• Aucun résultat trouvé

Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses

N/A
N/A
Protected

Academic year: 2021

Partager "Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses"

Copied!
8
0
0

Texte intégral

(1)

JournalofChromatographyA,xxx (2012) xxx–xxx

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Chromatography

A

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a te / c h r o m a

Comprehensive

two-dimensional

gas

chromatography–time-of-flight

mass

spectrometry

for

the

forensic

study

of

cadaveric

volatile

organic

compounds

released

in

soil

by

buried

decaying

pig

carcasses

Catherine

Brasseur

a

,

Jessica

Dekeirsschieter

b

,

Eline

M.J.

Schotsmans

c

,

Sjaak

de

Koning

d

,

Andrew

S.

Wilson

c

,

Eric

Haubruge

b

,

Jean-Francois

Focant

a,∗

aCART,OrganicandBiologicalAnalyticalChemistry,ChemistryDepartment,UniversityofLiège,Alléedu6août,B6c,Sart-Tilman,B-4000Liège,Belgium bDepartmentofFunctionalandEvolutionaryEntomology,GemblouxAgro-BioTech,UniversityofLiege,2PassagedesDéportés,B-5030Gembloux,Belgium cForensic&ArchaeologicalSciences,SchoolofLifeSciences,UniversityofBradford,WestYorkshireBD71DP,UnitedKingdom

dLECOInstrumentsGmbH,Marie-Bernays-ring31,41199Mönchengladbach,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Available online xxx Keywords:

Comprehensivetwo-dimensionalgas chromatography(GC×GC)

Time-of-flightmassspectrometry(TOFMS) Volatileorganiccompound(VOC) Cadaverdecomposition Forensic

Geotaphonomy Scripting

a

b

s

t

r

a

c

t

Thisarticlereportsontheuseofcomprehensivetwo-dimensionalgaschromatography–time-of-flight

massspectrometry(GC×GC–TOFMS)forforensicgeotaphonomyapplication.Gravesoilsampleswere

collectedatvariousdepthsandanalyzedfortheirvolatile organiccompound(VOC)profile. Adata

processingprocedurewasdevelopedtohighlightpotentialcandidatemarkermoleculesrelatedtothe

decompositionprocessthatcouldbeisolatedfromthesoilmatrix.Some20specificcompoundswere

specificallyfoundinthesoilsampletakenbelowthecarcassand34othercompoundswerefoundatall

depthsofthegravesoilsamples.Thegroupofthe20compoundsconsistedofketones,nitriles,sulfurs,

het-erocycliccompounds,andbenzenederivativeslikealdehydes,alcohols,ketones,ethersandnitriles.The

groupofthe34compoundsconsistedofmethyl-branchedalkaneisomersincludingmethyl-,dimethyl-,

trimethyl-,tetramethyl-,andheptamethyl-isomersrangingfromC12toC16.Atrendintherelative

pres-enceofthesealkanesoverthevariouslayersofsoilswasobserved,withanincreaseintheamountof

thespecificalkaneswhencomingfromthecarcasstothesurface.Basedonthespecificpresenceofthese

methyl-branchedalkanesingravesoils,wecreatedaprocessingmethodthatappliesaspecificscript

tosearchrawdataforcharacteristicmassspectralfeaturesrelatedtorecognizablemassfragmentation

pattern.Suchscreeningofsoilsamplesforcadavericdecompositionsignaturewassuccessfullyapplied

ontwogravesoilsitesandclearlydifferentiatessoilsatproximityofburieddecayingpigcarcassesfrom

controlsoils.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Forensicgeotaphonomyis abranchofforensicanthropology focusingonthegeologicalandbotanicalalterationofthe surround-ingenvironmentofaburieddeadbody.Thestudyofbiochemical changesinsoilrelatedtothegravedigging,tocadaver decompo-sitionprocessesand todecompositionstates themselvescanbe usedin forensicinvestigationtoestimatepost-mortem interval andpossiblylocateclandestinegravesorhiddenremainsofa vic-tim.Despitethisinterest,theknowledgeoftherelationbetween cadaverdecompositionandsoilchemistryisstilllimited[1].For

∗ Correspondingauthorat:UniversityofLiège,CART,BiologicalandOrganic Ana-lyticalChemistry,Alléedu6août,B6c,B-4000Liège,Belgium.

Tel.:+32043663531;fax:+32043664387. E-mailaddress:JF.Focant@ulg.ac.be(J.-F.Focant).

this reason, gravesoilis normally only used as associative evi-denceratherthanasmatrixthatcanpotentiallygiveinformation oncadavericdecomposition.It hasbeenknownfora longtime thatcadaverdecomposition caninfluencegravesoilbiologyand chemistry[2].Eachstageofcadaverdecompositionisknownto havesomespecificeffectonsoilparameters (microbialactivity, carbondioxideproduction,pH,electricalconductivity,etc.)[3,4]. Duringthevariousdecaystagesofaburiedcadaver,alotof dif-ferent and specific volatile organiccompounds (VOCs) are also emitted [5]and releasedinto thesoil.Someof those VOCsare responsiblefor thetypical“smell ofdeath”that weare ableto sense,althoughsomeareonlydetectedbysensitiveorganismslike scavengerinsectsorcadaverdogs[6–8].Severalgroupsare study-ingthisspecificVOCemission[9–14]butmostofstudiesconcern abovegrounddecomposition.Additionally,despiterecentadvances in VOCcharacterizationandtheestablishment ofa decomposi-tionodoranalysisdatabase[9],thereisstilla lotofworktodo tobettercharacterizetheolfactivesignatureofadecayingbody. 0021-9673/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

2 C.Brasseuretal./J.Chromatogr.Axxx (2012) xxx–xxx

Suchacharacterizationisessentialtobetterunderstand mecha-nismsresponsibleforinsectattractionandpossiblybevaluablefor forensicentomology[15].

Analyzingmammalian decompositionproducts is an analyt-icalchallengeas complex reactionstakeplace, resultingin the chemicalbreakdownofthebody’smainconstituents(lipids, pro-teinsandcarbohydrates)[16].FortheanalysisofVOCsproduced duringdecompositionprocesses,gaschromatography (GC) cou-pledtomassspectrometry(MS)isthetoolofchoice.Solid-phase extraction(SPE) [17], solid-phase micro extraction (SPME) [9], thermaldesorption (TD)[11–13,18] have beenusedfor sample collectionandtransfertoGC–MS.Alargerangeofvolatileand semi-volatilelowtomediumpolarcompoundscaneasilybeanalyzed byGC–MS, althoughpolaranalytesrequireaderivatizationstep prioranalysis.BecauseofthelargenumberofVOCspresentinthe chemicalprofileofdecompositionodor[10],GChowevereasily suffersfrompeak capacitylimitations. Theuseof non-scanning time-of-flight (TOF) MS analyzers that offer constant ion ratio overGCpeakscanresolvesomeoftheGCco-elutionsintheMS domainbyspectraldeconvolution.However,suchanalytical res-olutionmightsufferinefficiencyasmanycompoundsareissued fromthesamechemicalfamiliesandarethereforecharacterizedby similarmassspectraldata,whichcomplicatesthedeconvolution of the MS signal. Such a complex situation is further compli-catedinthecaseofgravesoilanalysisasthesoilmatrixitselfis madeofvariousgroupsofchemicalcomponents,organisms,and debris[19].

Comprehensive two-dimensional gas chromatography (GC×GC) has been developed to meet an increasing need for complex sample analysis and to address limitations such as peak capacity, dynamic range and restricted specificity of one-dimensional(conventional)GCsystems(1D-GC)(i.e.toimprove theefficiencyoftheseparation).GC×GCcanbedefinedasa chro-matographictechniqueduringwhichasampleissubjectedtotwo differentseparationprocessescoupledon-line[20].Inpractice,the endofthefirstdimension(1D)columnisplacedinatemperature

controlled interface called ‘the modulator’ and further serially connectedtotheseconddimension(2D)column.The cryogenic

modulatorensureshighsamplingratesandtransferofthesample to2Dcolumn[21].Modulationalsoactsasasignalenhancerby

zonecompression[22].Theentire1Dchromatogramisthus‘sliced’

followingamodulationperiod(PM)ofafewsecondsandsentinto 2DforafastGC-typeseparation[23].ByfinetuningoftheGCphase

combination,compoundspotentiallystillco-elutingattheendof the1Dcanbeseparatedonthebasisoftheirdifferentbehaviors

asregardofthe2Dphase.Theseparationpowerisincreasedand

thesensitivityisenhanced[24].Forthedetectorresponsiblefor recordingthesignal,everythinghappensasinclassicalGCanda traceismonitoredcontinuously.Inpractice,seriesofhighspeed secondary chromatogramsof a lengthequal to PM (3–10s) are

recorded one after another. They consist of slices that can be combinedto describethe elutionpattern by meansof contour plotsinthechromatographicseparationspace[25].Asoftwareis responsibleforprocessingthecollectedrawdataandextractthe multi-dimensionalinformation.AcompletedescriptionofGC×GC instrumentalsetupisavailableinapreviousreport[26].GC×GC, oftencoupledtofastacquisition TOFMS,hasthusbeenusedto analyzecomplexsamplesinvariousfields,includingVOCanalyses

[27–29].

Tothebestofourknowledge,despitethecomplexityof sam-ples,GC×GC–TOFMShasneverbeenusedinthegeoforensicfield. Here,wereportpreliminaryresultsonusingGC×GC–TOFMSfor thestudyofVOCsreleasedinsoilbyburieddecayingpigcarcasses. Theuseofbothretentiontimesfromthefirstdimensioncolumn,

1t

R,andfromtheseconddimensioncolumn,2tR,peakintensity,

deconvolutedmassspectraldataaswellasclassification,scripting

andsimplechemometricsarecombinedtotrytoextractspecific informationaboutthecompositionandpotentialvariationsofthe VOCmixture.

2. Experimental

2.1. Fieldsite

Thestudysitewasaforestbiotope,locatedinBelgium (Lambert-coordinates:172800.00/167150.00).Thefieldsitewasaresearch facilityareadevotedtoforensicresearchmanagedbythe Disas-terVictimIdentification(DVI) oftheBelgianFederalPolice.The tree layerof thefield site was dominated by oak trees (Ouer-cusrubra, Quercus robur) and beechtrees (Fagus sylvatica).The shrublayerwasabsent.Thesoilvegetationwasscatteredandthe herb layerwasmainlyconstituted bybracken (Pteridium aquil-inum),blackberry(Rubusfructicosus),lily-of-the-Valley(Convallaria maialis)andMayLily(Maianthemumbifolium)duringspringand summer.Concerningthemosslayer,thereweresomesparespots ofPolytrichumsp.TheBelgiansoilmapindicatedadrysandyloam withstrongdrainage.Thesoilprofileconsistedofahumus top-soilA-horizon(pH2.1),which overlaidasubsoil B-horizon(pH 3.9),withcleareluviationandilluviationlayers.The environmen-talparametersweremonitoredusingtwodatarecordingmethods, semi-localweatherdataandmicroclimatedata.Semi-localweather data(atmospherictemperaturesandprecipitations)wereobtained fromthenearestweatherstation(at6.5kmoftheexperimental site)oftheRoyalMeteorologicalInstituteofBelgium(KMI-IRM). Microclimatedatawererecordedusingatinytagdualchannel tem-peraturelogger(TGP1520®,GeminiDataloggers,Chichester,UK).

One probe wasused tomeasure temperature variationsin the core(anus)ofthepig’sbodyandtheotherprobewasplaced5cm beneaththegroundsurfaceofthegravefill.

2.2. Animalmodel

Two pig (Sus domesticus L.) carcasses were used to model thehumandecompositionprocess[30–33].Bothcarcasseswere obtainedwithin10daysofdeath.InFebruary2008,thepig car-casseswereburiedinshallowgravesdugbyhand,atadepthof 40cmandontheirleftside(aspartofanothercadaver decompo-sitionforensicstudy[34]).Thepiggraveswerebackfilledwithin 3.5hwiththeexcavatedsoilinrandomfashionandcompactedby gentletrampling.Thesamewasperformedwithasinglecontrol pitusedforcomparisonwithbothcarcasses.Thespacingbetween thegraveswasjustover1m.Toavoidanyvertebratescavenging, ametalfencewasplacedaroundthegravesite.Aftersixmonths ofburial,thegraveswereexcavatedbyhand(atthebeginningof August2008)byaforensicinvestigationteam(Fig.1).

2.3. SamplingprocedureandcollectionofVOCs

Aftersixmonthsofburial,gravesoilsamplesandcontrolpit samples(300gofsoil)werecollectedatdifferentdepthsduring thepigexcavation.Soilsamplesweretakenat5cm,10cm,20cm, 30cm(sampleabovecarcass)and40cm(samplebelowcarcass) fromboththepiggravesandcontrolpitforblankcollection.Soil sampleswerehermeticallypackedinziplockplasticbags, trans-ferredtothelaboratoryandconservedat−80◦Cuntilcollectionof

thevolatilefractionwascarriedoutinlaboratoryconditions(21◦C). Thesizeofsamplingbagswasselectedtominimizetheheadspace. AdynamicsamplingwasusedtocollectVOCsreleasedbygravesoil samplesplacedinsideaclosedvolatilecollectiondevice(Fig.2). Thedevicewasmadeofapump(MSA,EscortElfpump)pullingair throughthesamplingdeviceataconstantrateof0.5L/minfor1 or2hafter15minofequilibrationtime.Gravesoilsamples(50g)

(3)

C.Brasseuretal./J.Chromatogr.Axxx (2012) xxx–xxx 3

Fig.1.Theforensicexcavationteamremovinglayersofsoil(top),andoneofthe pigcarcassesaftersixmonthsofburialat40cmdepth(bottom).

wereplacedinaclosedglasscontainer(250mL).Itwasconnected tothetrappingsystembymeanofglassandTeflon®tubing.VOCs

weretrappedonacartridgecontaininga60␮g SuperQ®

adsor-bentfilter(80–100mesh,AlltechAssociates,Inc.,Deerfield,IL,USA). Aftersampling,VOCswereelutedfromtheSuperQ®adsorbentwith

200␮Lofdiethylether(HPLCgrade,Sigma–AldrichSA,Bornem, Belgium)andcappedinGC-typevialspriorGC–MSinjection.The airpulledinsidethesamplingdevicewasfilteredthroughacarbon filter.Anextra60␮gSuperQ®adsorbentfilterwasplacedbetween

thecarbonfilterandthesampletofurtheravoidsample contami-nationandbeusedasblank.

2.4. GC×GC–TOFMSanalyses

SampleswereanalyzedwiththeLECOGC×GC–TOFMS Pega-sus4D system(LECO corp., St Joseph, MI, USA) equipped with a 100%dimethylpolysiloxane 30m×0.25mm×0.25␮mVF-1ms

Fig.2.SchematicdiagramoftheVOCdynamicsamplingfromsoilsamples.Airwas pumpedataconstantrateof0.5L/minfor1or2hafter15minofequilibrationtime. Thedevicewashomemadeandkepttoitssimplestdesign(asamplevial,apump, glassandTeflon®tubing,andremovablecartridges).

phaseas1Dcolumnanda50%phenyl,50%dimethylpolysiloxane

1m× 0.20mm×0.10␮mVF-17msas2Dcolumn(Agilent,

Wald-bronn,Germany).Heliumwasusedasthecarriergasataconstant flowrateof1mL/min.Twomicrolitersofthesampleindiethylether wereinjectedintoasplit/splitlessinjectorheldat270◦Cinsplitless mode.TheprimaryGCovenramptemperaturewasprogrammed from40◦Cto220◦Cwitharateof1.5◦C/min.ThesecondaryGC ovenwassetwithaniso-rampingtemperaturemodeandan off-settemperatureof20◦C.Themodulator systemwasa quad-jet withtwo permanent cold nitrogenjetsand two pulsed hot-air jets.Liquidnitrogenwasusedtocreatethecoldjets.The tempera-tureoffsetofthemodulatorwas30◦CwithaPMof10sandahot

pulseduration of600ms.TheMStransferlinetemperaturewas 250◦C.Theionsourcetemperaturewas200◦CwithEIenergyof 70eV.Thecollectedmassrangewas20–600amuwithan acquisi-tionrateof100spectra/sanddetectorvoltageof1800V.Thedata wereprocessedwiththeLECOChromaTOF4.22automatedpeak findandspectral deconvolutionsoftwarewithadefined signal-to-noisethreshold.Wiley(2008)andNIST (2008)massspectral librarieswereusedfortemptativeidentification.Analkane stan-dard (C8–C20) solutionwasrun for thecalculationof retention

indices,basedonthefollowingformula.

1DRI (target)=100



1

tR(s)−1tR(n) 1tR(n+1)1tR(n)+n



For dataanalyses,thecomparison algorithmavailablein the ChromaTOF4.22softwarewasused.Referencepeaktableswere createdbyprocessingofthegravesoilsamplesofalldepths,based on minimum signal to noise ratio (S/N) and specified library matches as minimum requirements for a peak to be included in peak tables. Further classificationprocesses wereapplied to remove the chromatographic noise (column bleed) and poten-tial peak tailing issues. Each control samples were processed againstthereferencetablestoidentifynondecompositionspecific compoundsandremovethemfromthelistofcandidatespecific analytes.Furthercomparisonswererealizedbetweenthelistsof candidate specificanalytestopotentially identifydifferencesin theVOCcontentofsoilstakenatdifferentdepths.Comparisons werebased ondeconvolutedpeak retentiontime (1t

R and 2tR),

apexmassspectraandrelativearea.Aretentionreference com-poundwasusedtoaccountforpotentialretentiontimeshiftsdue to GCcolumn related factors.Retention time variations of20s (twicePM)and0.2sweresetfor1Dand2D,respectively.Tohelpin

thenon-targetanalyticalapproach,theclassificationofthe chro-matographicpeakswasalsobasedonrecognizablefeatureinthe massfragmentationpattern[35,36].Thisapproachispossibleby creatingandapplyingscriptstoevaluatethemassspectraldata forthesecharacteristicmassspectralfeatures.Scriptswere writ-tenin MicrosoftTM VBScriptlanguage,setin differentfunctions

and incorporatedinclassificationproceduresoftheChromaTOF 4.22software.Chromatographicpeaksmatchingthemass spec-tralpatternofcompoundsofinterestwerelabeledandtherefore highlightedamongthelargequantityofpeaksfoundineach sam-ple.Theapplicationofscriptsreducedthenumberofcompounds formanualreviewandallowedtoconfirmthespecificityofsome compoundsfoundinourgravesoilsamples.

2.5. Statisticalanalyses

Multivariateanalysiswasperformed ondatausingprincipal component analysis(PCA)(TheUnscrambler®,v10.0). PCAis a

projectionmethodusedtogetabetteroverviewandavisual rep-resentationofrelationshipsbetweensamplesandvariables.The informationfrominitialvariablesiscombinedandreduced gen-erally to a bi- or tri-dimensional system represented with the

(4)

4 C.Brasseuretal./J.Chromatogr.Axxx (2012) xxx–xxx

Fig.3.Comparisonbetweenminimumandmaximumaverageairtemperatures inBelgiumduringthestudy periodandtemperaturesrecordedatthe exper-imentalsite forair,at subsurface,and atcarcasslevel. (graylines) KMI-IRM archivesminimum–maximumairTduringthestudy,(blacklines)averagerecorded minimum–maximumairTforthestudyarea,(blackdots)subsurfacerecordedT duringthestudy,(blackdashes)pigcorerecordedTduringthestudy.

principalcomponents(PCs)andtakinginaccountthemost impor-tantinformation.In thisstudy,thematrixwassetwiththepig gravesoilsamplesasobjectsandtheVOCs(usingchromatogram areavalues) asvariables inorder toshowa potentialstructure withinthedataand throughdepth.TheStudent’s t-distribution statisticalhypothesistestwasusedtoshowsignificantdifferences betweenpiggraveandcontrolsamplesobtainedwiththescript filteringmethod.

3. Resultsanddiscussion

3.1. Environmentalparameters

Piggravesandthecontrolpitwerelocatedclosetoeachother (1m)toreducethesoilcompositionvariability.Shorterdistance wouldpotentiallyhavebeenproblematicintermsofcross leach-ingofdecompositionproducts.Theforestbiotopeofthestudyis representativeoftypicalBelgianforest.The6 monthsperiod of burialrangedfromFebruarytoAugust2008.Localatmospheric temperatureandprecipitationvalueswereclosetoseasonal aver-ages.Meanprecipitationsover the6monthsstudyperiodwere 62.9mm/month.MeanprecipitationsfromtheBelgianKMI-IRM archivesforthesame6monthsover therange 1981–2010was 66.0mm/month (4.7%deviation). The maximum and minimum air temperature values were recorded daily and the calculated monthlyaverages(rangeof3.0–22.2◦C)wereclosetoaverage tem-peraturesreportedforthelast20years(rangeof0.7–23.0◦C)with 2–3◦C higherforFebruaryandMay(Fig.3).Lowertemperature variationswereobservedforsubsurface andcarcass.Subsurface temperaturerangewas3.9–15.5◦C,andthecarcasstemperature rangewas5.3–16.3◦C (Fig.3).Theseenvironmentalparameters canthereforebeconsideredastypicalforthegeographicalarea. Additionaldetailedinformationonsoilparametersisavailable else-where[34].

3.2. Datatreatmentstrategytoselectcandidatespecificanalytes Fortheestablishmentofalistofcandidatespecificanalytes,the completesamplessetofoneofthepiggraves(pigA)was inves-tigatedand compared tothecontrol pitsamples.Thegravesoil sampleswereprocessedwithaS/Nthresholdvalueof200inorder tolimitthenumberofhitstothemostsignificantcompounds.For furtherrefinementofthelist,alibrarymatchvalueof 700was appliedandchromatographicnoiseandpeaktailingwereremoved

fromthehittable.Thisapproachconductedtotheselectionofa limitednumberofanalytespersample(Table1).Areferencetable wasbuiltforeachseparategravesoilsample atdifferentdepths andeverysinglecontrolpitsoilsamples,alsotakenatdifferent depths,wereprocessedversusthosereferencetables.According tothelibrarysearch,hydroxybutylatedtoluenewasfoundinevery sampleatsignificantlevelandwasusedasretentionreference com-poundforretentiontimeadjustmentinboth1Dand2D.Inpractice,

compoundsthatwerenotfoundinanyofthecontrolpitsoil sam-plesorwithanareavaluelowerthan10%,relativelytothesame analytefoundinthecarcasssamplewerekeptascandidatespecific analytes.Compoundsthatwerefoundinatleastoneofthedifferent depthscontrolpitsoilsampleswererejectedfromthelistof candi-dates.Alistofspecificcompoundswasestablishedforeachdepth ofthepiggrave(Table1).Thehighestnumbersofcompoundswere foundinsamplestakenatthesurface(depth5cm,n=31)andbelow thecarcass(n=30).Amongstallsamples,severalcompoundswere observedinmultiplelayersofsoils.

3.3. Differentiationbetweentwogroupsofcompounds

In order to highlight possible differences betweenthe vari-ousdepthsofgravesoils,basedonthecandidatespecificanalytes reportedinTable1,allgravesoilsampleswerereprocessedwitha thresholdS/Nvalueof5tocheckifsomecompoundsofaspecific depthwerepresentintheotherdepthsamplesatalowerS/Nthan 200,potentiallyimprovingthespecificity.Allreprocessedreference tablewerecrosscompared todeterminewhat werethe depth-specificandrecurrentanalytes.Itappearedthatalargemajority ofanalyteswerepresentateverydepthofthepiggrave,exceptfor somecompoundsthatshowedtobespecifictothesampletaken belowthepigcarcass.

Practically,20specificcompoundswerespecificallyfoundinthe soilsampletakenbelowthecarcass(Table2).Theidentityofthe compoundsresultedfromthelibrarysearchingbasedonmass spec-traldataandfromfurthercomparisonof1Dretentionindices(1DRI)

valuescalculated againstreferencealkanesand valuesavailable intheliterature.Additionalstructuralanalysisinvestigationofthe fragmentationpatterncompletedtheidentificationprocesswhen morethanonecandidatewaspossible.Thisgroupof20compounds consistedofketones(n=7),nitrilesandsulfurs(n=4),heterocyclic compounds(n=3),andbenzenederivativeslikealdehydes, alco-hols,ketones,ethersandnitriles(n=6).Someofthesecompounds werealreadyreportedintheliterature(seeTable2).Someothers werenotbutcouldbelinkedtotypicaldegradationproductsissued fromsofttissues[11].Surprisingly,severalfamiliesofcompounds, such as acids, esters, aldehydes and alcohols, usually detected when monitoringdecomposition processes werenot identified. Asothertypicalaminoacidsorbonefatmicroorganisms metab-olizationproductsweredetected(indole,phenol,benzaldehyde, benzonitrile,acetophenone,dimethyldisulfide,dimethyltrisulfide, and2-nonanone[5]),andasthebodydidclearlyundergoall decom-positionstagesuptoskeletonization(Fig.1),theabsenceofthese specificVOCswasmostprobablytoberelatedtoeitherthe analyt-icalsamplingprocedureortheremovalofthesoilsignatureduring dataprocessing.Theliquidextractionoftheanalytesfromthe sam-plingcartridgesaswellasthestorageoftheliquidfractionprior analysesisnotadequateforthemostvolatilepolarcompounds, comparedtotheuseofdirectthermaldesorptiontotheGCcolumn. Ontheotherhand,thedynamicVOCcollectionand concen-trationbeforeliquidextractioncouldalsoberesponsibleofthe detection of a second group of candidate specific compounds. Thatgroupconsistedof34compoundsfoundatalldepthsofthe gravesoilsamples.Thisgroupincludedalkaneisomersrangingfrom C12toC16,madeofmethyl-branchedalkanesincludingmethyl-,

(5)

C.Brasseuretal./J.Chromatogr.Axxx (2012) xxx–xxx 5

Table1

Summaryofthedataprocessingresultsforthedeterminationofcandidatespecificcompoundsforthevariouslayersofgravesoil(pigA).

Gravesoilsamples Automatedpeakfinding

WithS/Nthresholdat 200(a)

With(a)andlibrarymatch>700 bleedandtailingremoved(b)

With(a)and(b)andcleanedfrom analytespresentincontrols

Depth5cm 545 170 31

Depth10cm 519 129 17

Depth20cm 401 103 9

Abovecarcass 442 108 10

Belowcarcass 611 153 30

exactidentificationofthesecompoundswasdifficultbecauseofthe complexityoftheMSfragmentationpatterns.Thisnotonly pre-ventedtheclearlocalizationofthemethylgroupsonthealkane chains,butalsosignificantlyreducedtheefficiencyofthelibrary searching.Eventheuseof1DRIcalculationwasnotconduciveto

uniqueidentifications.Verygoodlibrarymatcheswerequestioned by1DRI valuesthat highlighteddiscrepancies betweenthe

pro-posednumberofcarbonatomsandthepredictedpositioninthe chromatographicspace.

Thesemethyl-branchedalkaneswereneverthelessspecificto thegravesoilsamples.Onlyafewreportsmentionthedetectionof thesecompounds,especially whenusingasimilardynamic col-lection technique based on anextended time of accumulation, potentiallyleadingtoenrichmentinthesevolatiles[11,12,14]. Fur-thermore,theuseofthesensitiveGC×GC–TOFMSinstrumentand boththeassociatedenhancedpeakcapacityandspectral decon-volutionalsocontributedtohighlightthepresenceofthespecific alkanefraction.Fig.4showstheapexplotforthe54compoundsof interestandthealkaneretentionstandardmixture.The segrega-tionbetweenthetwogroupsofanalytesoverthechromatographic retentionareaissignificantwithacharacteristicelutionbandat short 2t

R for methyl-branchedalkanes, and a larger dispersion

inthechromatographicspaceforthemorefunctionalized com-pounds.

Theemissionof methyl-branchedalkanes hasbeenreported instudiesinrelationwithspecificoxidativestresses[40,41].The hypothesiswasthatvolatilemethyl-branchedalkaneswere pro-ducedbythelipidperoxidationofpolyunsaturatedfattyacidsof cellmembranes,itselfinitiatedbyreactiveoxygenspecies(ROS) issuedfromoxidativestresses.Suchamechanismcouldlogically occurindecayingcarcassesasitiswellknownthattheproduction

Fig.4. Apexplotshowingthespatialdistributionofthetwogroupsofspecific analytes.ThenumberingsystemreferstoTable2.

ofROSisincreasedafterdeathwhenantioxidantdefense mecha-nismsend[5].Anothersourceofmethyl-branchedalkanestoalso considerwouldberelatedtoants,astheseanalytesareknownto beoneofthemainconstituentoftheantcuticularhydrocarbon mixtureusedinsignaldiscrimination[42],andhavebeenalready investigatedtoForensicapplications[43].Despite thefactsthat verylowconcentrationsaretobeexpectedandthatlongercarbon chaincompoundsarereported,thecontributionofthesecuticle hydrocarbonstotheVOCspatternispossibleandalreadyearlier suggested[5].

Table2

Listofthespecificcompoundsidentifiedinthegravesoilsamplebelowthecarcass(1t

Rand2tRforfirstandseconddimensionretentiontimes,respectively).

Compounds Retentiontimes(s) Molecularformula Literaturereport

Number Identity 1t R 2tR 1 Pentane-2,3-dione 370 1.48 C5H8O2 2 Tetrahydro-2,5-dimethylfuran 390 1.30 C6H12O 3 2,2,4-Trimethyloxetane 420 1.46 C6H12O 4 2-Methylbutanenitrile 420 1.95 C5H9N 5 3-Methylbutanenitrile 430 2.06 C5H9N 6 Dimethyldisulfide 450 1.99 C2H6S2 [9–14,32,38,39] 7 Hexane-2,3-dione 560 2.09 C6H10O2 8 Cyclopentanone 570 2.97 C5H8O 9 Methoxybenzene 1040 3.97 C7H8O 10 Benzaldehyde 1270 5.31 C7H6O [9,13,14,38] 11 Dimethyltrisulfide 1290 4.91 C2H6S3 [9–12,14,32,39] 12 Phenol 1370 4.75 C6H6O [10,12,14] 13 Benzonitrile 1400 5.92 C7H5N [9,14] 14 Cyclohept-4-en-1-one 1510 5.58 C7H10O 15 1-Methoxy-4-methylbenzene 1580 4.45 C8H10O 16 Acetophenone 1830 6.05 C8H8O [12,14] 17 Nonan-2-one 1960 3.59 C9H18O [10,12,14,37] 18 Undecan-2-one 3060 3.66 C11H22O 19 Indole 3110 7.94 C8H7N [13,14,18,32,38] 20 Tridecan-2-one 4070 3.64 C13H26O

(6)

6 C.Brasseuretal./J.Chromatogr.Axxx (2012) xxx–xxx

Fig.5.Variationinlevelsofspecificmethyl-branchedalkanes(C12–C16)withthedistancefromthedecayingcarcass.Numbersrefertothe34analytes.

3.4. Apparentdepthtrendinsoil

In addition to the separation between the group of func-tionalizedmolecules(n=20)present belowthecarcass andthe methyl-branchedalkanegroup(n=34),atrendintherelative pres-enceofthesealkanesoverthevariouslayersofsoilswasobserved. Amainreasonforthepresenceofthespecificcompoundsbelow thecarcassistheleachingandpercolationofdegradationfluids bygravity.Thesecompoundscanlaterbarelymigrateupwardsto thesurfaceofthesoilastheyareshieldedbythecarcassitself. Additionally,consideringthattheadsorptionofVOCsonsoil parti-clesincreaseswiththepolarityofthecompounds,mainlybased onion–dipole interactions and ␲electrons donations,different behaviorsweretobeexpectedbetweenfunctionalizedandalkane molecules[44].Aliphaticlowpolarcompoundscouldthusundergo weakersoiladsorptionwithinteractionsofLondon–vanderWaals forcetype(induceddipole-induceddipole),possiblyresultingin highermigrationrate.Suchaneffectwouldevenbemore signif-icantfor methyl-branchedalkanesas theyarecharacterizedby lowervanderWaalsforces.Thisiscurrentlyonlyhypothesisthat stillhavetobeverified.Furthermore,ashumidityinfluencesthe adsorptionofcompoundsontosoilduetocompetitionwithsoil interactionwithwatermolecules[44],thewatercontentofthe soilwouldadditionallyweakenpossibleinteractionbetweensoil andaliphaticcompounds.

Concerning thedistribution of themethyl-branched alkanes betweenthedifferentlayersofsoils,afternormalizationofthe rela-tiveareaofeachofthe34compoundsfoundatalldepths,tothearea valuesofthecompoundsinthesurfacesample(depth5cm),some concentrationtrendsappeared.AsillustratedinFig.5,anincrease intheamountofthespecificalkanesishighlightedwhencoming fromthecarcasstothesurface.Itwasdifficulttorelatethis obser-vationwithotherreports.Anexternalcontaminationofthesoil byoiloranyotherpossiblesourceofbranchedalkanesisunlikely ascontrolsamplesweresubtractedtogravesoilsamples. Further-more,suchdepthtrendwasnotobservedforothernon-specific alkanesincontrolsoils.

PCAanalysesidentified a similartrend,highlightingthe dis-tributionofthegravesoilsamplestakenatdifferentdepthsin a scoreplot,obtainedafterloadingtheareavalues ofthesimilar methyl-branchedalkanesasvariablesinthematrix.Thesoil sam-plesclosertothecarcass(belowcarcass,abovecarcassandata depthof 20cm) expressedsimilar spatialdistribution although samplestakenclosertothesurface(depthsof5cmand10cm)were clusteredtogether(Fig.6).Thefirstcomponent(PC-1,93%)covered mostoftheinformationandshowedtheseparationofthe5cmand 10cmdepthsfromtheothers.

3.5. Utilizationofscriptstoscreenforcadavericdecomposition signatureinsoilsamples

Following the idea of using GC×GC–TOFMS in forensic geotaphonomyforscreeningofsoilsamplesforcadaveric decom-positionsignature,aprocedureforfilteringofpeaktablesgenerated fromsuspectedsoilusingscriptingwasinvestigated.Basedon rec-ognizable features in themass spectraof the methyl-branched alkanesfoundathighlevelintheupperlayersofgravesoils,we wroteascriptthatincludesthemajorspectralspecificities(Fig.S1). Straight-chainalkanesspectraarecharacterizedbyCnH2n+1+and

lessabundantCnH2n−1+ chargedfragmentsseries,withmaxima

around C3 and C4. Branched-chain alkanes show a decrease in

molecularionsandCnH2n+1+alongwithCnH2n+ionseriesincrease

throughcleavageandchargeretentionatthebranchedcarbon[45]. Thesamplessetofthetwopiggraves(pigAandB)andcontrolpit weretestedwithscripting.Thesecondgravesoilexperiment(pig B)wasusedtoconfirmtheobservationobtainedfromthepigA samples.Tosimplifythesamplingprocess,thegravesoilsamples ofpigBweretestedwith1hofextractiontime(incomparisonwith 2hforpigA).Thecontrolpitsoilsampleswerealsotestedwith1h ofextractiontimetoincludetheinfluenceoftheextractiontime ontheresults.Thescriptwasappliedonrawpeaktables gener-atedbyprocessingsamplesusingdifferentpeakfindingprocesses withS/Nthresholdsof200,50and10.ThevariouslevelsofS/N

Fig.6. PCAofthedifferentlayersofgravesoilsbasedonrelativeareaofspecific methyl-branchedalkanes.

(7)

C.Brasseuretal./J.Chromatogr.Axxx (2012) xxx–xxx 7

Fig.7.Comparisonofthepercentageofpeaksselectedbyapplyingthe alkane-specificscripttogravesoilandcontrolsamplesprocessedatvariousS/Nvalues. SingleanddoublestarsrepresentStudent’st-distributiontestwithvalue<0.05 andvalue<0.01,respectively.

Fig.8.Apexplotforbothgravesoil(pigA)andcontrolresultsafterscriptingofsoils at10cmdepth(S/Nof200).Diamondsareforcontrolsoil(n=16hits),andtriangles areforgravesoil(n=47hits).Gravesoil2t

Rhavebeenshiftedof2sforclarity.

thresholdswereinvestigatedtofindacompromisebetweenpeak tablesizesandspecificity.Themajorissuewasthepotential gen-erationofverylargepeaktablesrequiringlongandtediousdata processingprocedures.Theaveragenumbersofhitsinthepeak tableswere500,2000and13,000forS/Nthresholdsof200,50and 10,respectively.Aftercompoundswiththerecognizablealkaneor methyl-branchedalkanefragmentationpatternwereisolatedby scriptingthroughthepeakstable,thenumbersofhitswerereduced tovaluesbetween0.5%and10%oftheinitialnumbers.Fig.7shows themeanpercentagevaluesforthenumberofhitsobtainedafter thescript wasappliedtopeaktablesgeneratedatdifferentS/N thresholdlevelsforthethreeupperlayersofthesoils(depths5,10 and20cm)andforthetwodifferentgravesoilexperiments(pig Aand B) andtheirrespectivecontrol samples.TheStudent’s t-distributiontestshowedsignificantdifferences(value<0.05or 0.01)betweengravesoilsamplesandcontrolsamplesforeveryS/N thresholdlevelstested.AS/Nof200appearedtobesufficientto highlightthedifferencebetweengravesoilandcontrolsamples.

Fig.8illustratestheapexplotforbothgravesoilpigAandcontrol resultsafterscriptingofsoilsat10cmdepthprocessedatS/Nof 200.Thecadavericdecompositionsignatureisclearlyhighlighted byapplyingthescript.

4. Conclusions

TheanalysisofgravesoilsamplesbyGC×GC–TOFMSconducted totheidentificationof two main groups ofspecific analytes.A first groupof 20 functionalized compounds specificallylocated belowthecarcass,andasecondgroupofmethyl-branchedalkanes

presentinallgravesoilsamples.Atrendintherelativepresence of these alkanesover thevarious layers of soilswasobserved. The useof a specific script permittedto propose a data treat-mentstrategytopotentiallyscreenforcadavericdecomposition signatureinsoilsamples.Thisstrategycouldcomplement other approaches [46] and contribute to aid forensic geotaphonomy investigators.

Acknowledgements

J. Dekeirsschieter was the recepient of a PhD grant from F.R.I.A.(FondspourlaFormationàlaRecherchedansl’Industrie etl’Agriculture).DonaldC.HiltonandYvesBrostauxare acknowl-edgedfortheirhelpinwritinginMicrosoftTMVBScriptlanguage

andstatisticaldatatreatment,respectively.Theauthorswouldalso liketothanktheDisasterVictimIdentificationteam,theAirSupport UnitandtheNationalTechnicalandTacticalSupportUnitofthe BelgianFederalPolice.Thankstoallindividualswhohelpedwith fieldwork,especiallythestudentsfromtheUniversityofApplied Sciences(HvA)inAmsterdam.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.chroma.2012.03.048.

References

[1] M.Tibbett,D.O.Carter,in:K.Ritz,L.Dawson,D.Miller(Eds.),Criminaland EnvironmentalSoilForensics,Springer,NewYork,2009,p.317.

[2]J.A.Payne,E.W.King,G.Beinhart,Nature219(1968)1180.

[3]L.A.Benninger,D.O.Carter,S.L.Forbes,ForensicSci.Int.180(2008)70. [4] K.L.Stokes,S.L.Forbes,L.A.Benninger,D.O.Carter,M.Tibbett,in:K.Ritz,L.

Dawson,D.Miller(Eds.),CriminalandEnvironmentalSoilForensics,Springer, NewYork,2009,p.357.

[5]S.Paczkowski,S.Schütz,Appl.Microbiol.Biotechnol.91(2011)917. [6] G.S.Anderson,S.L.VanLaerhoven,J.ForensicSci.41(1996)617. [7] D.T.Hudson,A.M.Curran,K.G.Furton,J.ForensicSci.54(2009)1270. [8]A.M.Curran,P.A.Prada,K.G.Furton,J.ForensicSci.55(2010)50.

[9]A.A.Vass,R.R.Smith,C.V.Thompson,M.N.Burnett,D.A.Wolf,J.A.Synstelien, N.Dulgerian,B.A.Eckenrode,J.ForensicSci.49(2004)760.

[10] A.A.Vass,R.R.Smith,C.V.Thompson,M.N.Burnett,N.Dulgerian,B.A.Eckenrode, J.ForensicSci.53(2008)384.

[11]M.Statheropoulos,C.Spiliopoulou,A.Agapiou,ForensicSci.Int.153(2005)147. [12] M.Statheropoulos,A.Agapiou,C.Spiliopoulou,G.C.Pallis,E.Sianos,Sci.Total

Environ.385(2007)221.

[13]E.M.Hoffman,A.M.Curran,N.Dulgerian,R.A.Stockham,B.A.Eckenrode, Foren-sicSci.Int.186(2009)6.

[14] J.Dekeirsschieter,F.J.Verheggen,M.Gohy,F.Hubrecht,L.Bourguignon,G. Lognay,E.Haubruge,ForensicSci.Int.189(2009)46.

[15]C.vonHoermann,J.Ruther,S.Reibe,B.Madea,M.Ayasse,ForensicSci.Int.212 (2011)173.

[16]L.M.Swann,S.L.Forbes,S.W.Lewis,Anal.Chim.Acta682(2010)9.

[17]S.J.Notter,B.H.Stuart,B.B.Dent,J.Keegan,Eur.J.LipidSci.Technol.110(2008) 73.

[18]A.A.Vass,S.-A.Barshick,G.Sega,J.Caton,J.T.Skeen,J.C.Love,J.A.Synstelien,J. ForensicSci.47(2002)542.

[19]A.R.Conklin,IntroductiontoSoilChemistry:AnalysisandInstrumentation, Wiley,NewJersey,2005.

[20]J.C.Giddings,Anal.Chem.56(1984)1258A.

[21]E.B.Ledford,C.A.Billesbach,J.HighResolut.Chromatogr.23(2000)202. [22]D.G.PattersonJr.,S.M.Welch,W.E.Turner,A.Sjödin,J.-F.Focant,J.Chromatogr.

A1218(2011)3274.

[23]J.-F.Focant,E.Reiner,K.MacPherson,T.Kolic,A.Sjödin,D.G.PattersonJr.,S. Reese,F.Dorman,J.Cochran,Talanta63(2004)1231.

[24] J.B.Phillips,J.Beens,J.Chromatogr.A856(1999)331. [25]J.-M.D.Dimandja,Anal.Chem.76(2004)167A.

[26]G.Semard,M.Adahchour,J.-F.Focant,in:L.Ramos(Ed.),ComprehensiveTwo DimensionalGasChromatographyin:D.Barcelo(Ed.),WilsonandWilson’s ComprehensiveAnalyticalChemistry,Elsevier,TheNetherlands,2009,p.15. [27]Z.L.Cardeal,P.P.deSouza,M.D.R.GomesdaSilva,P.J.Marriott,Talanta74(2008)

793.

[28] I.Silva,S.M.Rocha,M.A.Coimbra,P.J.Marriott,J.Chromatogr.A1217(2010) 5511.

[29]C.Cordero,E.Liberto,C.Bicchi,P.Rubiolo,P.Schieberle,S.E.Reichenbach,Q. Tao,J.Chromatogr.A1217(2010)5848.

(8)

8 C.Brasseuretal./J.Chromatogr.Axxx (2012) xxx–xxx

[30]D.L.France,T.J.Griffin,J.G.Swanburg,J.W.Lindermann,G.C.Davenport,V. Trammell,J.ForensicSci.37(1992)1445.

[31]B.Turner,P.Wiltschire,ForensicSci.Int.101(1999)113. [32]B.B.Dent,S.L.Forbes,B.H.Stuart,Environ.Geol.45(2004)576.

[33]K.G.Schoenly,N.H.Haskell,D.K.Mills,C.Bieme-Ndi,K.Larsen,Y.Lee,Am.Biol. Teach.68(2006)402.

[34]E.M.J.Schotsmans,J.Denton,J.Dekeirsschieter,T.Ivaneanu,S.Leentjes,R.C. Jan-away,A.S.Wilson,ForensicSci.Int.(2011),doi:10.1016/j.forsciint.2011.09.025. [35]D.C.Hilton,Curr.TrendsMassSpectrom.(2007)28.

[36] D.C.Hilton,R.S.Jones,A.Sjödin,J.Chromatogr.A1217(2010)6851. [37]D.Ercolini,F.Russo,A.Nasi,P.Ferranti,F.Villani,Appl.Environ.Microb.75

(2009)1990.

[38]N.Lorenzo,T.Wan,R.Harper,Y.Hsu,M.Chow,S.Rose,K.Furton,Anal.Bioanal. Chem.376(2003)1212.

[39]B.Kalinova,H.Podskalska,J.Ruzicka,M.Hoskovec,Naturwissenschaften96 (2009)889.

[40]M.Phillips,K.Gleeson,J.M.B.Hughes,J.Greenberg,R.N.Cataneo,L.Bager,W.P. McVay,Lancet353(1999)1930.

[41]M. Phillips, R.N. Cataneo, J. Greenberg, R. Gunawardena, A. Naidu, F. Rahbari-Oskoui,J.Lab.Clin.Med.136(2000)243.

[42]S.Martin,F.Drijfhout,J.Chem.Ecol.35(2009)1151.

[43] G.H.Zhu,X.H.Xu,X.J.Yu,Y.Zhang,J.F.Wang,ForensicSci.Int.169(2007)1. [44]J.Ruiz,R.Bilbao,M.B.Murillo,Environ.Sci.Technol.32(1998)1079. [45] F.W.McLafferty,F.Turecek,InterpretationofMassSpectra,4thed.,University

ScienceBooks,California,1993.

Figure

Fig. 1. The forensic excavation team removing layers of soil (top), and one of the pig carcasses after six months of burial at 40 cm depth (bottom).
Fig. 3. Comparison between minimum and maximum average air temperatures in Belgium during the study period and temperatures recorded at the  exper-imental site for air, at subsurface, and at carcass level
Fig. 4. Apex plot showing the spatial distribution of the two groups of specific analytes
Fig. 6. PCA of the different layers of gravesoils based on relative area of specific methyl-branched alkanes.
+2

Références

Documents relatifs

Polyvinyl chloride (PVC) is the plastics niatcrial that has probably rcccived the most attention froni firc authorities because of its relatively wide use and

On the other hand, the formulation of a non-mixing constraint between different fluid phases, which is quite specific to the heat exchanger context, turns out to be particularly

Kidney graft recipients, both from living and deceased donors and kidney pancreas recipients were included.The primary out- come was progression of chronic histological changes

where the ‘first-past-the-post’ system is applied: only the most suc- cessful candidate in each constituency is elected and the others are kept out of parliament even if they

L’antagonisme entre religieux et laïcs fut également particulièrement vif durant l’adoption (en 1924) de la loi sur l’unification de l’enseignement, qui conduisit à

A first set of material parameters, adjusted by the inverse method using classical tests (tensile and cyclic shear tests) is compared with a new set of data adjusted by both a

The advantages of the present way of formalizing power structures are that (1) it allows for the representation of various equilibrium concepts within the same interaction form,

Two hypotheses might explain this: (1) spatio and/or tem- poral changes of tension wood quality (variations of a) during the gravitropic response are large and become more