorptionisothermsobtainedinvarious conditionswasfoundtobesatisfactorilydescribedbytheTemkin model(exceptatlowtemperature).TheeffectofpH,ionicstrength and temperature onthe adsorbed amounts hasbeen explored, suggestingthenon-negligible roleofenvironmentalparameters

(9)

(atleastduringtheadsorptionstage).Althougha “simple” dilu-tionofthemediumdidnotprovokethedesorptionofDNA,thus suggestingastrongbindingaffinityofDNAforapatiticsurfaces, theadditionofphosphateionswasfoundtopromotetherelease of the macromolecules (pointingout a competition for surface sites betweenDNA phosphate groups and inorganic phosphate ions).

Thisstudyisintendedtohelpunderstandingdiagenetic pro-cessesundergonebyDNAinskeletalremains,andalsotobetter apprehendtheinteractionsthatDNAmayundertakewithapatitic substratesfromwhichitisretrieved.Moreadvancedknowledge onsuchinteractionsmayalsoallowonetooptimize,inturn,DNA extractionprocedures.

ThededicatedanalysisofthesolidsafterDNAadsorptionand theexplorationoftheinteractionofshorterDNAfragmentswith apatiticsubstratesrepresentupcomingperspectivesforthiswork, andwillbetheobjectoffuturecomplementarystudies.

Acknowledgements

ThisresearchwassupportedbytheInstituteofEcology and Environment(INEE) andtheInstituteof Chemistry(INC)ofthe FrenchNationalCentreforScientificResearch(CNRS).

References

[1]T.Delabarde,C.Keyser,A.Tracqui,D.Charabidze,B.Ludes,Thepotentialof forensicanalysisonhumanbonesfoundinriverineenvironment,ForensicSci. Int.228(2013)e1–e5.

[2]C.Keyser,C.Bouakaze,E.Crubézy,V.G.Nikolaev,D.Montagnon,T.Reis,etal., AncientDNAprovidesnewinsightsintothehistoryofsouthSiberianKurgan people,Hum.Genet.126(2009)395–410.

[3]C.Keyser-Tracqui,B.Ludes,MethodsforthestudyofancientDNA,Methods Mol.Biol.297(2005)253–264.

[4]N.Nassif,F.Martineau,O.Syzgantseva,F.Gobeaux,M.Willinger,T.Coradin, etal.,Invivoinspiredconditionstosynthesizebiomimetichydroxyapatite, Chem.Mater.22(2010)3653–3663.

[5]A.S.Posner,F.Betts,Syntheticamorphouscalciumphosphateanditsrelation tobonemineralstructure,Acc.Chem.Res.8(1975)273–281.

[6]C.Rey,Calciumphosphatebiomaterialsandbonemineral.Differencesin com-position,structuresandproperties,Biomaterials11(1990)13–15.

[7]E.D.Eanes,J.L.Meyer,Thematurationofcrystallinecalciumphosphatesin aqueoussuspensionsatphysiologicpH,Calcif.TissueRes.23(1977)259–269.

[8]C.Rey,A.Hina,A.Tofighi,M.J.Glimcher,Maturationofpoorlycrystalline apatites:chemicalandstructuralaspectsinvivoandinvitro,CellsMater.5 (1995)345–356.

[9]C. Rey,J.Lian, M.Grynpas, F.Shapiro,L. Zylberberg,M.J.Glimcher, Non-apatiticenvironmentsinbonemineral:FT-IRdetection,biologicalproperties andchangesinseveraldiseasestates,Connect.TissueRes.21(1989)267–273.

[10]S.Cazalbou,D.Eichert,X.Ranz,C.Drouet,C.Combes,M.F.Harmand,etal.,Ion exchangesinapatitesforbiomedicalapplication,J.Mater.Sci.Mater.Med.16 (2005)405–409.

[11]F.Errassifi,A.Menbaoui,H.Autefage,L.Benaziz,S.Ouizat,V.Santran,etal., Adsorptiononapatiticcalciumphosphates:applicationstodrugdelivery,in: R.Narayan,J.McKittrick(Eds.),AdvancesinBioceramicsandBiotechnologies, AmericanCeramicSociety,Westerville,2010,pp.159–174.

[12]S.Ouizat,A.Barroug,A.Legrouri,C.Rey,Adsorptionofbovineserumalbuminon poorlycrystallineapatite:influenceofmaturation,Mater.Res.Bull.34(1999) 2279–2289.

[13]A.S.Posner,Thestructureofboneapatitesurfaces,J.Biomed.Mater.Res.19 (1985)241–250.

[14]S.Cazalbou,C.Combes,D.Eichert,C.Rey,M.J.Glimcher,Poorlycrystalline apatites:evolutionandmaturationinvitroandinvivo,J.BoneMiner.Metab. 22(2004)310–317.

[15]N.Vandecandelaere,C.Rey,C.Drouet,Biomimeticapatite-basedbiomaterials: onthecriticalimpactofsynthesisandpost-synthesisparameters,J.Mater.Sci. Mater.Med.23(2012)2593–2606.

[16]M.J.Collins,C.M.Nielsen-Marsh,J.Hiller,C.I.Smith,J.P.Roberts,R.V.Prigodich, etal.,Thesurvivaloforganicmatterinbone:areview,Archaeometry44(2002) 383–394.

[17]T.Lindahl,InstabilityanddecayoftheprimarystructureofDNA,Nature362 (1993)709–715.

[18]N.Tuross,ThebiochemistryofancientDNAinbone,Experientia50(1994) 530–535.

[19]L.Orlando,A.Ginolhac,G.Zhang,D.Froese,A.Albrechtsen,M.Stiller,etal., RecalibratingEquusevolutionusingthegenomesequenceofanearlyMiddle Pleistocenehorse,Nature499(2013)74–78.

[20]G.Bernardi,Chromatographyofnucleicacidsonhydroxyapatite,Nature206 (1965)779–783.

[21]R.K.Main,M.J.Wilkins,L.J.Cole,Partialchromatographicseparationof pentose-anddeoxypentosenucleicacids,Science129(1959)331–332.

[22]T.Watanabe,K.Makitsuru,H.Nakazawa,S.Hara,T.Suehiro,A.Yamamoto, etal.,Separationofdouble-strandDNAfragmentsbyhigh-performanceliquid chromatographyusingaceramichydroxyapatitecolumn,Anal.Chim.Acta386 (1999)69–75.

[23]F.L.Graham,A.J.vanderEb,Anewtechniquefortheassayofinfectivityof humanadenovirus5DNA,Virology52(1973)456–467.

[24]M.Jordan,A.Schallhorn,F.M.Wurm,Transfectingmammaliancells: optimiza-tionofcriticalparametersaffectingcalcium-phosphateprecipitateformation, NucleicAcidsRes.24(1996)596–601.

[25]M.Okazaki,Y.Yoshida,S.Yamaguchi,M.Kaneno,J.C.Elliott,Affinitybinding phenomenaofDNAontoapatitecrystals,Biomaterials22(2001)2459–2464.

[26]H.Autefage,F.Briand-Mésange,S.Cazalbou,C.Drouet,D.Fourmy,S.Gonc¸alvès, etal.,AdsorptionandreleaseofBMP-2onnanocrystallineapatite-coatedand uncoatedhydroxyapatite/b-tricalciumphosphateporousceramics,J.Biomed. Mater.Res.B:Appl.Biomater.91B(2009)706–715.

[27]L.Benaziz,A.Barroug,A.Legrouri,C.Rey,A.Lebugle,Adsorptionof O-phospho-l-serineandl-serineontopoorlycrystallineapatite,J.ColloidInterfaceSci.238 (2001)48–53.

[28]D.N.Misra,Adsorptionandorientationoftetracyclineonhydroxyapatite,Calcif. TissueInt.48(1991)362–367.

[29]P.Pascaud,P.Gras,Y.Coppel,C.Rey,S.Sarda,Interactionbetweena bisphos-phonate,tiludronate,andbiomimeticnanocrystallineapatites,Langmuir29 (2013)2224–2232.

[30]H.Tanaka,K.Miyajima,M.Nakagaki,S.Shimabayashi,Incongruentdissolution ofhydroxyapatiteinthepresenceofphosphoserine,ColloidPolym.Sci.269 (1991)161–165.

[31]A.Gee,V.R.Deitz,Determinationofphosphatebydifferential spectrophoto-metry,Anal.Chem.25(1953)1320–1324.

[32]R.Legros,Apportdelaphysico-chimieàl’étudedelaphaseminéraledestissus calcifiés(Thèsed’État),Institutnationalpolytechnique,1984.

[33]M.J.D.Low,Kineticsofchemisorptionofgasesonsolids,Chem.Rev.60(1960) 267–312.

[34]C.Aharoni,F.C.Tompkins,KineticsofadsorptionanddesorptionandtheElovich equation,in:H.Pines,P.B.Weisz,D.D.Eley(Eds.),AdvancesinCatalysis, Aca-demicPress,1970,pp.1–49.

[35]F.-C.Wu,R.-L.Tseng,R.-S.Juang,CharacteristicsofElovichequationusedfor theanalysisofadsorptionkineticsindye–chitosansystems,Chem.Eng.J.150 (2009)366–373.

[36]J.M.Thomas,W.J.Thomas,PrinciplesandPracticeofHeterogeneousCatalysis, VCH,NewYork,USA,1996.

[37]C. Cheung,J. Porter,G. Mckay, Sorptionkinetic analysisfortheremoval of cadmium ions from effluentsusing bonechar, Water Res.35 (2001) 605–612.

[38]A.G.Ritchie,AlternativetotheElovichequationforkineticsofadsorptionof gasesonsolids,J.Chem.Soc.FaradayTrans.73(1997)1650–1653.

[39]L.Sciascia,M.L.TurcoLiveri,M.Merli,Kineticandequilibriumstudiesforthe adsorptionofacidnucleicbasesontoK10montmorillonite,Appl.ClaySci.53 (2011)657–668.

[40]J.O.Bockris,K.T.Jeng,In-situstudiesofadsorptionoforganiccompoundson platinumelectrodes,J.Electroanal.Chem.330(1992)541–581.

[41]G.Skodras,I.Diamantopoulou,G.Pantoleontos,G.P.Sakellaropoulos,Kinetic studiesofelementalmercuryadsorptioninactivatedcarbonfixedbedreactor, J.Hazard.Mater.158(2008)1–13.

[42]S.Trasatti,L.Formaro,Kineticsandmechanismoftheadsorptionof glyco-laldehydeonasmoothplatinumelectrode,J.Electroanal.Chem.Interfacial Electrochem.17(1968)343–364.

[43]M.A.Vannice,KineticsofCatalyticReactions,Springer,NewYork,2005.

[44]F.Errassifi,Mécanismesd’adsorptiondurisédronatepardesphosphatesde calcium biologiques: applicationsauxbiomatériaux, FacultédesSciences Semlalia-Marrakech,2011.

[45]J.C. Elliott, Structureand Chemistry of the Apatites and Other Calcium Orthophosphates,ElsevierScience&Technology,Amsterdam,1994.

[46]C.Rey,M.Shimizu,B.Collins,M.J.Glimcher,Resolution-enhancedFourier trans-forminfraredspectroscopystudyoftheenvironmentofphosphateioninthe earlydepositsofasolidphaseofcalciumphosphateinboneandenameland theirevolutionwithage:2.Investigationsinthe3PO4domain,Calcif.Tissue

Int.49(1991)383–388.

[47]C.Rey,M.Shimizu,B.Collins,M.J.Glimcher,Resolution-enhancedFourier trans-forminfraredspectroscopystudyoftheenvironmentofphosphateionsinthe earlydepositsofasolidphaseofcalcium-phosphateinboneandenamel,and theirevolutionwithage.I.Investigationsinthe4PO4domain,Calcif.Tissue

Int.46(1990)384–394.

[48]J.A.V.Butler,ProgressinBiophysicsandBiophysicalChemistry,PergamonPress, London,1951.

[49]G.Charlot,L’analysequalitativeetlesréactionsensolution,Masson,Paris, France,1963.

[50]R. Bollongino,A.Tresset,J.-D.Vigne,Environmentandexcavation.Pre-lab impactsonancientDNAanalyses,C.R.Palevol.7(2008)91–98.

[51]D.N.Misra,AdsorptiononandSurfaceChemistryofHydroxyapatite,Springer, NewYork,1984.

[52]T.Lindahl,B.Nyberg,Rateofdepurinationofnativedeoxyribonucleicacid, Biochemistry(Mosc.)11(1972)3610–3618.

(10)

[53]A.V.Dobrynin,M.Rubinstein,Theoryofpolyelectrolytesinsolutionsandat surfaces,Prog.Polym.Sci.30(2005)1049–1118.

[54]S.Tomi´c, D. Grgiˇcin,T. Ivek,T.Vuleti´c, S.DolanskiBabi´c, R. Podgornik, Dynamicsand structure ofbiopolyelectrolytes inrepulsion regime char-acterizedbydielectricspectroscopy,Phys.B:Condens.Matter407(2012) 1958–1963.

[55]A.Naji,M.Kanduc,R.R.Netz,R.Podgornik,Exoticelectrostatics: unusual featuresofelectrostaticinteractionsbetweenmacroions,ArXivPrepr,2010 arXiv:1008.0357.

[56]R.W.Wilson,V.A.Bloomfield,Counterion-inducedcondensationof deoxyri-bonucleic acid. Alight-scattering study, Biochemistry (Mosc.) 18 (1979) 2192–2196.

Figure

Fig. 1. XRD patterns (2 between 20 ◦ and 70 ◦ ) of (a) biomimetic carbonated apatite sample, hac-1w (maturation of 1 week), as compared to bone specimens: (b) rat (12 months), (c) human (man 57 y.o.).
Fig. 3. Kinetics of DNA adsorption followed over 3 weeks at room temperature, neutral pH, on biomimetic apatite hac-1w
Fig. 4. The reference adsorption isotherm of calf thymus DNA (0.75–4.5 mg, ini- ini-tial concentration range 40–600 mg/ml) on biomimetic carbonated apatite hac-1w (10 mg) in standard conditions (room temperature, 3 days of incubation, neutral pH) fits with
Fig. 6. Effect of pH on the adsorption process in standard conditions of DNA onto biomimetic nanocrystalline carbonated apatite (6 &lt; pH &lt; 9.5).
+2

Références

Documents relatifs

Ethylene and propylene carbonates, members of the cyclic organic family ( Figures 5 and 6 ), have lower solubilities and therefore the needed pressure is signi ficantly higher,

The inequality ( 17 ) shows that a part of the right hand side of ( 15 ) can indeed be related to some height, even if this relation is too weak to conclude (even assuming the

l’énigme 1 (les voies de l’open access : voie dorée et voie verte) dans l’ordre des couleurs qui apparaît à l’écran (les articles ont un ou deux carré(s) de couleur dans

Aucun produit de décomposition dangereux ne devrait être généré dans les conditions normales de stockage et d'emploi. RUBRIQUE 11:

INCRELEX MD (mécasermine) est indiqué pour le traitement du retard de croissance chez les enfants et les adolescents âgés de 2 à 18 ans présentant un déficit primaire

The mechanism involved i n this stage may be related t o the combined effect of the excessive growth of complex aggregates of vacancy-Mg pairs formed during the first

Within this special set of papers for the DNA Library of Life, ten papers propose taxonomic novelties, consisting of 22 new species (Fedosov et al. in press, Le Ru et al. in press,

Expression of DDR marker genes associated with DNA repair (XRI-1 and BRCA2) or cell cycle arrest (SMR5 and SMR7) was monitored by RT-qPCR in wild-type and teb mutants grown