• Aucun résultat trouvé

Adding value to test-day data by using modified best prediction method

N/A
N/A
Protected

Academic year: 2021

Partager "Adding value to test-day data by using modified best prediction method"

Copied!
26
0
0

Texte intégral

(1)

Adding Value to Test-Day Data by Using

Modified Best Prediction Method

Alain Gillon

1

, S. Abras

2

, P. Mayeres

2

, C. Bertozzi

2

and N. Gengler 

1,3

1

Gembloux Agro‐Bio Tech, University of Liege (GxABT, ULg) – Gembloux, Belgium

2

Walloon Breeding Association (AWE) – Ciney, Belgium

National Fund for Scientific Research (FRS‐FNRS) – Brussels, Belgium

37th ICAR Annual Meeting

May 31 – June 4 2010, Riga, Latvia

(2)

Context

Lactation yields are used for :

o

Genetic evaluations

First models : lactation models

Now : Test ‐ day models more and more used

o

Management purposes

Farms are getting larger

(3)

Context

Methods for computing lactation yields (1) :

o

Official method (ICAR)

Test interval method (TIM)

o

Other methods approved by ICAR

Interpolation using standard lactation curves

Multiple trait prediction (MTP)

(4)

Context

Methods for computing lactation yields (2) :

o

Other Methods based on test‐day models (TDM)

Pool and Meuwissen (1999), Mayeres et al. (2004), Vasconcelos et al. (2004)

Mayeres et al. (2004) :

Herd x year (fixed)

Herd x test‐day (fixed)

Herd x month x 5 years (fixed)

Herd x test‐day (random)

(5)

Context

Methods for computing lactation yields (3) :

o

TDM can also bring management tools

Mayeres et al. (2004), Koivula et al. (2007), Caccamo et al. (2008)

Herd effects reflect evolution of management and 

are corrected for age, lactation stage, breed …

o Dairy farmers need lactation yields and 

management tools a few days after milk 

recording        

impossible with population wide TDM

(6)

Objectives

Develop a new lactation yields computation 

method

which :

o Brings useful management tools to farmers

o Is robust with alternative testing plans 

o Gives results directly after milk recording

Test the ability of this new method to  

predict daily and lactation yields

(7)

Method

Multi‐trait : 

milk, fat and protein yields, somatic cell score

Standard lactation curves account for :

• breed

• age at calving

• year of production within herd

• season within herd

• year of calving within herd

• genetic value of the cow

(8)

Method

Random regression test‐day model : 

o modification 

to allow prediction of herd

effects at each day of the lactation 

(Mayeres et al. (2004)) 

o Population level effects are pre‐corrected

to allow daily run at herd level

9Genetic

(9)

Method

Differences with BP : 

o Herd‐level standard lactation curve components 

are computed jointly with random effects

o Genetic value of the cow is taken into account

Between BP (selection index) and population 

wide TDM (BLUP)

(10)

Method

A variant was also tested : 

mBPb

o Bayesian prediction

(11)

Milk yield (kg)

0 5 10 15 20 25 30 35 40 0 100 200 300 400

days in milk

m

il

k

(

k

g/

da

y

)

(12)

Fat yield (kg)

0 0.5 1 1.5 2 2.5 0 100 200 300 400

days in milk

fa

t (k

g

/d

a

y

)

(13)

Protein yield (kg)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 100 200 300 400

days in milk

pr

ot

e

in (

k

g/

da

y

)

(14)

Somatic cell score

0 1 2 3 4 5 6 7 8 9 0 100 200 300 400

days in milk

SC

S

predicted SCS observed SCS

(15)

Management tools

Daily yields prediction

Peak yield and persistency

305‐d lactation yields prediction

Even if lactation is in‐progress

Alerts

(Koivula et al., 2007; Bastin et al., 2008; Bastin et al. 2009)

If observed production is different than predicted

(16)

Evolution of management level

-0.5 0 0.5 1 1.5 2 2000/0 3/15 2000/1 0/01 2001/ 04/19 2001/ 11/05 2002/0 5/24 2002/1 2/10 2003/0 6/28 2004/0 1/14 2004/0 8/01 2005/0 2/17 2005/ 09/05 2006/ 03/24

test-date

m

il

k

(

k

g/

da

y

)

(17)

Validation

On daily yields prediction

o Adjustment quality :

Difference between observed records used

for solving the model and predicted values 

for these test‐days

(18)

Validation

Adjustment quality

(1

st

parity)

.85

0.68

0.00

.85

0.70

0.00

556,791

SCS

.94

0.01

0.00

.93

0.01

0.00

651,266

Protein (kg)

.92

0.01

0.00

.92

0.01

0.00

651,266

Fat (kg)

.95

4.17

0.00

.95

4.28

0.00

651,266

Milk (kg)

corr.

3

MSE

2

ME

1

corr.

3

MSE

2

ME

1

mBPb

mBP

N

Trait

1

ME : mean error

2

MSE : mean square error

(19)

Validation

On daily yields prediction

o Prediction ability

Ability to predict values of the following

test‐day

(20)

Validation

Prediction ability

(1st parity)

.49

2.31

‐0.22

.57

1.70

0.00

6,233

SCS

.72

0.03

‐0.07

.85

0.01

0.01

7,368

Protein (kg)

.69

0.06

‐0.06

.83

0.03

0.00

7,368

Fat (kg)

.75

29.47

‐1.73

.87

12.37

‐0.09

7,368

Milk (kg)

corr.

3

MSE

2

ME

1

corr.

3

MSE

2

ME

1

mBPb

mBP

N

Trait

1

ME : mean error

2

MSE : mean square error

(21)

Validation

On lactation yields prediction

o Daily milk production data collected in the field :

4 herds ‐ 312 cows ‐ 562 lactations ‐

132,607 daily productions

o Simulation of test‐day records

Respect of schedule of conditions and 

(22)

Validation

On lactation yields prediction

o Comparison of real lactation yields with mBP, 

mBPb, BP, and TIM

o BP downloaded on AIPL website

Pre‐correction for parity x age at calving x breed

Standard lactation curves account for herd x season of 

calving

(23)

Terminated lactations

1

relative bias (%) = (mean – real mean) * 100 / mean real

2

correlation between real and predicted lactation yields

r.bias1 corr.2 r.bias1 corr.2 r.bias1 corr.2 r.bias1 corr.2 ALL DATA 80200 ‐0.04 0.991 0.07 0.990 ‐2.12 0.985 0.33 0.990 BY PARITY lact=1 26600 0.00 0.985 0.13 0.985 ‐5.49 0.979 0.24 0.984 lact=2 17600 0.11 0.990 0.20 0.990 ‐1.78 0.987 0.50 0.990 lact=3 15600 ‐0.30 0.991 ‐0.15 0.991 ‐0.50 0.991 0.18 0.990 lact=4 10000 ‐0.09 0.990 0.17 0.989 0.11 0.989 0.62 0.988 lact=5 4800 ‐0.36 0.986 ‐0.11 0.987 ‐0.25 0.988 0.23 0.987 lact=6 + 5600 0.51 0.988 0.02 0.988 ‐0.18 0.987 0.18 0.988 BY DATA COLLECTING PLAN A4 69774 ‐0.01 0.991 0.08 0.991 ‐2.07 0.986 0.32 0.991 A6 10426 ‐0.24 0.988 ‐0.07 0.987 ‐2.43 0.982 0.36 0.987 TIM N mBP mBPb BP

(24)

In-progress lactations

1

relative bias (%) = (mean – real mean) * 100 / mean real

2

correlation between real and predicted lactation yields

AVAILABLE

TESTS r.bias1 corr.2 r.bias1 corr.2 r.bias1 corr.2 r.bias1 corr.2

1 3179 ‐2.94 0.907 ‐4.45 0.811 0.19 0.838 2 5638 ‐1.42 0.934 ‐1.19 0.884 3.04 0.896 3 6271 ‐0.50 0.948 0.48 0.920 2.41 0.923 4 6695 ‐0.27 0.960 0.73 0.943 1.04 0.942 5 7603 ‐0.22 0.974 0.60 0.966 ‐0.04 0.962 6 7211 ‐0.33 0.979 0.37 0.975 ‐0.81 0.968 7 6842 ‐0.32 0.985 0.27 0.983 ‐1.15 0.977 8 6066 ‐0.47 0.988 ‐0.09 0.987 ‐1.55 0.981 9 5267 ‐0.32 0.992 ‐0.04 0.991 ‐1.74 0.986 10 3701 ‐0.34 0.992 ‐0.17 0.992 ‐2.41 0.987 11 2656 ‐0.38 0.993 ‐0.17 0.992 ‐2.46 0.988 TIM N mBP mBPb BP

(25)

Conclusions

Modified best prediction :

o Gives a good description of lactation curve

o Gives useful management tools

(26)

Thank you for your

attention!

e‐mail: alain.gillon@ulg.ac.be

Study supported by:

‰

Ministry of Agriculture of the Walloon 

Region of Belgium (SPW – DGARNE)

‰

National Fund for Scientific Research  

(FRS – FNRS)

Références

Documents relatifs

Part of the grey literature, electronic theses and dissertations (ETDs) represent a growing segment of open, available content in institutional repositories (IR) where

5 Drying rate profiles obtained during drying by desorption of distilled water (a), 40% w/w total solids skim milk (b) and 40% w/w total solids infant formula (c) (diamond:

This paper develops a lane change trajectory prediction approach for potential lane change behavior based on human driving data which is collected in urban highway environ- ment.

The Linked Data Mining Challenge provides DBpedia URIs that we use to query the DBpedia knowledge base and extract features of the considered entity.. DBpedia [2] knowledge

The result is a fully materialized data store ready for querying via its built-in query interface or via the GraphScale API that uses the abstraction as an index.... The whole

18-year old Australian red cedar obtained from a commercial plan- tation was used. the work was divided in four stages: 1) evaluation of the chemical properties of red cedar wood

This approach allows simultaneous evaluation of fixed effects, effects of MQTL alleles, and effects of alleles at the remaining QTLs, using known relationships and

It has been shown that a canonical transformation technique is applicable to the restricted BLUP evaluation when an animal model is assumed. It is not