• Aucun résultat trouvé

Coccolithophore bloom dynamics shape bacterioplankton communities in the northern Bay of Biscay

N/A
N/A
Protected

Academic year: 2021

Partager "Coccolithophore bloom dynamics shape bacterioplankton communities in the northern Bay of Biscay"

Copied!
1
0
0

Texte intégral

(1)

R e s u l t s

Coccolithophore bloom dynamics shape bacterioplankton

communities in the northern Bay of Biscay

N. Van Oostende1, W. Vyverman1, J. Harlay2, C. De Bodt2, L. Chou2,

K. Suykens3, A.V. Borges3, J. Piontek4, A. Engel4 & K. Sabbe1

1Lab. Protistology & Aquatic Ecology, Gent University, Belgium

2Océanographie Chimique et Géochimie des Eaux, Université Libre de Bruxelles, Belgium 3Unité d’Océanographie Chimique, Université de Liège, Belgium

4Alfred Wegener Institute for Polar and Marine Research, Germany

I n t r o d u c t i o n & A i m

• Despite the importance of bacteria for the remineralisation and export efficiency of organic matter in the oceans, their specific roles in marine biogeochemical cycling remain largely unknown.

• The continental margins of the Bay of Biscay (W Europe) are characterized by intense phytoplankton blooms, which display a high degree of spatial and temporal complexity at various scales, shaped by local hydrodynamics and weather conditions.

• We performed a detailed analysis of bacterial diversity and community dynamics during a diatom-coccolithophore bloom in the Bay of

Biscay in spring 2006. More specifically, we were interested in investigating the precise relationship between bacterial diversity and changes in

phytoplankton bloom stage and associated organic matter dynamics (especially Transparent Exopolymeric Particles – TEP).

Fig. 1. Study area; oceanographic stations are denoted by numbers. Fig. 2. Backscatterance

remote sensing image. Light-coloured patches represent suspended coccoliths in the

watercolumn (courtesy of Steve Groom, PML). Fig. 2 inset. Scanning electron microscope image of an Emiliania huxleyi coccosphere shedding its coccoliths.

Fig. 3. SeaWIFS remote sensing image of chl a concentrations. Graph. 1. Depth-integrated

chl a concentrations partitioned over algal groups. Graph. 2&3. PCA ordinations of the free-living (2) and the particle-associated (3) BCC. Bold arrows represent environmental variables significantly (p<0.05) correlated with the variation in BCC.

The blue polygons in figs. 1, 2 and graphs 2, 3 indicate the stations with coccolithophore bloom. Stations 1, 2, 3, and 6 were characterized by a high coccolithophore

biomass (Prymnesiophytes) with 1b (revisited after one week) showing

a decrease in chl a, indicating the bloom’s decay. In contrast, stations

4 (and especially 4b) and 7 were dominated by diatoms and to a lesser

degree cryptophytes. Stations 6 & 8 had higher relative contributions of dinoflagellates.

Particle-associated (PA) and free-living (FL) bacterial assemblages differ in composition, with a high relative abundance of

Sphingobacterium typical of PA fraction and α- and γ-Proteobacteria common in the FL BCC.

PCA’s of the bacterial community composition (BCC) of both

the FL and PA fractions show a tight clustering of the samples of the coccolithophore dominated stations 1, 1b, 2, and 3 (highlighted in blue).

However, station 6 associates with that of the diatom dominated stations 4b and 7, while station 4 (FL) clusters with the coccolithphore dominated stations. Stations 4 (PA) and 8 (FL) each display a station-specific BCC.

The BCC in both FL and PA fractions seems to be related to different driving forces, with variation in FL BCC correlating with phytoplankton community composition and variation in PA BCC more strongly related to TEP dynamics. Typical TEP-associated phylotypes could be

identified (Sphingo, aProt_1, 19.2).

• FL and PA BCC have a different species composition and are related to different environmental factors, with PA communities more

strongly relating to TEP dynamics than to phytoplankton composition.

• Although the bacterial communities show congruence with the phytoplankton dynamics, transitional bloom conditions and local hydrodynamic and biological features (such as grazing and lysis)

could account for the observed discrepancies between BCC and the nature of phytoplankton community (e.g. BCC at stations 4 and 6).

• Mesocosm tracer experiments are currently being set-up to

investigate the specific role of bacteria in TEP and sugar dynamics.

During 2006 oceanographic campaign, the upper 80 m of the water column were sampled at 6 depths for bacterial DNA (size-fractioned at 3 µm),

microplankton, pigments, and various environmental variables.

Stations 1, 4, 7, and 8 were located on the Bay of Biscay shelf area, and

stations 2, 3, and 6 were on the shelf slope. Two stations stations 1 and 4 -were sampled twice at a about week interval.

Bacterial community composition was assessed by Denaturant Gradient Gel Electrophoresis and clone libraries (16 S rRNA gene) and analyzed using

Principal Components Analysis (PCA)

Phytoplankton community composition were analysed by microscopy and chemotaxonomic partitioning of HPLC data.

PEACE project URL: http://www.co2.ulg.ac.be/peace

C o n c l u s i o n s & P r o s p e c t s

M a t e r i a l & M e t h o d s

Average relative abundance of dominant bacterial DGGE phylotypes

Free-living fraction Particle-associated fraction

aProt_5 uncult. -Proteobacterium 18% Sphingo Saprospiraceae sp. 19%

Pubique Pelagibacter ubique 13% 24.2 no clone available 11%

SAR86_1 uncult. -Proteobacterium 10% aProt_5 uncult. -Proteobacterium 8%

18.2 no clone available 8% Pubique Pelagibacter ubique 8%

SAR86_2 uncult. -Proteobacterium 7% 41.2 no clone available 5%

yProt_2 uncult. -Proteobacterium 6% Flavo_4 Ulvibacter sp. 5%

Fig 1 8 7 4 6 12 3 coccolith patches Fig 2 8 7 4 1 2 3 5 6 8 7 4 1 2 3 5 6 8 7 4 1 2 3 5 6 8 7 4 1 2 3 5 6 Fig 3 -1.0 1.0 -1. 0 1. 0 diatom dino prymnes chrys prasino crypt cyanoTAanom O2 pCO2 PO4Si NH4 bactabun tot chla SPECIES SAMPLES station 1 station 1b station 2 station 3 station 4 station 4b station 6 station 7 station 8 SUPPL. VARIABLES -1.0 1.0 -1. 0 1. 0 diatom dino prymnes chrys prasino crypt cyanoTAanom O2 pCO2 PO4Si NH4 bactabun tot chla SPECIES SAMPLES station 1 station 1b station 2 station 3 station 4 station 4b station 6 station 7 station 8 SUPPL. VARIABLES -0.8 1.0 -0.8 1.0 aProt_1 Flavo_3 19.2 24.2 29.0 31.7 41.2 Sphingo yProt_2 52.6 aProt_3 aProt_5 62.1 65.6 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla TEPmicro TEPslope TEPcolor PIC POC PON O2cons -0.8 1.0 -0.8 1.0 aProt_1 Flavo_3 19.2 24.2 29.0 31.7 41.2 Sphingo yProt_2 52.6 aProt_3 aProt_5 62.1 65.6 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla TEPmicro TEPslope TEPcolor PIC POC PON O2cons -1.0 1.0 -1. 0 1.0 SAR86_1 aProt_1 Flavo_3 yprot_1 18.2 24.2 27.0 aProt_2 31.7 Flavo_4 35.4 40.5 yProt_2 46.8 aProt_3 Pubique 62.1 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla PON O2cons POC TEPmicro TEPcolor PIC TEPslope -1.0 1.0 -1. 0 1.0 SAR86_1 aProt_1 Flavo_3 yprot_1 18.2 24.2 27.0 aProt_2 31.7 Flavo_4 35.4 40.5 yProt_2 46.8 aProt_3 Pubique 62.1 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla PON O2cons POC TEPmicro TEPcolor PIC TEPslope -1.0 1.0 -1. 0 1. 0 diatom dino prymnes chrys prasino crypt cyanoTAanom O2 pCO2 PO4Si NH4 bactabun tot chla SPECIES SAMPLES station 1 station 1b station 2 station 3 station 4 station 4b station 6 station 7 station 8 SUPPL. VARIABLES -1.0 1.0 -1. 0 1. 0 diatom dino prymnes chrys prasino crypt cyanoTAanom O2 pCO2 PO4Si NH4 bactabun tot chla SPECIES SAMPLES station 1 station 1b station 2 station 3 station 4 station 4b station 6 station 7 station 8 SUPPL. VARIABLES -0.8 1.0 -0.8 1.0 aProt_1 Flavo_3 19.2 24.2 29.0 31.7 41.2 Sphingo yProt_2 52.6 aProt_3 aProt_5 62.1 65.6 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla TEPmicro TEPslope TEPcolor PIC POC PON O2cons -0.8 1.0 -0.8 1.0 aProt_1 Flavo_3 19.2 24.2 29.0 31.7 41.2 Sphingo yProt_2 52.6 aProt_3 aProt_5 62.1 65.6 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla TEPmicro TEPslope TEPcolor PIC POC PON O2cons -1.0 1.0 -1. 0 1.0 SAR86_1 aProt_1 Flavo_3 yprot_1 18.2 24.2 27.0 aProt_2 31.7 Flavo_4 35.4 40.5 yProt_2 46.8 aProt_3 Pubique 62.1 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla PON O2cons POC TEPmicro TEPcolor PIC TEPslope -1.0 1.0 -1. 0 1.0 SAR86_1 aProt_1 Flavo_3 yprot_1 18.2 24.2 27.0 aProt_2 31.7 Flavo_4 35.4 40.5 yProt_2 46.8 aProt_3 Pubique 62.1 TAanom O2 pCO2 PO4 Si NH4 bactabun diatom dino prymnes chrys prasino crypt cyano tot chla PON O2cons POC TEPmicro TEPcolor PIC TEPslope Graph 2 Graph 3

A c k n o w l e d g e m e n t s

This Research has been funded by the Belgian Science Policy (SD/CS/03A) and by a Ph.D grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders. 0 20 40 60 80 100 120 1 2 3 4 8 7 6 4b 1b m g C h l a m Cyanobacteria Cryptophytes Prasinophytes Chrysophytes Prymnesiophytes Dinoflagellates Diatoms Graph 1

Références

Documents relatifs

Pour le cabinet BDO (2017), qui vient de réaliser une enquête auprès de 120 spécialistes et consultants belges des fusions-acquisitions, s’embarquer avec un

Si cette possibilité reste facultative au sens de l’article 127 du Code de procédure civile prévoyant que « le juge peut proposer aux parties une mesure de

On mesure donc bien ici les enjeux de l’entrée dans l’écrit pour le public UPE2A - NSA : l’acquisition de compétences techniques est indispensable pour entrer en contact

sont pas négligeables dans un cours de français langue étrangère pour les enfants car elles.. permettent, encore une fois, à ceux-ci d’écouter des structures

Nous avons pensé aux niveaux du Cadre Européen Commun de Référence pour les Langues (CECRL : A1, A2, B1, B2, C1 et C2). L’avantage d’utiliser ces niveaux était double. Dans

Dans ce projet, les comportements morphologiques des adjectifs ont pu être décrits selon un modèle spécifique à cette recherche grâce à une liste de comportements découpant

critique du pouvoir, dévoré par la corruption, et révélant la nature humaine ôtée de tout masque. Dans l’œuvre littéraire de Mahfouz, il s’agit toujours de l’homme, saisi

De fait, le processus de la reformulation voisine avec des procédures discursives qui reposent sur l’établissement d’une relation d’équivalence sémantique entre