• Aucun résultat trouvé

Simulation-based decision support tool for early stages of zero-energy building design

N/A
N/A
Protected

Academic year: 2021

Partager "Simulation-based decision support tool for early stages of zero-energy building design"

Copied!
14
0
0

Texte intégral

(1)

ContentslistsavailableatSciVerseScienceDirect

Energy

and

Buildings

jo u rn al h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Simulation-based

decision

support

tool

for

early

stages

of

zero-energy

building

design

Shady

Attia

a,∗

,

Elisabeth

Gratia

a

,

André

De

Herde

a

,

Jan

L.M.

Hensen

b aArchitectureetClimat,UniversitéCatholiquedeLouvain,1348LouvainLaNeuve,Belgium

bBuildingPhysicsandServices,EindhovenUniversityofTechnology,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12October2011

Receivedinrevisedform17January2012 Accepted28January2012

Keywords:

Designdecisionsupport Zeroenergybuilding Sensitivityanalysis Energysimulation Thermalcomfort Hotclimates

a

b

s

t

r

a

c

t

Thereisaneedfordecisionsupporttoolsthatintegrateenergysimulationintoearlydesignofzero energybuildingsinthearchitecturalpractice.Despitetheproliferationofsimulationprogramsinthe lastdecade,therearenoready-to-useapplicationsthatcaterspecificallyforthehotclimatesandtheir comfortconditions.Furthermore,themajorityofexistingtoolsfocusonevaluatingthedesignalternatives afterthedecisionmaking,andlargelyoverlooktheissueofinformingthedesignbeforethedecision making.Thispaperpresentsenergy-orientedsoftwaretoolthatbothaccommodatestheEgyptiancontext andprovidesinformativesupportthataimstofacilitatedecisionmakingofzeroenergybuildings.A residentialbenchmarkwasestablishedcouplingsensitivityanalysismodellingandenergysimulation software(EnergyPlus)asameansofdevelopingadecisionsupporttooltoallowdesignerstorapidlyand flexiblyassessthethermalcomfortandenergyperformanceofearlydesignalternatives.Validationof theresultsgeneratedbythetoolandabilitytosupportthedecisionmakingarepresentedinthecontext ofacasestudyandusabilitytesting.

©2012ElsevierB.V.Allrightsreserved.

Contents

Introduction. . . ... 3

DesignprocessandtoolsofNZEBs... 4

NZEBdesignapproaches. . . ... 4

ConceptualearlydesignstagesofNZEBs... 4

BarrierstointegratingBPSduringearlydesignphases ... 5

Geometryrepresentationinsimulationtools... 5

Fillinginput ... 5

Informativesupportduringthedecisionmaking... 5

Evaluativeperformancecomparisons ... 6

Interpretationofresults... 6

Informediteration... 6

Simulationtoolsreview... 6

Tooldescription... 7

Simulationbenchmarkanddatabase... 7

Thermalcomfortinhotclimates... 7

Renewablesystems... 7

Decisionsupportlogicandsensitivityanalysis... 8

Implementation,Interface,input,outputanddesignflowanddesigncontinuation... 9

Casestudy... 9

Casestudy... 9

Resultsvalidity... 12

Usabilitytesting... 12

∗ Correspondingauthorat:ArchitectureetClimat,UniversitéCatholiquedeLouvain,1348Louvain-la-Neuve,BelgiumTel.:+32010472334;fax:+32010472150. E-mailaddress:shady.attia@uclouvain.be(S.Attia).

0378-7788/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved. doi:10.1016/j.enbuild.2012.01.028

(2)

Discussionandconclusion... 13

Summaryofmainfindings ... 13

Strengthandlimitations... 14

Comparisonwithexistingtools... 14

Futureresearch... 14

Acknowledgements... 14

References... 14

Introduction

Themodellingofnetzero-energybuildings(NZEBs)isa chal-lengingproblemofincreasing importance.TheNZEBs objective hasraisedthebarofbuildingperformance,andwillchangethe waybuildingsaredesignedandconstructed.Duringthecoming years,thebuildingdesigncommunityatlargewillbegalvanisedby mandatorycodesandstandardsthataimtoreachneutralor zero-energybuiltenvironments[1–3].Atthesametime,lessonsfrom practiceshowthatdesigningarobustNZEBisacomplex,costly andtedioustask.TheuncertaintyofdecisionmakingforNZEBsis high.Combiningpassiveandactivesystemsearlyonisachallenge, asis,moreimportantly,guidingdesignerstowardstheobjective ofenergyandindoorcomfortofNZEB.Table1showsthesixmain buildingdesignaspectsthatdesignersshouldaddressearlyon dur-ingtheconceptualstage.Theintegrationofsuchdesignaspects duringtheearlydesignphasesisextremelycomplex,time consum-ingandrequiresahighlevelofexpertise,andsoftwarepackages thatarenotavailable.Atthisstage,thearchitectsareinaconstant searchforadesigndirectiontomakeaninformeddecision. Deci-sionstakenduringthisstagecandeterminethesuccessorfailure ofthedesign.Inordertodesignandconstructsuchbuildingsit isimportanttoassureinformeddecisionmakingduringtheearly designphasesforNZEBs.Thisincludestheintegrationofbuilding performancesimulation(BPS)toolsearlyoninthedesignprocess [4,5].

BPS is ideal to lower such barriers. BPS techniques can be supportivewhenintegratedearlyonin thearchitectural design process. Simulation in theory handles dynamic and iterative designinvestigations,whichmakesiteffectiveforenablingnew knowledge,analyticalprocesses,materialsandcomponentdata, standards, design details, etc., to be incorporated and made accessible topracticing professionals. In the last tenyears, the BPS discipline hasreached a high level of maturation, offering a range of tools for building performance evaluation [6]. Most importantly,theyopenthedoortoothermainstreamspecialism, includingarchitectsand smallerpractices,duringearlier design phases.

However,despitetheproliferationofBPStools,thebarriersare stillhigh.Despitetheproliferationofsimulationprogramsinthe lastdecade,therearenoready-to-useapplicationsthatcater specif-icallyforthehotclimatesandtheircomfortconditions.Current designanddecisionsupporttoolsareinadequatetosupportand informthedesignofNZEBs,specificallyduringearlydesignphases. Mostsimulationtoolsarenotabletoadequatelyprovidefeedback regardingthepotentialofpassiveandactivedesignand technolo-gies,northecomfortusedtoaccommodatetheseenvironmental conditions[7].Severalstudiesshowthatcurrenttoolsare inad-equate,userhostileandtooincompletetobeusedbyarchitects duringtheearlyphasestodesign NZEBs[8–10].Architects suf-ferfromBPStoolbarriersduringthisdecisivephasethatismore focusedonaddressingthebuildinggeometryandenvelope.Infact, architectsarenotonboardconcerningtheuseofBPStoolsforNZEB design.Outofthe392BPStoollistedontheDOEwebsitein2011, lessthan40toolsaretargetingarchitectsduringtheearlydesign phases,asshowninFigs.1and2[11].

Ontheotherhand,theintegrationofBPSinthedesignofNZEB ischallenging,andrequiresmakinginformeddesigndecisionsand strategicanalysisofmanydesignsolutionsandparameterranges andsimulatingtheirperformance.Arecentstudybytheauthor [12],aimingatrankingBPStools’mostimportantselectioncriteria, showedthatarchitectsrankedintelligenceaboveusability, inter-operabilityandaccuracy,asshowninFig.3.Architectsidentified intelligenceastheBPStools’abilitytoinformthedecision mak-ingandallowdecisionmakingonbuildingperformanceandcost. Alsoarchitectsindicatedalackofintelligencewithinthetools com-pared.Thestudyrevealedthatarchitectsandnon-specialistusers whowanttodesignNZEBsfrequentlythereforefinditdifficultto integrateBPStoolsintothedesignprocess.

Therefore,inordertodeliverNZEBswemustlowerthebarrier betweenbuildingdesignandperformance,ensuringthebest guid-anceisavailableduringthecriticaldecisionmakingstagesofNZEB design.Architects’decisionstodesignNZEBsshouldbeinformed. Researchinvestigationsintheliteraturedescribethereasonsfor thesebarriers,butlittleefforthasbeendonetodeveloptherequired methodsandtoolsthatcanpredictthebuildingperformancein

Fig.1.EvolutionofBPSToolsinthelast10years.

(3)

Table1

ThesixmainbuildingdesignaspectsofNZEBsdesign.

1.Metric ThereareseveraldefinitionsforNZEBsthatarebasedonenergy,environmentaloreconomicbalance.Therefore,a NZEBsimulationtoolmustallowthevariationofthebalancemetric

2.Comfortlevelandclimate Thenetzeroenergydefinitionisverysensitivetowardsclimate.Consequentially,designingNZEBsdependsonthe thermalcomfortlevel.Differentcomfortmodels,e.g.staticmodelandtheadaptivemodel,caninfluencethe‘netzero’ objective

3.Passivestrategies PassivestrategiesareveryfundamentalinthedesignofNZEBincludingdaylighting,naturalventilation,thermalmass andshading

4.Energyefficiency Bydefinition,aNZEBmustbeaveryefficientbuilding.Thisimpliescomplyingwithenergyefficiencycodesand standardsandconsideringthebuildingenvelopeperformance,lowinfiltrationrates,andreduceartificiallightingand plugloads

5.Renewableenergysystems(RES) RESareanintegralpartofNZEBthatneedstobeaddressedearlyoninrelationtobuildingfromaddressingthepanels’ area,mountingposition,rowspacingandinclination

6.Innovativesolutionsandtechnologies Theaggressivenatureof‘netzero’objectiverequiresalwaysimplementinginnovativeandnewsolutionsand technologies

useandsupportthedesigndecisionmakingofbuildings[10].In ordertoovercomethebarriersandachievetheaimsidentified ear-lierthisresearch,acontextualdecisionsupporttoolisproposed forNZEB design. Thisstudyis partof a largerresearchproject thataimstolowerthebarriersofintegratingBPSduringtheearly phasesindesign.Thispaperpresentsamethodanddecision sup-portbuildingsimulationtoolunderdevelopmentthatcanbeused asaproactiveguideintheearlydesignstagesofresidentialNZEB designinhotclimates.Thepaperproposesasensitivityapproach methodembeddedinatooltoprovidebetterguidancefordesign decisionstodeliverNZEBs.Thisisachievedthroughenabling sensi-tivityanalysistoinformthedecisionmakingandallowingavariety ofalternativestobecreatedinshorttime.

Section2 presentsan overview on the existing design pro-cessandsimulationtoolsforzeroenergybuildings.ThenSection 3presentsa tooldescriptionand mechanics.Section4isacase studythatincludesthevalidationoftheresultsandusability test-ing.Finally,Section5summarizestheresearchfindingsandtools strengthandweaknesssuggestingfutureimprovements.

DesignprocessandtoolsofNZEBs

Abuildingdeliveryprocesshastraditionallybeenadiscreteand sequentialsetofactivities.Designersstartwithrulesofthumbto createadesign,andthenmodelittoverifyitscompliancewiththe performancegoals.Iftheproposeddesigndidnotmeetthegoalsthe designerswouldgobackandstartagain.Thistedioustrialanderror approachcontinuesuntilfindingthedesignthatmeetsthe perfor-manceconditions.However,the“netzero”objectiveisanenergy performance-baseddesigngoalthatembracestheintegrationof energy-performancegoalsearlyinthedesignprocess.Architects

Fig.3.Architectsrankingthemostimportantfeaturesofasimulationtool[14].

areforced toexpand theirscopeof responsibilitybeyond func-tionandaesthetics.ThedesignprocessofsmallscaleNZEBs,with noenergyspecialistonboard,showsthatthedesignisnot intu-itiveandenergyperformancerequirementsmustbedetermined intheearlydesignstages.Therefore,BPStoolsarea fundamen-talpartofthedesignprocess[13–15].Duringearlydesignphases, 20%ofthedesigndecisionstakensubsequentlyinfluence80%of alldesigndecisions[15].Inordertoapplysimulationduringearly designphasesitisbettertounderstandthecurrentbuildingdesign anddeliveryprocessofNZEBs,becausetheeffectivenessoftools areaffectedbytheprocess.Thissectionelaborates onprevious attemptsatsolvingintegrationissuesrelatedtotheNZEBdesign deliveryprocessandtheuseofsimulationtools.

NZEBdesignapproaches

ANZEBisagrid-connectedandenergy-efficientbuildingthat balances its total annual energy needs by on-site generation [16]. The main concernof NZEBs design is robustness through themetric-baseddesignortheperformance-baseddesign (PBD) approaches.AsformulatedbyKalay,thePBDapproachemphasises thedesigndecisionmakinginrelationtoperformance[17].Similar totheevidence-baseddesign(EBD)approachthatemphasisesthe importanceofusingcredibledatainordertoinfluencethedesign processinhealthcarearchitecture,thePBDhasbecomea funda-mentalapproachtoevaluatetheenergyperformanceofbuildings inenvironmentalarchitecture.ExperiencewithconstructedNZEBs showsthat theirdesign processis basedonperformance-based decision makingthateffectively integrates,earlyon, allaspects ofpassivebuildingdesign,energyefficiency,daylightautonomy, comfortlevels,renewableenergyinstallations,HVACsolutions,in additiontoinnovativesolutionsandtechnologies[13,18,19].Thus, evaluatingdifferentdesigncombinationsandparametersbasedon theirperformancebecameanadditionalactivityduringtheearly design stages of NZEBs. To putthedesign process of NZEBs in perspective,designershavetomeetwithsuccessivelayering con-straintswithaperformance-basedobjective,where“formfollows performance”.Designershavetodefinetheirworkinasetof per-formancecriteria,ratherthanworkoutthedesigntraditionallyin aprescriptiveobjective.TheimplicationsoftheNZEBperformance baseddesignapproachonthedesignprocessarediscussedinthe nextparagraph.

ConceptualearlydesignstagesofNZEBs

TheprocessofNZEBsdesigncanbedescribedasasuccessive lay-eringofconstraintsonabuilding.Everynewaddeddecision,every definedparameters,isjustonemoreconstraintonthedesigner.At thestartoftheNZEBsdesignprocessthedesignerhasmany deci-sionsandarelativelyopensetofgoals.Bytheend,thebuilding

(4)

Fig.4. Barriersofdecisionmakingduringearlydesignstages.

issharplydefinedandheavilyconstrained.Forhighperformance buildingshighconstraintsareimposedduetoenvironmentaland energeticrequirements.Theconstraintsprovideusefulanchorfor ideas.ConceptualearlydesignstagesofNZEBscanbedividedinto fivesub-stages:(1)specifyingperformancecriteria,(2)generating ideas,(3)zones-layoutdesign,(4)preliminaryconceptualdesign, and(5)detailedconceptualdesign.Sub-stages2–5donotalways followa sequentiallinear order.Thedesignprocess goesintoa cyclicprogressionbetweenthosesub-stagesinwhicheach sub-stageelaboratesuponpreviousconstraints.

BarrierstointegratingBPSduringearlydesignphases

Experience with post occupancy evaluation of constructed NZEBsshowsthatthedesignofhigh-performancebuildingsisnot intuitive,andthatBPStoolsareafundamentalpartofthedesign process.ThenatureoftheaggressivegoalsofNZEBsrequiresthe earlycreationofenergymodelsduringpre-conceptualand concep-tualdesignphases.Recentstudiesoncurrentbarriersthatfacethe integrationofBPStoolsintoNZEBsdesignaresummarisedbelow [13].Fig.4illustratesthebarriersofdecisionmakingduringthe earlydesignstagesofNZEBsdesign.

Geometryrepresentationinsimulationtools

Architects work in different ways through sketches, phys-ical models, 2D and 3D computer generated imagery, and analytically–andthushavedifferentrequirementsforrepresenting andcommunicatingtheirdesignform.

Fillinginput

Therepresentationofinputparametersinthelanguageof archi-tects is a challenge in many tools. There is a clear separation betweenarchitectsdesignlanguageandthebuildingphysics lan-guageofmosttools.Thisdifferenceisoftenaddressedbyusing reducedinputparametersorusingdefaultvalues.However,filling inthedesignparametersisanoverlookedissueamongBPStools developers.

Informativesupportduringthedecisionmaking

Designcannoteasilypredicttheimpactofdecisionson build-ingperformanceandcost.ThebuildingdeliveryprocessofNZEB requiresinstantaneousfeedbackandsupporttoinformthedecision makingforpassiveandactivedesignstrategies.Thedisadvantage ofmostexistingtoolsisthattheyoperateaspostdesignevaluation

(5)

tools.Therefore,theinformativesupportshouldbecomprehensive enoughtoincludegeometryandenvelopeandsystems.

Evaluativeperformancecomparisons

Duringtheearlydesignstagesthebenchmarkingandthe pos-sibilitytocomparealternativesismoreimportantthanevaluating absolutevalues.Theideasgenerationphaseisiterativeand com-parative.Mostexistingtoolsdonotemulatethisprocessandfocus onpost-designevaluation.

Interpretationofresults

The representation of simulation output and its interpreta-tionisfrequentlyreportedasabarrieramongarchitects[10,14]. Analyticalresultspresented intables ofnumbersor graphsare oftentoocomplex anddetailed, providinganexcessiveamount ofinformation.Theoutputrepresentationoftenlacksvarietyand visualqualities.Analysisandsimulationresultsshouldbedisplayed withinthecontextofthe3Dgeometricmodel[20].

Informediteration

Themostimportantbarrierfacingarchitectsiscyclinginformed iterationsforconceptdevelopmentandoptimisation.Inthepast, architectsiteratedbackonthedesignforfunctionalandaesthetical optimisationpurposes.ForNZEBstheyhavetoiteratefor perfor-manceoptimisationpurposes.Thisrequiresanunderstandingof buildingphysicsandperformance. Architectsneed fundamental understandingofbasicbuildingphysicsthatallowsthemto inter-pretthesimulationfeedbackanddrivethemtoiteratebacktothe concept.

Simulationtoolsreview

Almost no current tool addresses the design of NZEBs for architectsduringearlydesignphases[21].NZEBsdesignstrategy addressesadesignduo:firstmaximumenergyefficiencyandthen thedeliveryofenergyrequiredfromrenewablesystems.Almostno toollistedinTable2helpstoanswerthis.Acriticallookatthe exist-ingtoolsinrelationtotheNZEBsdesignprocessshowsthatseveral barriersexistinintegratingthecurrentBPSatthisstage. There-fore,futuretoolsshouldallowbothstrategiesinordertodevelop NZEBsandsupplementtheintuitivenessofthedesignprocesswith analyticaltechniquesandsimulationmethods.

Overthelastfewdecades,alargenumberof BPStoolshave beendevelopedtohelpengineersduringlatedesignphases.Such toolsweredevelopedtoproducedataconcerningbuildings’ numer-icalmodelling,simulatingtheperformanceofrealbuildings.Those energyBPStoolsrequireacomplicatedrepresentationofthe build-ingalternativesthatrequirespecificandnumericalattributesofthe buildinganditscontext.Thosetoolscanbeclassifiedunderamain

groupnamed“evaluationtools”asshowninTable2.Theexamples inTable2aremeanttobeindicative,notexhaustive.

Evaluation tools include energy analysis computer tools. Although bybeing evaluativethey produceresults that do not actuallyprovideanydirectguidanceastohowtheNZEBdesign shouldbeimprovedortheperformanceobjectiveachieved.The useofevaluationtoolsinNZEBdesignisbasedonapost-decision trialand errorapproach,wherethesimulationresultsare com-paredto a desired value. Ifthe resultsare not satisfactorythe designismodifiedandtheprocessisrepeated.Thisapproachis cumbersome,tedious,andcostlyandforcesarchitectstorelyon simulationexpertsduringtheearlydesignstages.Recently,some plug-insweredevelopedtofacilitatethegeometryinputandlink architecturalformsofvisualisationand3Drepresentationwiththe evaluationtools.However,evaluativetoolsembedmostintegration barriersdiscussedinSection2.3.

However,duringthelastdecade, arangeofdesign toolshas beenavailabletohelparchitectsinthedesignofmoreenergy effi-cientbuildings.Thosetoolsarelabelled “guidancetools”,which weredevelopedtofacilitatedecisionmakingpriortodesign.They rangefromquitesimplepre-decisionevaluationandanalysistools toparametricandoptimisationdecisiontoolsthataimtoinform the design and integrate BPS during the early design process. However,Table2showsthatmostdevelopedguidancetoolsare pre-decisionevaluativetools.Despitetheirremarkablecapabilities, mostthosetoolshavenotbeentransferredeffectivelytothe archi-tecturalcommunity,andinparticulararchitectsduringtheearly designstages.Theuptakeofmostthosetoolsamongarchitectsis verylow,anddoesnotallowcontinuitywiththedesignprocess [10,22–24].Whiletheyarequiteusefultolowerthe“input fill-ing”barrier,theycouldnotlowerthe“informativesupportduring thedecisionmaking”barrier.Currently,fewnon-publictoolsexist thatsupportdesignpre-decisions,includingjEPlusandiDbuildthat allowparametricanalysisorBEoptthatallowsoptimisation analy-sis[25,26].Thepotentialofparametrictoolsisveryhightobridge the“informativesupport”barrierbecausetheycanprovide con-structivefeedbackwithverylittleiterations,andatthesametime allowawiderangeofsolutionspace.Incontrasttooptimisation toolsthatreducesthesolutionspacetoaminimum.

In order to address these shortcomings, we identified the requirementsofatoolthatcanbeusedforthedesignofNZEBs duringearlydesignprocesses.Theauthorconductedasurvey, com-parisonstudyandworkshopsontheuseofBPSbyarchitectsfor NZEBdesigninEgypt[27].Theguidelinesofthenewtoolcanbe summarisedasfollows:

• ProvidebetterguidancefordesigndecisionstodeliverNZEBin hotclimates

Table2

ClassificationofBPStoolsallowingdesignevaluationanddesignguidance.

Evaluative Informative

Support(Technique) Post-decisionEvaluative GeometryPlug-in Pre-decisionEvaluative(Para& Opt.)

Pre-decisionInformative (Parametric)

Pre-decisionInformative

Iterations High High Medium Low Low

Renewablesystems Energyefficiency EnergyPlusTRNSYS Esp-r IESVE OpenStudio IESVE-Ware SolarShoeBox Energy10 DesignBuilder jEPlus iDbuild BeOPT OptiPlus OptiMaison Vasari MITAdvisor BDA DesginInent HEED SolarHouse Sunrel

Daylighting&Facades SunTools COMFENNewFacadesLightsolve Diva

(6)

• Enablesensitivityanalysistoinformdecisionmakingandallow avarietyofalternativestobecreatedinshorttime

• Thecomfortrangecriteriaanddesignstrategiescanbeadjusted torespondtolocaldefinitionsofindoorcomfort,local construc-tionsystemsandlocalcoderequirements

• Improveaccessibilitytodecisiontoolsforsmallpractices • Integrate thenew tool withsufficiently established, accurate

tools

• Matchthecyclicdesigniterationsandextendthescopeoftools totheconceptualphasesofthedesignprocess

• Allowconnectivitywithestablishedtoolsusedbydifferent dis-ciplinesandinlaterdesignstages.

• Veryeasytouseandtolearn,andadaptablefortheless experi-encedwithminimuminput

Inorder tosupportdecisionmaking duringtheearlydesign phasesitisimportanttoincludeaninformativetoolfortheearly design phasesthatcanmodel thecomplexityof thedesign.An energysimulationtool,ZEBO,wasdevelopedtohelparchitects dis-coverparametersthatwouldachieveazeroenergybuildingand informthemaboutthesensitivityofeachparameter.Theinterface forZEBOwasbuiltontheabovementionedguidelines.Howthe proposedtoolintendstoachieve thesegoalsisexplainedinthe followingsections.

Tooldescription

In response to the barriers, requirements, and expectations identifiedinSection2,aprototypeoftheproposeddecision sup-porttoolwasdeveloped.Thetoolisaconceptualmodelforsoftware underdevelopmentcalled“ZEBO”thataimstoaddressthese short-comingsandtestthevalidityofthemethodproposedinSection 2[28].Thetool allowsfor sensitivityanalysisofpossible varia-tionsof NZEBdesign parametersandelementsduringtheearly designphasesinhotclimates.Itsaddedvalueresidesinits abil-itytoinformthedecisionpriortothedecisionmakingforNZEBs design.Thetooliscontextualandisbasedonanembedded bench-markmodelanddatabaseforEgyptianresidentialbuildings,which includeslocalmaterialsandconstructionandallowsthegeneration ofcodecomplyingdesignalternatives(seeFig.6).

TheinitialtargetaudienceofZEBOisarchitectsand architec-turalstudentswithlittleexperienceinbuildingenergyefficiency. Thetoolcanbeusedbyarchitectstolowerthebarriertodesign NZEBsduringtheearlyconceptualphases.Typically,architects pro-duceseveraldesignalternativesintheconceptualdesignphases. Thusthisisthemomentwherethetoolshouldbeappliedtoassess theenergyperformanceandenergygenerationpotentialforeach designsolutionbystudyingtheeffectofthevariationofdifferent designparametersranges.ZEBOalsoallowsforcomparativeenergy evaluations.

Simulationbenchmarkanddatabase

Oneofthechallengestodevelopingthetoolwastoimplementa representativebenchmarkorreferencebuildingfordwellings.The benchmarkshouldrepresentEgyptianflatapartmentsinnarrow fronthousingblocks.Forthisstudyweselectedabenchmarkbased onarecentresearch,conductedbytheauthor[29,30],todevelop abenchmarkmodelsfortheEgyptianresidentialbuildingssector. Thebenchmarkrepresentsdifferentsettingsofapartmentsthatcan beconstructedinadetached,semidetached,orattachedform.It wasassumedtorepresentapartmentsinhighurbandensitiesof Egyptiancities,incorporatingsurroundingbuildingsand streets. The benchmark developed by Attia et al. describes the energy useprofilesforair-conditioners,lighting,domestichotwaterand

appliances inrespect tobuildings layout and construction.The benchmarksimulationmodelswereverifiedagainsttheutilitybills andfieldsurveydatafor1500apartmentsinAlexandria,Cairoand Asyut.

ForZEBOasimplemulti-dimensionalrectangularzonewas cre-atedtorepresentmechanicallycooledapartmentunits.Despitethe limitationofthisreductionorabstractionoftheunderlyingmodel, thetoolcoupledthemodeltotheEgyptianclimaticandurban con-text.TheselectedmodelisshowninFig.8andallowsmaximum designflexibilityforarangeofarchitecturalearlydesign parame-ters,includingthesites’urbandensityandclimaticconditions.The inputparametersandoutputoptionsarediscussedinSection3.5. Moreover,ZEBOisbasedonaknowledgebasesystemthatembeds therecommendationsoftheEgyptianResidentialEnergyStandard ECP306-2005I[31,32].Theprescriptiverecommendationsofthe standardsaretranslatedintoinputdefault valuesdependingon theselectedsitelocationandcode.Alsoaself-developedmaterials libraryisembeddedthatallowsthecombinationofthemost com-monmaterialconstructionsinEgypt,includingglazing,insulation, andwallandroofconstruction.

Thermalcomfortinhotclimates

DesigningNZEBsdependontheexpectedthermalcomfortlevel. InEgyptcomfortisadaptiveandmechanicalequipmentsuchas ceilingfansareusedmainlyforoccupancysatisfaction.Itisknown thatairmovementaffectsbothconvectiveandevaporativeheat lossesfromthehumanbody,andthusinfluencethethermal com-fortandconsequentlyinfluencethe‘netzero’objective.ForZEBO wechoseGivoni’scomfortmethod[33]thatallowsadaptive com-fort boundariesin relationto theincrease of air movementby turningonfanoropeningwindows.AsshowninFig.8,a psychro-metricchartallowsthevisualisationofoutdoororindoordrybulb temperatureand relative humidityareatemperature.The chart canbeusedpriorto,orafter,designtoestimatethenecessityof installinganacclimatisationsystem.Thechartcanalsoestimate theimpactofmechanicallyassistedventilationusing,e.g.,ceiling fansinrelationtoforcedwindspeedsrangingfrom0.5to2m/s asadesirablestrategyforunconditionedbuildingsinhotclimates. Thisleadsthedesignertostart thinkingabouttheeffectiveness ofhisorherpassivedesignstrategiesinrelationtoactivecooling system.Thechartcanvisualiseimpactofanyparameterchange onthermal comfortopposite tomany simulationtools thatare unabletoadequatelysimulatehumanthermalcomfortaswellas theacclimatizationmechanicalequipmentssuchasceilingfansin hotclimates.

Renewablesystems

Lessonslearnedfrompracticeshowtheimportanceof inform-ingarchitectswithactivesystemrequirementstointegratethemin theenvelopeandbecomeabasicpartoftheNZEBdesignconcept. Therefore,anextraintegralmoduleofZEBOallowstheestimation oftheenergygenerationandrequiredphotovoltaicandsolarwater heaterpanelarea.Thesolaractivetoolmoduleisbasedonearlier researchbytheauthor[28]andinformsthedecisionmakingon thephysicalintegrationwithinthebuildingenvelope,addressing thepanels’area,mountingposition,rowspacingandinclination. Theideaofthismoduleistoinformthedesignerasearlyas pos-sibleonthespatialandphysicalimplicationoftheNZEBobjective. Therenewablesystemmoduleisanimplementationofsimulation resultsthatestimatetheaverageperformanceofaPVsystemin dif-ferentlocationsandpositionsinEgypt.Thesimulation-generated datawasmatchedwithrealmeasurementsobtainedfromthe lit-erature.

(7)

Fig.5. Toolworkflowscheme.

Toidentifytheinputparameters5 mandatoryquestions are askedontwosuccessivescreensshowninFig.6.Onthefirstscreen usersareaskedtoselectacity,moduletypeandmounting posi-tion.Thesecondscreenasksforinputregardingpanelorientation (azimuthangle)andinclination.Therearetwoadditionalelective questionsonscreentwothatallowuserstoinputvaluesregarding

thepanelefficiencyand/ornominalpeakpower.Foreveryquestion, theuserhastochoosebetweendifferentanswers,corresponding tothevarious simulatedcases.Insteadofcommunicatingthose resultsintheformoftextual/numericaldataagraphical interac-tiveinterfaceisdevelopedtoconveythedesignguidelinesinan visualway.Theresultsarethencompiledintoperformancegraphs asshowninFig.6.

Decisionsupportlogicandsensitivityanalysis

Theuseofsensitivityanalysispriortothedecisionmaking rep-resentsaninformativeapproachfortherobustnessofthedesign decision in relationtoenergy consumption and comfort. Based onthefeedbackobtainedfromthesensitivityanalysisresults,the designdecisionissupportedinrelationtothepossibilitiesofthe parameterrange.Therefore,thesensitivityanalysisisamethod thatenablesdesignerstotakeenergyandcomfortconscious deci-sionstoreachthefinalperformance goal.Forthetool, aglobal sensitivityanalysiswasundertakentoinvestigatethemostearly designparametersandtheirranges[34,35].Fig.5illustratesthe methodusedforthedevelopmentofthetool.Thedesigners inves-tigatesthesensitivityofasingleparameteranditsconsequences onenergysaving,energy generationorcomfort. Thesensitivity analysisresultshowsthewholeparameterrangeandprovidesa pre-decisionoverviewoftheparameterrangeandintervals.The designermakes decisionsbasedonthis overview,and specifies aperturbation.Based onthecompliancewiththerules set,the designercanthenrepeattheprocesswithotherparametersbefore combiningallperturbationsandrunningacompleteevaluation.

ZEBO allows sensitivity analysis to illustratehow variations inbuildingdesignparameterscanaffectthecomfortandenergy performance.Infact,sensitivitydesignenvironmentsprovidean opportunity toinform thedecision making.Therefore, the tool depends on the parametricpre-processor, a recent additionto EnergyPlusutilitiesthatallowstheaccomplishmentofsensitivity analysis.TheparametricobjectsofEnergyPluscanbeusedina sin-glefileasanalternativetomaintainingagroupoffileswithsmall differences.Theusereffectuatesaseriesofsimulationscloningthe sameIDFfilebutincludingalldiscreteintervalsofapredefined parameterrange,justbyclickingthesensitivityanalysisbutton. TheRunBatchwillrundifferentsimulationsusingtheIDFinputfile.

(8)

Theuseristhenprovidedwithagraphthatshowsthevariationin annualenergyperformanceinrelationtotheparameterintervals’ range,inawayitcanbecomeanimmediateyetcomprehensive supporttomakeinformeddesigndecisions.

Implementation,Interface,input,outputanddesignflowand designcontinuation

ZEBOcanacceptinputdatarequiredbythelaterphasetool Ener-gyPlusv6andrunasimulationwithitsengine[36].EnergyPlusisa whole-buildingenergyperformancesimulationtooldevelopedby theUSDepartmentofEnergy.EnergyPlusisthenextgenerationof BPStoolthatisunderconstantdevelopmentandoffersadvanced simulationcapabilities.Thesoftwareisafreeopensourcetoolthat allowsthird-partygraphicaluserinterfaces(GUIs).Therefore, Ener-gyPluswasselectedbecauseitcanbeusedinacyclicalprocessthat allowscontinuitywiththedesignprocessusingthesameinputfiles. Thetoolisbasedonaonepageinterfacethatcommunicateswith EnergyPlusviatheinputandoutputformatthatareinASCIIformat. ZEBOcreatesanIDFinputfileandthesimulationrunsthe Energy-Plusenginethrougha“RUN”batch-file.Thesimulationresultsare thengeneratedindifferentformats,mainlyHTMLandCSVfiles. ThetoolusesEnergyPlus’sIDFformatthatallowsconnectivitywith establishedtoolsusedbydifferentdisciplinesandinlaterdesign stages.ZEBOextractstherequiredoutputandpresentsthem graph-icallyonthesamepage.Theprogramminglanguagewaswrittenin VisualBasic2008.

ToaddresstheNZEBobjective,theinterfacefirstaddressesthe passivedesignstrategiesandthentheactivedesignstrategies.The overallconceptualflowchartisillustratedinFig.6.Uponclicking theexecutionfile,ZEBOopensthemainpageoftheinterfaceas showninFig.8.Inputoptionsarecategorisedontheupperleft oftheGUI,andarelistedinFig.7.Inputcategoriesaredividedinto eightgroups:weatherfile,orientation,zonedimensions,northand southwindowwidthandtype,shadingdevicesanddimensions, walltype,wallinsulationtypeandthickness,androofinsulation typeand thickness.Theweatherfileis selectedbyapull down menu.ThefileisanEPWfiletypeforelevenEgyptiancities down-loadedfromtheDOEEnergyPlusweatherfilelibrary[36].Oncethe weatherfileisselected,thestandardrequirementsofthechosen locationareautomaticallysetasdefaultvalues,allowingthe cre-ationofthebaselinecase[30].Theuseristhenallowedtochange theparameterinputwithout exceedingtheminimum standard requirement.

Themainpurposeofthepassivedesigninterventionistoreduce thecoolingdemand.Forexample,thebuildingcanberotatedinto eightdirectionsevery45◦.Threehorizontalscrollbarsallowthe modificationoftheheight,lengthanddepthofthehousingoroffice unit.Designerscandefinewindows.Theycancheckthewindow optionandmodifythewindowwidthandtype.Elevendifferent windowtypescanbechosenrepresentingarrangementsof typ-icalEgyptianwindowtypesinadditiontomoreenergyefficient types.Itispossibletodefinethehorizontalshadingoptionsand determiningtheshadingdevicelocationsanddimensionsabove thewindows.Alsothewallsectioncanbeselected,includingthe walltype,insulationmaterialandinsulationthickness.Attheend ofthisprocess,andpriortopressingtheEnergyPlusbutton,thetool willupdatetheEnergyPlusinputfilewiththeinputparameters.

Theactivedesigninterventioncanbedoneasalaststepasit dependsonthetotalenergyconsumed(seeSection3.3).Thesolar activemoduleallowstheselectionofdifferentparameters includ-ingthePVpaneltype,paneltilt,panelorientation,panelefficiency andmountingtooptimisetheelectricalyield.Oncethesimulation hasbeenrun,theoutputgraphicsaredisplayeduponclickingon anyofthe11outputbuttonsillustratedinFig.8.Graphsare gen-eratedbyreadingtheCSVoutputfileusingExcelmacros.Fig.8

illustratesanexampleoftheoutputgraphics.Foreachcase,the ZEBOoutputscreendisplaystheresultsinthreedifferentgraphs: theoutdoortemperaturesgraphlocatedintheupperrightcorner ofthescreen,themonthlyendusegraphinthebottomrightside, andtheenergyconsumptionbreakdowngraphonthebottomleft sideofthescreen.

Casestudy

Inordertotestthevalidityandusabilityofthetoolwetooktwo measures.Firstuseacasestudyasanexamplehowahypothetical designconceptwouldbedevelopedandtodiscusshowtheresults generatedbythetoolaresufficientlyaccuratefortheNZEBdesign. Seconduseausabilitytestingstudy.

Casestudy

TotestthevalidityoftheproposedtoolofZEBO,wepresent ahypotheticaldesignexampleforanapartmentinnarrowfront housingblockin Cairo.Thefirst stepis tocreate a basecasein ZEBO. Theuserselects abuildingtype,and theweatherfilefor Cairo, a TypicalMeteorological Year (TMY2)weather file. Then theuserhastoselectthetargetedstandardforminimum perfor-mance.Thechoiceofstandard determinesmanyofthedefaults andassumptionsthatgointothesimulationmodel.Thetoolis cur-rentlylimitedtotheResidentialEnergyStandardECP306-2005-I. ForthiscasetheEgyptianstandardwaschosen.Thetoolthen auto-maticallyloadsacompleteEnergyPlusinputfileforasinglezone withcompletegeometrydescriptionthatcomplieswiththe Egyp-tianbuildingenergyandthermalindoorenvironmentstandard.The usercanchangethebuildinggeometry,includingtheheight,floor plandimensionsandnumberoffloorsinthebuilding,inaddition totheotherinputparametersmentionedearlier.However,forthis casestudywechosenottomakeanychangesandrunthedefault filetocreateabasecaseaccordingtoTable3.

Thesecondstep,afterviewingthesimulation resultsfor the basecase(Fig.8),isperformingsensitivityanalysis.Thedesigneris encouragedtorunsensitivityanalysisforanyselectedparameter. Thisstepintroducesdesignerstotheimpactofvaryingthe param-etervaluespriortothedecisionmaking.Thesensitivityanalysis resultsformthebasisforinformeddecisionmaking.Oppositeto theclassicaldesignapproach,wheresimulationisusedasa post-decisionevaluativetool,thedesignerisinformedontheimpactof hisorherdecisionpriortothedecisionmaking(Fig.9).

Inthiscasestudywechosetoexaminethewallconstruction type.UponselectingthePAcheckboxnexttotheWallConstruction Typeanewwindowpopsuptoaskingtheusertoconfirmhischoice, whichwillrequiretherunningof8filesforatleast2min.Upon con-firmation,theresultsaregeneratedbyEnergyPlusandtheoutput ispresentedasshowninFig.10.Basedonthesensitivityanalysis results,thedesignerisencouragedtoselectthemostenergysaving wallconstructiontype.Basedonthetwosensitivityanalysisgraphs inFig.10,theusercanseetheimpactofthedifferentconstruction types,andhencewillprobablyselectthewallconstructiontype (7)withthelowestenergyconsumption(Uvalue=0.4W/m2Kfor

basecasewall).Oncetheoutputisdisplayed,theusercanmove ontothephotovoltaictoolmodule.Thisstepisdoneasalaststep wherefiveinputs(location,PVtype,paneltilt,panelorientation, panelefficiency)arerequestedtooptimisetheelectricalyield[36]. ThusZEBOallowsthedesignerstoexplorefurtherparameter variationswhileindicatingtheoptimalvalueinrelationtoenergy consumption.Thedesignerthenmakesaninformeddesign deci-sionand enters thedecision asan inputand reruns thewhole simulation. On the same screen the total energy consumption canbecomparedtothereferencecaseresultsFig.11.ZEBOalso

(9)

Fig.7.Referencemodelandoutputplots.

Fig.8. InterfaceforZEBOandreferencemodelandoutputplots.

(10)

Fig.10.Referencemodelandoutputplotsincludingsensitivityanalysisresults.

(11)

Table3

Referencemodelandoutputplots.

Buildingdescription Basecase1 Parametricrange Orientation 0◦ 0,45,90,135,180, 225◦,270,315◦ Shape Rectangular (12m×10m) 12×10,12×11, 12×12,10×10 Floorheight 3mheight 3,4

Numberoffloors 1 1,2,3,4,5,6,7,8

Volume 360m3 NA

Externalwallarea 72m2 NA

Overhang None 0.0,0.5,1,1.5,2 Fin None 0.0,0.3,0.5,0.8,1.0,1.5

Roofarea 120m2 NA

Floorarea 120m2 NA

Windowsarea 28m2 NA

WindowwallratioWWR 45% 50,45,40,35,30,25, 20,15

ExteriorwallU-value W/m2K 2,1.8,1.6,1.4,1.2,1,

0.8,0.6,0.4 RoofU-value 1.4W/m2K 1,4,1.2,1,0,8,0.6

FloorU-value W/m2K 1.4,1.2,1

Singleclearglazing Tv=0.9 1,0.9,0.8,0.7,0.6,0.5, 0.4,0.3

SHGC 0.75 1,0.75,0.5,0.25 Peopledensity 0.033people/m2 NA

Lightingpowerdensity 6W/m2 NA

Plugloads 7W/m2 NA

Outsideair 20(m3/hperperson) NA

Infiltration 0.7ach NA HVACtype On-Split+separate NA CoolingCOP ventilation NA Thermalcomfortmodel 2.00 NA Coolingsetpoint(◦C) Givoni NA

Relativehumidity(%) 24 NA Fanefficiency(%) 60 NA Waterheater(%) 70 NA PVtype Amorph,mchrist,

pchrist

NA

PVsurface 0–100 NA

Cellefficiency 6–14% NA Inverterefficiency None NA

allowsthearchitecttoeasilymakemultipleinformeddecisionsat onceandrunthesimulationbutton.EnergyPlusactuatesthelatest changesandtheresultispresented.

Resultsvalidity

Byexaminingtheresultsofthebasecasesimulationthe con-sumptionwas19.85/kWh/m2/year(Uvalue=1.78W/m2Kforwall construction1).BasedonthesensitivityresultsshowninFig.10 thewallconstructionwiththelowestenergy consumptionwas selected.Accordinglytheenergyconsumptionwasreducedaround 16%toreach16.61/kWh/m2/year(Uvalue=0.421W/m2Kforwall

construction7).Comparedtothe8wallconstructionsthewall con-struction7,comprisinga125mmdoublewallwith50mmglass woolinsulation,hadthebestenergyperformance.Thisresultis consistentwiththefindingsof[29]forlowenergydesign.Thecase resultsshowsthatthetooldecisionsupportbringsignificant sav-ingswithoutanytimefordesigniterations.Thishelpstoextend theapplicationofsensitivityanalysistoguidethedecisionmaking beforethebuildingisdesignedusingappropriateenergyprinciples. Usabilitytesting

Themainobjectivefromthetestingandevaluationwastoassess theusabilityoftheinterfaceandtheabilityofdecisionmakingby performingusabilitytestsonthedifferentprototypeversions.Two mainiterationsofusabilitytestinghavebeencarriedoutduring thedevelopmentofprototype1and2ofZEBO.Thiswasdoneto achievefeedbackfromdesignersandpotentialusers.Eachusability

Fig.12.Meantimepertask.

iterationincludedtwotesttypes.Thefirstwasasatisfactionsimple paper-basedusabilityquestionnaire.SystemUsabilityScale(SUS), asdefinedbythestandard,wasusedtoenhanceandvalidatethe tool[37].Toguaranteetheinternalvalidityofthetestasetof10 ordinary(pre-defined)SUSquestionswereused.Theanalysisofthe responseswasbasedonthereportingframework[38].Thesecond wasausabilitymetrictesting,measuringthetasksuccess.Theaim wastomeasurehoweffectivelyusersareabletocompleteagiven setoftasks.Twodifferenttypesoftasksuccesswereused:binary successandlevelsofsuccessasshowninFigs.12and13.

TheusabilityiterationforZEBOprototype1tookplaceinAugust 2010with27userscomprisingarchitects,architecturalengineers andarchitecturalstudents.Theresultswerepublishedina previ-ouspublicationandareshowninFig.14[28].Apaperbasedsurvey wasconductedusingLikertscale.Usershaveexpressedtheir agree-mentwiththequestionnairequestionsonascalerangingfrom1to 5(1=’stronglydisagree’–5=stronglyagree’).Scoreswereadded andthetotalwasmultipliedby2.5.Ameanscorewascomputed outofthechosenresponseswitharangebetween0and100.The highestthescorethemoreusablethewebsiteis.Anyvaluearound 60andaboveisconsideredasgoodusability.AsshowninFig.14, thefirstprototypescoredagoodusabilityforninequestions, how-everforthelastquestion,participantsindicatedthattheyneeded tounderstandhowtheZEBOworkedinordertogetgoing. Addi-tionally,everyparticipantwasinterviewedafterconductingthe

(12)

Fig.14. UsabilitytestingofZEBOprototype1usingsystemusabilityscale.

Fig.15. UsabilitytestingofZEBOprototype2usingsystemusabilityscale.

usabilitytestingtofollowupandgetavaluableunderstandingof thetools’limitations.ThefeedbackwasincorporatedintheZEBO prototype2andfollowedbyasecondusabilitytesting.

Thesecond usability testing roundwasachieved duringthe organizationoffourdesignworkshopsofZeroEnergyBuildingsin CairoconductedinJanuary2011.Fourusers’focusgroupstested thetool.Threetestinggroupscomprisingarchitects,architectural engineersandarchitecturalstudents(62users)werehandedalist oftasksshowingtherequiredactions.AfterinstallingZEBO,every userwasshown a shorttutorialvideo [39] illustratingthe ele-mentsoftheinterfaceandtheirmeaning.Fig.15illustratesthe users’feedbackaftercompilingthe62responses.Ingeneral,the prototypeusabilitywasimprovedwhencompared toprototype 1.Participantsseemedmoreconfidenttousethetool,85percent comparedto72percent,afteraddingthesensitivityanalysis fea-ture.ThisresultedinparticipantsscoringhigherfortheuseofZEBO moreregularly(75percentcomparedto62percent).Alsothetool complexitywasreducedbyalmost10percentwhichresultedin easierofuse(78percentcomparedto68percent).Alsotheneedto understandhowthetoolworkedwasimprovedexceedingthe60 percentthresholdofgooduse.

Fromtheanalysissomemainstrengthsandlimitationswere revealed.Overall,thereactionswereparticularpositiveonthetools effectiveness.Fromtheanalysisitemergedthatthereisa great potentialfortheinterface.Fromtheopenquestionsandpost test-inginterviewsusersappreciatedtheembeddedbenchmarkandthe abilitytosizeandsimulatetherenewablesystem.Respondents werealsoparticularlyenthusiasticaboutthesensitivityanalysis featurethatsupportsthedecisionmakingintuitivelyandreduce thenumberofdesigniterationsforeachparameterandtotaldesign. Havingcomfortevaluationexpressedthroughthepsychrometric chartforforcedwindspeeds(rangingfrom0.5to2m/s)seemed extremelyhelpfultoeasilyinterprettheweatherandtheyfound great value in connecting comfort with weather and desirable

passivedeignstrategy.However,thepostusabilitytesting inter-views revealed other limitations. For example, many users indicatedtheirunfamiliaritywiththetool’sassumptionsandwere uncertainaboutcommunicatingthetoolresultswiththeirclients. Someusersfoundthebenchmarkveryusefulbutpreferredtouse other more comprehensivetools beside ZEBO. Othersuggested usingthetoolasaneducationaltool.Alsouserssuggestedabetter guidanceonthetooluse.Manyuserssuggestedusingthetoolwith anexpertguidanceorasaneducationaltool.Anothermain reser-vationmanyusershadwasthedifficultytointerpretandexplain theoutputresults.Thishadadirectinfluenceonrespondents’ con-fidencein theresultsand thereliability of thetool’s resultsto communicatethemwiththeclient.Theresultsofthisusability test-ingwillbeembeddedinnextprototypeandexpandedtoamore formalcasestudydesigninthenearfuture.

Discussionandconclusion

Summaryofmainfindings

Thesimulation-baseddesign supporttoolwasfoundto pro-moteinformeddecisionmakingforzeroenergy buildingdesign duringearlydesignstages.Itincreasedtheknowledgeaboutthe zeroenergybuildingdesignlessenedtheuncertaintyofdecision making. Participants who used ZEBO reported a high level of knowledgeandoperatedtheirdesignfromaninformative deci-sionsupportapproach ratherthan anevaluativetrialand error approach.Thiscongruencebetweendecision makinganddesign objective in thecontext of higher knowledgeaccords withour definitionofinformeddecisionmakingofZEBdesign. However, basedontheinterfaceusabilitytestingthecurrentprototypehas notreachedausabilitylevelthatsatisfiedtheneedsofdesigners. Assuch,thetoolisastartingpointforthedevelopmentofwidely usabletool.

(13)

Strengthandlimitations

Thisisthefirstsimulationbaseddecisionsupporttoolforearly stagesofzeroenergybuildingdesigninEgypt.Thetools’strengthis itscapacitytoinformdesignpriortodecisionmaking,while man-aginglargesensitivitysimulationsand presentingcomplexdata in easilycomprehensible, fastand comparativeformats. Basing thetoolsonarepresentativebenchmarkforEgyptianresidential buildingand localbuildingcomponentsand systemlinked toa detailedsimulationenginelikeEnergyPlusisreinforcingthetools resultvalidityandcertaintyindecisionmaking.Thetooliseasy touse,withaninterfacestructurethatisbasedonmatchingthe passiveandactivedesignstrategiesforthenetzeroobjectives.The toolcanhelpachievetheenergyperformancegoalwhileexploring differentrangesofathermalcomfortinhotclimatestoachieve theperformance objective.ZEBO’s strengthis in itscapacity to reducedecisionconflictandtheneedfortediousdesigniterations toachievetheperformanceobjective,whilecreatingavarietyof alternativesinashorttime,whichmatchtheearlydesigncyclic explorationsanditerations.Betterinformeddecisions,especially attheearliestconceptualdesignphases,willimprovethedesignof NZEBs.Itishopedthatseveraldesigntrials,currentlyinprogress usingthetool,willallowagreaterimpactonarchitects’decision makingandactualdesignoutcomes,andenableintegrationofBPS toolstoproceedfurtherthanthedecisionsupportlevelreachedin thisstudy.

However,thetoolinitscurrentstatecanhardlyattractlarge enoughnumbersofusers.Theusabilitytestingresultsrevealedthat thetoolseemsmoreusefulifusedwiththesupportofanexpertto useZEBOorinthehandsofaneducatorfordesignexploration.Also thedecisionmakingsupportofcurrentprototypecanonlyhandle energyissueswhilemanyusersexpectotherenvironmentaland economicalindices.Oneofthemainlimitationsidentifiedduring theworkshopswasthegeometryandnon-geometricinput.Users suggestedlinkstoGoogleSketchUpforgeometryinputanduser interfaceimprovementstoinsertinputvisually(notnumericalor textual).Similarlythetoolislimitedtoitsownlibraryofageneric rectangularsingle-zonetemplatewithfewalternativesforbuilding componentsandsystems.

Comparisonwithexistingtools

Thisdiscussionbuildsonearliersoftwarereview(Section2.4) thathasprovidedasnapshotonthecurrentlyavailableBPStools. Accordingtotheliterature,therearefewtoolsthatinformdesign priortothedecisionmakingforearlydesignstages,[24,26]and inthesametimeaddressesthezeroenergyobjective,combining passiveandactivedesignstrategies.Thesuggestedtoolisa para-metrictoolthatcanprovidesupportdecision makingwithvery littleiterationswhileaddressingthezero-energyobjective.

Arecentpublicationbytheauthorprovesthatmostexisting informativetoolsareexclusivelylocalservingcertaincountries’ context [21]. In fact, most BPS tools are developed in heat-ing dominated countries. They cater for developed countries withhigh energy consumption patterns and different expecta-tions for comfort. The main barriers in using those tools are relatedtotheavailabilityandcompatibilityofinputdataincluding weather,comfort models, buildingbenchmarks,renewable sys-tems,andoperationalcharacteristics.Noneofthesetools,however, addressedthezero-energytargetinacontextofhotclimate devel-opingcountryasinourtool.

Futureresearch

ZEBOisastartingpointtoprovidebetterguidancefordesign decisions to deliver NZEBs in hot climates. The tool in its

current state hassignificantlimitations and designerswill still requiremoreinformationinordertomakeinformeddecision.For betterusability, the tool can include a fully visualinput inter-faceandallowinguserstoaddnewbuildingtemplatesfornew buildingtypesorcasestudies.ItcanhaveT-shape, H-Shape, U-shapeandcourtyardshapedtemplates,orevenbetterintegratean OpenGLmodeller.Alsotheinterfacecanbeexpandedtoinclude morebuildingsystemsandcomponents,especiallydifferent enve-lopetypesandcoolingsystemsatdifferentcitiesinEgyptusing suitableCOPs(coefficientofperformance).Alsothescopeofthe toolcanbeextendedfurthertoachievethenetzeroobjectivefor existingbuildingsoronalargerscale(clusterorneighbourhood).

Concerningtheusabilitytestingthestudywilladdressthetool efficiency and effectiveness as a complementarytesting tothe satisfactiontesting.Onthelevelofdecisionsupportfurther devel-opmentsofthetoolcanincorporateeconomicindicestoachieve netzeroenergycosteffectively.Thetoolcanbelinkedto optimi-sationalgorithmstoo.Thiscancreatemoreviablealternativesand allowstheexplorationofawidersearchspaceforcomplexdesigns. Thisdevelopmentcanincludeeconomyandcost,whichmaybe ofinterestfordesigners,researchers,energylegislatorsandpolicy makers.

Acknowledgements

Thispaperisanupdateandexpansionoftwopapersauthored byShadyAttiaetal.entitled“Decisiondesigntoolforzeroenergy buildings”presentedatthePLEAconferencein2011and“Sizing photovoltaicsystemsduringearlydesignadecisiontoolfor archi-tects”presentedatASES2010.

TheauthorwouldliketoacknowledgeArchitectureetClimat and in particular Cédric Hermand and Stéphanie Salawa. Also AurélieLeNoirefromthetheUniversitédelaRéunion,France.The authorsthankMohamedHamdy(AaltoUniversity)forcomments onearlierversionsofthisarticle.Thispaperispartofanongoing PhDresearchfundedbytheUniversitécatholiquedeLouvain.

References

[1] Task40/Annex52,TowardsNetZeroEnergySolarBuildings,IEASHCTask 40 andECBCS Annex 52,http://www.iea-shc.org/task40/index.html, 2008 (accessed10.10.10).

[2] EuropeanParliament.ReportontheproposalforadirectiveoftheEuropean ParliamentandoftheCouncilontheenergyperformanceofbuildings(recast) (COM(2008)0780-C6-0413/2008-2008/0223(COD)),2009.

[3]ASHRAE, AHSRAE Vision 2020, ASHRAE Vision 2020 Ad Hoc Com-mittee,http://www.ashrae.org/doclib/20080226ashraevision2020.pdf,2008 (accessed10.10.10).

[4]R.Charron,A.Athienitis,I.Beausoleil-Morrison,AToolsforthedesignofzero energysolarhomes,ASHRAE,in:Annualmeeting,vol.112(2),Chicago,2006, pp.285–295.

[5]S.Hayter,P.Torcellini,etal.Theenergydesignprocessfordesigningand constructing high-performance buildings,Clima 2000/Napoli2001 World Congress,2001.

[6]J.Hensen,R.Lamberts(Eds.),BuildingPerformanceSimulationforDesignand Operation,SponPress,London,2011.

[7]D.Crawley,etal.,Contrastingthecapabilitiesofbuildingenergyperformance simulationprograms,BuildingandEnvironment43(4)(2008)661–673. [8]K.Lam,Y.Huang,Q.Zhai,Energymodellingtoolsassessmentforearlydesign

phase.ResearchreportpreparedforNorthwestEnergyEfficiencyAlliance, Port-land,2004,77p.

[9]G.Riether,T.Butler,Simulationspace.Anewdesignenvironmentforarchitects, in:M.Muylle(Ed.),26theCAADeConferenceProceedings,Antwerp,Belgium, 2008.

[10]S.Attia,L.Beltrán,A.DeHerde,J.Hensen,Architectfriendly:acomparisonof tendifferentbuildingperformancesimulationtools,in:Proceedingsofthe11th InternationalIBPSAConference,Scotland,Glasgow,2009.

[11]DOE, U.S., Building Energy Software Tools Directory (online). Available from:http://apps1.eere.energy.gov/buildings/toolsdirectory/,2011(accessed 01.03.11).

[12] S.Attia,etal.,Selectioncriteriaforbuildingperformancesimulationtools: contrastingarchitects’andengineers’needs’,JournalofBuildingPerformance Simulation(2011),Firstpublishedon:12April2011(iFirst).

(14)

[13]A.Athienitis,S.Attia,etal.,Strategicdesign,optimization,andmodellingissues ofnet-zeroenergysolarbuildings,in:EuroSun,Graz,2010.

[14]M.Donn,etal.,Simulationintheserviceofdesign–askingtherightquestions, in:ProceedingsofIBPSA,Glasgow,2009,pp.1314–1321.

[15]U.Bogenstätter,Predictionandoptimizationoflife-cyclecostsinearlydesign, BuildingResearch&Information28(5)(2000)376–386.

[16]A.Marszal,etal.,Zeroenergybuilding–areviewofdentitionsandcalculation methodologies,EnergyBuildings(2011).

[17]Y.Kalay,Performance-baseddesign,AutomationinConstruction8(4)(1999) 395–409.

[18]K.Molenaar,N.Sobin,etal.,Sustainablehighperformanceprojectsandproject delivery methods:a state ofthe-practicereport, report,Charles Pankow ResearchFoundation,CPFThrust-Ireport,2009.

[19] S.Korkmaz,etal.,Influenceofprojectdeliverymethodsonachieving sus-tainablehighperformancebuildings:reportoncasestudies,report,Charles PankowResearchFoundation,CPFThrust-Ireport,2010.

[20]A.Marsh,PerformanceanalysisandConceptdesign:Theparallelneedsof classroom &office, Welsh Schoolof Architecture.Between Researchand PracticeConference,ARCCandEAAETransactionsonArchitectural Educa-tion,Dublin(online).Availablefrom:http://companyshed.com/1023649200/ documents/2004 ARCC.pdf,2004(accessed01.03.11).

[21]S.Attia,A.DeHerde,Earlydesignsimulationtoolsfornetzeroenergybuildings: acomparisonoftentools,in:InternationalBuildingPerformanceSimulation Association,November2011,Sydney,Australia,2011.

[22]C.Ochoa,G.Capeluto,Advicetoolforearlydesignstagesofintelligentfacades basedonenergyandvisualcomfortapproach,EnergyandBuildings41(2009) 480–488.

[23]W.O’Brien,A.Athienitis,T.Kesik,Thedevelopmentofsolarhousedesigntool, in:11thIBPSAConference2009,Glasgow,2009,pp.1397–1404.

[24]S.Petersen,S.Svendsen,Methodandsimulationprograminformeddecisions intheearlystagesofbuildingdesign,EnergyandBuildings42(7)(2010) 1113–1119.

[25]C.Christensen,S.Horowitz,G.Barker,BEopt:SoftwareforIdentifyingOptimal BuildingDesignsonthePathtoZeroNetEnergy,ISES,Orlando,Florida,ISES, 2005.

[26]Y.Zhang,I.Korolija,PerformingcomplexparametricsimulationswithjEPlus, in:9thSETConferenceProceedings,Shanghai,China,2010.

[27]S.Attia,M.Hamdy,M.Samaan,A.DeHerde,J.Hensen,Towardsstrategicuse ofBPStoolsinEgypt,in:InternationalBuildingPerformanceSimulation Asso-ciation,November2011,Sydney,Australia,2011.

[28]S.Attia,A.DeHerde,DesignDecisionToolforZeroEnergyBuildings,in:Passive andLowEnergyArchitecture,July,LouvainLaNeuve,Belgium,2011. [29] S.Attia,A.DeHerde,StrategicDecisionMakingForZeroEnergyBuildingsin

HotClimates,in:EuroSun2010,Graz,Austria,2010.

[30] S.Attia,etal.,DevelopmentofbenchmarkmodelsfortheEgyptianresidential buildingssector,ApplEnergy(2012),doi:10.1016/j.apenergy.2012.01.065. [31] HBRC,Egyptiancodeforenergyefficiencyimprovementinbuildings[inArabic],

ECP306,2005,Cairo:HBRC.

[32] J.Huang,etal.,Thedevelopmentofresidentialandcommercialbuildingenergy standardsforEgypt,in:EnergyConservationinBuildingsWorkshop Proceed-ings,Kuwait,2003,pp.1–16.

[33]B.Givoni,Comfortclimateanalysisandbuildingdesignguidelines,Energyand Buildings18(1)(1992).

[34]H.Hansen,Sensitivityanalysisasamethodologicalapproachtothe devel-opment of design strategies for environmentally sustainable buildings, PhDDissertation,Departmentofarchitecture,AalborgUniversity,Denmark, 2007.

[35]C.Hopfe,Uncertaintyandsensitivityanalysisinbuildingperformance simula-tionfordecisionsupportanddesignoptimisation,PhDDissertation,Technical UniversityofEindhoven,TheNetherlands,2009.

[36]DOE. EnergyPlus version 6 (online). Available from: http://apps1.eere. energy.gov/buildings/energyplus/,2011(accessedJanuary2011).

[37]ISO9241-11:1998Ergonomicrequirementsforofficeworkwithvisualdisplay terminals(VDTs)–Part11:Guidanceonusability,InternationalOrganization forStandardization,1998.

[38]ANSI/INCITS354-2001:Common IndustryFormat(CIF) forUsabilityTest ReportsbecameaStandardDecember2001.

[39]S. Attia, ZEBO Tutorial Video 1 (online) http://www.youtube.com/ watch?v=zJLYzuL7yjg,2011(accessedSeptember2011).

Figure

Fig. 3. Architects ranking the most important features of a simulation tool [14].
Fig. 4. Barriers of decision making during early design stages.
Fig. 5. Tool workflow scheme.
Fig. 9. Annual electric yield of amorphous, polycrystalline and mono-crystalline panels.
+4

Références

Documents relatifs

 You  have  the  right  not  to  answer  any  question, and to stop the interview at any time or for any reason.. We expect that the interview will take about

Hilde Schneemann, Bianca de Sanctis, Denis Roze, Nicolas Bierne, John Welch. The geometry and genetics of hybridization.. ... CC-BY 4.0

« Avec Cauchy on peut dire sans hésitation que les concepts fonda mentaux du Calcul ont reçu une formulation rigoureuse. C'est pourquoi Cauchy a été communément

– May miss out the optimized solution Define Requirements Select Performance Criterion Select Assembly, Structure, Material Conduct Analysis and Computation Evaluate: Are

All patients had been treated with im injections of lanreotide 30 mg for at least 3 months before study entry and were considered to be responsive to the somatostatin analog

Le tournant des humanités numériques dans l’éducation Enjeux, repères et chantiers (présentation dans le cadre de la journée humanités numériques et éducation, académie

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des