• Aucun résultat trouvé

Effects of glucose-lowering agents on surrogate endpoints and hard clinical renal outcomes in patients with type 2 diabetes.

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of glucose-lowering agents on surrogate endpoints and hard clinical renal outcomes in patients with type 2 diabetes."

Copied!
12
0
0

Texte intégral

(1)

Review

Effects

of

glucose-lowering

agents

on

surrogate

endpoints

and

hard

clinical

renal

outcomes

in

patients

with

type

2

diabetes

A.J.

Scheen

a,b,

*

aDivisionofClinicalPharmacology,CentreforInterdisciplinaryResearchonMedicines(CIRM),UniversityofLie`ge,Lie`ge,Belgium bDivisionofDiabetes,NutritionandMetabolicDisorders,DepartmentofMedicine,CHUdeLie`ge,Lie`ge,Belgium

Introduction

Inparallelwiththetype2diabetesmellitus(T2DM)worldwide pandemic,diabetickidneydisease(DKD),whichisalsoassociated with cardiovascular (CV) morbidity and mortality, has now become the leading cause of end-stage renal disease (ESRD) [1]. Renal impairment in T2DM results in high healthcare utilizationand costs[2].Thus,both thepreventionofDKDand

itsappropriateearlymanagementtoretardprogressiontoESRD representmajorchallengesinpatientswithT2DM[3–5].

Inadditiontoinhibitionoftherenin–angiotensin–aldosterone system (RAAS), tight glucose control is also an established modality for preventing the development and progression of albuminuria[6].Evidence suggests it can ameliorateestimated glomerularfiltrationrate(eGFR)declines,althoughthesebenefits appear tobemostpronouncedwhen appliedtoT2DMpatients withearlystagesofDKDandlongerfollow-updurations[7,8].Most antihyperglycaemic medications can be safely used in patients withmild-to-moderateDKD.However, severalglucose-lowering agents are either not advisable or require dose adjustments in cases of more advanced stages of renal disease [6–10]. Of note, metformin, the first-line treatment for pharmacological

ARTICLE INFO Articlehistory:

Received16August2018

Receivedinrevisedform17September2018 Accepted8October2018

Availableonlinexxx Keywords:

Chronickidneydisease DPP-4inhibitor GLP-1receptoragonist Metformin SGLT2inhibitor Thiazolidinedione Type2diabetes ABSTRACT

Diabetickidneydisease(DKD)representsanenormousburdeninpatientswithtype2diabetesmellitus

(T2DM).Preclinicalstudiesusingmostglucose-loweringagentshavesuggestedrenal-protectiveeffects,

buttheproposedmechanismsofrenoprotectionhaveyettobedefined,andthepromisingresultsfrom

experimentalstudiesremaintobetranslatedintohumanclinicalfindingstoimprovetheprognosisof

patientsatriskofDKD.Also,itis importanttodistinguisheffectsonsurrogateendpoints,suchas

decreasesinalbuminuriaandestimatedglomerularfiltrationrate(eGFR),andhardclinicalendpoints,

suchasprogressiontoend-stagerenaldisease(ESRD)anddeathfromrenalcauses. Dataregarding

insulintherapyaresurprisinglyscarce,anditisnearlyimpossibletoseparatetheeffectsofbetterglucose

control from those of insulin per se, whereas favourable preclinical data with metformin,

thiazolidinedionesanddipeptidylpeptidase(DPP)-4inhibitorsareplentiful,andpositiveeffectshave

beenobservedinclinicalstudies,atleastforsurrogateendpoints.Themostfavourablerenalresultshave

been reported with glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium–glucose

cotransporter type-2 inhibitors (SGLT2is). Significant reductions in both albuminuria and eGFR

declinehavebeenreportedwiththeseclassesofglucose-loweringmedicationscomparedwithplacebo

andotherglucose-loweringagents.Moreover,inlargeprospectivecardiovascularoutcometrialsusing

compositerenaloutcomesassecondaryendpoints,bothGLP-1RAsandSGLT2isaddedtostandardcare

reduced renal outcomes combining persistent macro-albuminuria, doubling of serum creatinine,

progressiontoESRDandkidney-relateddeath;however,todate,onlySGLT2ishavebeenclearlyshown

toreducesuchhardclinicaloutcomes.Yet,astherenoprotectiveeffectsofSGLT2isandGLP-1RAsappear

tobeindependentofglucose-loweringactivity,theunderlyingmechanismsarestillamatterofdebate.

Forthisreason,furtherstudieswithrenaloutcomesasprimaryendpointsarenowawaitedinT2DM

patientsathighriskofDKD,includingtrialsevaluatingthepotentialadd-onbenefitsofcombined

GLP-1RA–SGLT2itherapies.

C 2018ElsevierMassonSAS.Allrightsreserved.

* Correspondingauthorat:DepartmentofMedicine,CHUdeSartTilman(B35), 4000Lie`ge1,Belgium.

E-mailaddress:andre.scheen@chuliege.be.

Available

online

at

ScienceDirect

www.sciencedirect.com

https://doi.org/10.1016/j.diabet.2018.10.003

(2)

managementofT2DM,maynowbeusedinpatientswithstable, moderaterenaldysfunction,accordingtorecentguidelines[11].

Intensive glucose control with the classic glucose-lowering agents,includinginsulin,reducestheriskof(micro)albuminuria, althoughevidenceislackingthat itcanreducetheriskof hard clinicalrenaloutcomeslikedoublingofserumcreatininelevels, ESRDanddeathduetorenaldisease,presumablybecauseof too-shortfollow-upsinmostoftheavailabletrials[12].However,as add-ons to standard care, new glucose-lowering agents have demonstratedrenoprotectiveeffectsbeyondjustimprovementof glucose control [13–16]. In particular, glucagon-like peptide-1 receptoragonists(GLP-1RAs)[17]and,evenmoreimpressively, sodium–glucosecotransportertype-2inhibitors(SGLT2is)[18–21] have shown positive effects on composite renal outcomes, including hard clinical endpoints, in T2DM patients with establishedCVdisease.

The aim of the present narrative review is to analyze and comparetheeffectsofold andnewglucose-loweringagents on surrogaterenalendpointsandclinicalrenaloutcomesinpatients

withT2DM(Table1).Theunderlyingmechanismsresponsiblefor

nephroprotectionweremainlyinvestigatedinin-vitroandin-vivo experimentsusinganimalmodels,andareherebrieflydiscussed foreachpharmacologicalclass.

Metformin

Metformin elicitsat least partof itstherapeutic activityvia activationoftheAMP-activatedkinase(AMPK)pathway.AMPKisa metabolicsensorthatregulatescellularenergybalance,transport, growth,inflammationandsurvivalfunctions;inthekidney,AMPK playsauniqueroleatthecrossroadsofenergymetabolism,ionand water transport,inflammation and stress [22]. Pharmacological activatorsofAMPKlikemetforminhaveshownrenal-protective effectsinnumerousexperimentalstudies[23].Renalcellsunder hyperglycaemicorproteinuricconditions exhibitinactivationof celldefencemechanisms(AMPKandautophagy)andactivationof pathologicalpathways[mammaliantargetofrapamycin(mTOR), epithelial-to-mesenchymal transition, endoplasmic reticulum stress,oxidativestress] [24].Activationof AMPKby metformin suppresses endoplasmic reticulum stress by angiotensin II, aldosteroneandhighglucoselevels,andalsoreducesrenalfibrosis related to transforming growth factor (TGF)-

b

[25]. In a concentration-dependentmanner, metforminhasalsoexhibited antiapoptoticeffectsonhumanpodocytesviaactivationofAMPK andinhibition ofmTORsignalling[26].Experimentalstudiesin miceconcludedthattheunderlyingmechanismsfortheprotective effects of metformin against renal fibrosis include AMPK

a

2-dependent targeting of TGF-

b

1 production and AMPK

a

2-inde-pendenttargetingofTGF-

b

1downstreamsignalling[27]. Other

datahaveindicatedthatreduced phosphorylationofacetyl-CoA carboxylase(ACC)afterrenalinjury contributestothe develop-ment of tubulointerstitialfibrosis, and that phosphorylation of ACC,atargetforenergy-sensingAMPK,isrequiredforantifibrotic metforminactionsinthekidney[28].Thus,numerousin-vitroand in-vivo studies have revealed nephroprotective effects with metformin, and these effects have been demonstrated to be mediatedviatheAMPK–mTORsignallingaxis[29].

Metforminactivatesnot onlyAMPK,but alsoprotein deace-tylaseSIRT1.In fact,metforminhasbeenshowntopreventthe hyperglycaemia-inducedreductionofSIRT1proteinlevelswhile ameliorating glucose uptake into podocytes and decreasing glomerularfiltrationbarrierpermeability.Indeed,thepotentiating effect of metformin on high-glucose-induced insulin-resistant podocytesseemstobedependentonSIRT1activityinadditionto AMPK, thereby arguing in favour of pleiotropic effects with metforminaction[30].Recentexperimentaldatainaratmodelof chronic kidney disease (CKD) showed that kidneys from the metformingroupexhibitedsignificantlyless cellularinfiltration, fibrosisandinflammation,andthatmetforminprotectedagainst thedevelopmentofsevererenalfailure(whilepreservingcalcium phosphorus homoeostasis) and vascular calcification. Of note, thesepositiveeffectswereindependentofanyglucose-lowering effectin this model usingnon-diabeticrats[31].Overall, these preclinicaldatasuggestthatthepotentialbenefitsofmetforminon renaloutcomesinpatientswithT2DMmaywellextendbeyondits antihyperglycaemicactivity.

Nevertheless,suchpositivepreclinicalresultsarestillawaiting furtherclinicaltranslation[32].Indeed,humandataarestillrather scarce. In the United Kingdom Prospective Diabetes Study (UKPDS), the proportion of T2DM patients with urinary albu-min>50mg/L (the only surrogate marker used as a renal outcome in this landmark study) did not differ significantly betweenthemetformingroup(23%),theconventionaldiet-treated group(23%) andtheintensive (sulphonylureaor insulin)group (24%)overamedianfollow-upof10.7years[33].InADiabetes Outcome Progression Trial (ADOPT), a 5-year study comparing initialtherapywithmetforminvsglyburide(glibenclamide)and rosiglitazone in T2DM patients, the urinary albumin/creatinine ratio (UACR) rose slowly in the metformin group, whereas it initiallyfellwithrosiglitazoneandglyburideoverthefirst2years, thenroseslowlyovertime.Ontheotherhand,thelatedeclinein eGFR with metformin was more pronounced than with rosi-glitazone,butlessmarkedthanwithglyburide[34].

Mostclinicalstudieshavebeeninterestedinthesafetyissuesof metformininT2DMpatientswithrenalimpairmentasregardsrisk oflacticacidosisratherthantheimpactofmetforminonsurrogate or clinical renal outcomes(for reviews, see Crowley et al. and Inzucchietal.[35,36]).Nevertheless,basedontherelevantclinical

Table1

Effectsofglucose-loweringagentsonrenalsurrogateendpointsandclinicaloutcomesinpreclinicalanimalmodelsandclinicalstudiesinpatientswithtype2diabetes. Medications Preclinicalresults Clinicalresults

In-vitroandin-vivodata Reductionofalbuminuria SlowingofeGFRreduction LessprogressiontoESRD Metformin Positive Notproven Notproven Notproven

Sulphonylureas None Noa

Noa

Noa

Glinides None Nodata Nodata Nodata

Alpha-glucosidaseinhibitors Rare Nodata Nodata Nodata Thiazolidinediones Positive Yes Notproven Notproven DPP-4inhibitors Positive Yes Notproven Notproven GLP-1receptoragonists Positive Yes Yes Notproven

SGLT2inhibitors Positive Yes Yes Yes

Insulintherapy Rare Notprovenb

Notprovenb

Notprovenb

eGFR:estimatedglomerularfiltrationrate;ESRD:end-stagerenaldisease;DPP-4:dipeptidylpeptidase4;GLP-1:glucagon-likepeptide1;SGLT2:sodium–glucose cotransportertype2.

aLessfavourableresultscomparedwithmetformininobservationalstudies. bImpossibletodiscriminatefrompossibleeffectsduetobetterglucosecontrol.

(3)

observations,metforminappearstobea promisingdrugin the treatmentofprogressiverenaldamage[37].Severalobservational findingsdemonstrated betterrenal outcomesin T2DMpatients initiated or treated with metformin than in those initiated or treatedwithsulphonylureas(seebelow).However,becauseofthe possible biases inherent in observational studies, randomized controlledtrials(RCTs)aretheessentialnextsteptoconfirmthese findings.

Sulphonylureas

Incontrasttothehuge amountof experimentalanimaldata supportingtherenal-protectiveeffectsofmetformin[37],nosuch dataareavailableintheliteratureforsulphonylureas[38,39].

Intheabove-mentionedADOPTstudycomparinginitialtherapy withthesulphonylureaglyburidevs.metforminandrosiglitazone in newlydiagnosed T2DM patients,a late decline in eGFR was observedinallthreegroups,albeitmoremarkedwithglyburide than with either metformin or rosiglitazone over the 5-year follow-up [34]. The Action in Diabetes and Vascular disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) reported that intensive glucose control using modified-release (MR)gliclazidepreventedESRDinpatientswithT2DM[40]:aftera mediandurationof5years,intensiveglucosecontrolsignificantly reducedmicroalbuminuriaby9%,macroalbuminuriaby30%and riskofESRDby65%[hazardratio(HR):0.35,P=0.02],although there were very few such events (only 7 vs. 20 ESRD cases). However,this effecton ESRDwasconfirmedin thesubsequent ADVANCE-ONtrialafteramedianof5.4additionalyears(29vs. 53 events; HR: 0.54, P<0.01),and thebenefit wasgreater in patients withearlier-stage DKDand withwell-controlledblood pressure[41].Ofnote,theexperimentaldesignofthestudydidnot allowseparationoftheeffectsofsulphonylureapersefromthatof betterglucosecontrol.

Using electronic health records from two primary-care networks and compared with metformin as the reference, sulphonylurea exposure in newly diagnosed T2DM patients trended towards an association with an increased risk of developing proteinuria [adjustedhazard ratio (aHR): 1.27, 95% confidenceinterval(CI):0.93–1.74],butshowedaclearassociation withanincreasedriskofeGFRreductionto<60mL/min/1.73m2

(aHR:1.41,95%CI:1.05–1.91)[42].

Severalretrospective comparisonswereperformed usingthe USVeteransAffairsnationaldatabase.Inacohortof93,577T2DM patients who had filled an incident oral antidiabetic drug prescriptionandhadaneGFR60mL/min/1.73m2atinclusion, sulphonylurea users compared with metformin users had an increasedriskoftheprimaryoutcome(persistentdeclineof25% ineGFRfrombaselineoradiagnosisofESRD:aHR:1.22,95%CI: 1.03–1.44)[43].Theseresultswereconfirmedin13,238veteran T2DMpatientswhoinitiatedeithersulphonylureaormetformin treatment.Ahigherriskofkidneyfunctiondeclineordeathwas seen with sulphonylurea compared with metformin, and the difference appeared to be independent of changes in glycated haemoglobin(HbA1c),systolicbloodpressureandbodymassindex

(BMI)overtime[44].Of175,296patientswithnewlydiagnosed T2DMandDKD,initiationofasulphonylureavs.metforminwas associatedwithasubstantialincreaseinmortalityacrossallranges of eGFR evaluated (HR ranged from1.25 to 1.69). The biggest absoluteriskincrease wasobservedinthosewith moderate-to-severedecreasesineGFR(30–44mL/min/1.73m2)[45].

In a real-world cohort of T2DM patients with albuminuria (urinaryalbumincreatinineratio[UACR]>30mg/g)who initiat-edeithersulphonylureaorsitagliptinasadd-ondualtherapyto metformin(dataextractedfromthecomputerizedmedicalrecords

of a large managed-care organization in Israel), while both pharmacologicalapproachesreducedalbuminuria,sulphonylureas seemedtoprovidelessofareductioninalbuminuriaindependent ofglycaemiccontrolcomparedwiththeDPP-4inhibitor[46].

Another real-life study investigated the effects of two commonly prescribed sulphonylureas on kidney outcomes in 4486T2DMpatientstreatedwitheitherglimepirideorgliclazide for>2years and followed for a median duration of 4.7years [47]. In a matchedcohort using propensityscores with12,122 person-years of follow-up, there was no significant difference between thetwo sulphonylureasinriskof ESRDordoublingof creatinine,althoughtherewasatrendtowardshigherrisksinthe glimepiridegroupthaninthegliclazidegroup,reachingstatistical significanceinsomesubgroups[47].

Thus,sulphonylureasappeartoexertlessofanephroprotective effect,especiallycomparedwithmetformin,althoughresultsfrom observationalstudiesrequireconfirmationbyRCTs.Inaddition,no studyspecificallyinvestigatedtheeffectsofotherinsulin-secreting agents,suchasrepaglinideandnateglinide,onUACRoranyother renaloutcomes.

Alpha-glucosidaseinhibitors

In animal models, the alpha-glucosidase inhibitor acarbose suppressedbloodglucoselevelsinmildlyinsulin-deficientratsand reducedthenumberofanionicsitesintheglomerularbasement membrane,whichmighthelptopreventitsincreasedpermeability leading to albuminuria [48]. However, human data are scarce [49].InT2DMpatientsnotwellcontrolledbysulphonylureasand metformin, additional acarbose therapy for 6 months provided similar glycaemic control and changes in eGFR and UACR comparedwithpioglitazone[50].

IntherecentAcarboseCardiovascularEvaluation(ACE)trialto evaluatetheeffectsofacarboseonCVanddiabetesoutcomesin Chinesepatientswithcoronaryheartdiseaseandimpairedglucose tolerance, after a median follow-up of 4.4years, incidental impairedrenalfunction(definedaseGFR<30mL/min/1.73m2,

doublingofbaselineserumcreatinineorhalvingofbaselineeGFR) didnotdifferbetweentheacarbosegroupandtheplacebogroup (41/3272vs.50/3250,respectively; HR:0.81,95%CI:0.54–1.23; P=0.33)[51].

Glitazones

Ofalltheglucose-loweringagents,thiazolidinediones(TZDs) are those with thegreatest anti-inflammatory activity [52], an effectthatmaycontributetonephroprotection[53].TZDsmayalso interferewithmostofthepathogeneticpathwaysinvolvedinthe developmentandprogressionofDKD,astheyhavebeenshownto reducehyperglycaemiaandinsulinresistance,lowerarterialblood pressure, improve endothelial function, reduce inflammatory processes and oxidative stress, lower TGF-

b

and downregulate

theRAAS [54,55].Datafromseveral animal andhumanstudies

supportthenotionthatTZDsreduceUACRandmaypreventthe development of renal impairment [55]. In a meta-analysis of 15 RCTs (five with rosiglitazone and 10 with pioglitazone) involving2860T2DMpatients,treatmentwithTZDssignificantly decreasedUACRandproteinexcretion[56].However,inpatients withadvanceddiabeticnephropathy,noreductioninproteinuria wasobservedinpatientstreatedwithpioglitazonecomparedwith glipizide for 4months [57]. In a study that compared add-on pioglitazone with basal insulin, both treatments improved glycaemic control, but only pioglitazone was observed to beadvantageousby preservingrenalfunctionwhenused asan

(4)

add-ontherapyfor T2DMpatients inwhomsulphonylurea and metforminregimenshadfailed[58].

In a small study of TD2M patients with microalbuminuria, rosiglitazonecomparedwitheithernateglinideorplacebo signifi-cantly reduced albumin excretion and ameliorated glomerular hyperfiltrationatanearlystageofT2DMaswellasincipientDKD, while also improving nitric oxide bioavailability and renal endothelialdysfunction[59].InADOPT,initialmonotherapywith rosiglitazoneslowedtheriseofUACRcomparedwithmetformin, preserved eGFR compared with glyburide, and lowered blood pressurerelativetobothactivecomparatorsovera5-yearperiod [34]. In a post-hoc analysis from the Prospective Pioglitazone ClinicalTrialinMacrovascularEvents(PROactive),patientswhohad DKDandweretreatedwithpioglitazonecomparedwithplacebo werelesslikelytoreachthecompositeendpointofall-causedeath, myocardialinfarctionandstroke,independentlyoftheseverityof renalimpairment. However, there was an unexpectedly greater decline in eGFR with pioglitazone (between-group difference: 0.8mL/min/1.73m2/year) than with placebo [60]. Clinicalrenal

outcomeswerenotinvestigatedinthestudy.

Therefore,whethertheuseofTZDshasapositiveornegative impacton renal outcomesin T2DMpatients remains an open, unansweredquestion[61].In therecentlypublishedlarge-scale prospectiveInsulinResistanceInterventionafterStroke(IRIS)trial, whichdemonstratedsignificantriskreductionsofbothrecurrent strokeandmyocardialinfarctionwithpioglitazonecomparedwith placebo as add-ons to standard care, no renal endpoints were reportedon[62].Thus,therelativelackofevidencedemonstrating theeffectsofTZDsonhardrenaloutcomesmandatestheneedfor well-designedRCTsfocusedonthisparticularobjective[55].

DPP-4inhibitors

DPP-4isareincretin-basedtherapiesthatlowerbloodglucose levelswithoutinducinghypoglycaemiaorweightgainwhilehaving good CV safety profiles [63]. Theirglucose-lowering efficacy is maintainedinT2DMpatientsatallstagesofCKD,andtheyaresafe

touse [64–66].However,itis recommendedtoreducedosesof

alogliptin, saxagliptin, sitagliptin and vildagliptin according to reductionsineGFRtoguaranteeconsistentdrugexposurestothese medications,whichareexcretedviathekidneys[67,68].Incontrast, aslinagliptinhasbiliaryratherthanrenalexcretion,itsusualdose maybemaintainedwhateverthestateofrenalfunction[69].

SeveralrecentreviewshaveexploredtheeffectsofDPP-4ison surrogate renal outcomes [70–72]. Renal protection has been demonstrated in various animal models implicating different underlyingmechanismsindependentofglucosecontrol,including: upregulationof GLP-1 and GLP-1 receptors; inhibition of renal DPP-4activity;attenuationofinflammasomeactivation,reduction of oxidative stress; mitochondrial dysfunction and apoptosis; suppressionofconnective-tissuegrowthfactor;limitationof

TGF-b

-related fibrosis and nuclear factor (NF)-

k

B p65-mediated macrophage infiltration; reduction of renal tubulointerstitial fibronectin; upregulation of stromal cell-derived factor-1; sup-pression of advanced glycation end-products; regulation of proliferation of preglomerular vascular smooth muscle and mesangialcells;and attenuationofrises inbloodpressure[70– 73].However,despitesuchpromisingresultsinanimal models, data on surrogate biological markers of renal function (UACR, eGFR)andclinicalrenaloutcomes(progressiontoESRD)arestill relativelyscantyinpatientswithT2DM,andmostlydemonstrate thesafety rather than true efficacy of DPP-4is regarding renal protection[70].

In overweight patients with T2DM without DKD, 12-week treatment with sitagliptin had no measurable effect on renal

haemodynamics,andwasnotassociatedwithsustainedchangesin tubular function or alterations in markers of renal damage [74]. The Trial to Evaluate Cardiovascular Outcomes after Treatment with Sitagliptin (TECOS) was mainly a CV outcome trialtodemonstratetheCVsafetyofsitaglitptin[75].Inapost-hoc analysisofTECOS,renaloutcomeswereevaluatedoveramedian periodof3 years,withparticipantscategorizedatbaseline into differenteGFRstages[76].Kidneyfunctiondeclinedatthesame rateinboth treatmentgroups, butwitha marginallyloweryet constanteGFR difference( 1.3mL/min/1.73m2)inthose

parti-cipants assigned to sitagliptin compared with those receiving placebo[76](Table2).

IntheSaxagliptinAssessmentofVascularOutcomesRecorded in Patients with Diabetes Mellitus (SAVOR)–Thrombolysis in Myocardial Infarction (TIMI) 53 study [77], there were no meaningful differences between the saxagliptin vs placebo treatment arms, respectively, in any of the prespecified renal safetyoutcomes:doublingofserumcreatinine(2.02%vs.1.82%); initiation of chronic dialysis, renal transplantation, or serum creatinine>6.0mg/dL (0.61%vs. 0.67%); and the composite of doublingofserumcreatinine,initiationofchronicdialysis,renal transplantationandserumcreatinine>6.0mg/dL(2.2%vs.2.0%)

[78](Table 2). Overall changes in eGFR during follow-up were

similarinthesaxagliptinandplaceboarms.However,asignificant reductioninUACRwasobservedwithsaxagliptincomparedwith placebo ( 34.3mg/g; P<0.004), driven mainly by decreased levelsinpatientswithmacroalbuminuriaatbaseline(-283mg/g; P=0.002),althoughchangesinUACRdidnotcorrelatewiththose inHbA1c[78].ThefrequencyofUACRprogressionwassignificantly

lower with saxagliptin compared with placebo in all patients exceptthosewithsevererenalimpairment.Otherrenalendpoints appeared at relatively balanced rates in patients treated with saxagliptin compared with placebo, irrespective of renal im-pairment [79]. Also, in the Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care (EXAMINE), changesineGFRfrombaseline(whateverthebaselinelevel)and ratesofinitiationofdialysisweresimilarbetweenalogliptinand placebo[80](Table2).

Finally, pooled analyses of placebo-controlled RCTs with linagliptinrevealeda28%reductioninUACR(95%CI: 47to 2; P=0.0357)[81]and16%reductioninriskofcompositeDKDevents (HR: 0.84, 95% CI: 0.72–0.97; P=0.02) compared with placebo [82]. However, because of the limitations of such retrospective analysesofrathershort-termtrials,thepotentialoflinagliptinto improvekidneydiseaseoutcomesstillwarrantsfurther investiga-tion.Indeed,intheEfficacy,SafetyandModificationofAlbuminuria in Type2 DiabetesSubjectswith Renal DiseasewithLinagliptin (MARLINA-T2D),a dedicated phase-IIIplacebo-controlled RCTin patientswithinadequatelycontrolledT2DMandevidenceofDKD (UACRwith30–3000mg/gcreatininedespiteastablebackground of single RAAS blockade, and eGFR30mL/min/1.73m2),

lina-gliptinsignificantlyimprovedglycaemiccontrolwithnosignificant effectonUACRcomparedwithplaceboandnosignificantchangein placebo-adjusted eGFR [83]. Although there was no conclusive evidenceofrenoprotectiveeffectsinthe24-week MARLINA-T2D trial,previousresearchhadsuggestedthatclinicallyevidentrenal benefitsmightdevelopwithlonger-termtreatment[84].

Overall, the renal-protective potential of DPP-4is remains largely unproven in humans and merits further investigation

[70,72]. Several reasons may explain why DPP-4is failed to

positivelyimpactrenaloutcomesinRCTs.First,theyweredesigned todemonstratenon-inferiority,ratherthansuperiority,withCV outcomes as primary endpoints. Furthermore, adjustment of glucose-loweringtherapieswasallowed,whichresultedin only a small HbA1c difference between the active-treatment and

(5)

lastingonly1.5to3years.Thus,thereisanurgentneedfor long-termRCTsthatareadequatelypoweredandbasedonhardrenal outcomestoascertain(orcontradict)thetherapeuticbenefitsof DPP-4isinpatientswithT2DMandDKD.

Theplacebo-controlledCardiovascularandRenalMicrovascular Outcome Study with Linagliptin (CARMELINA) trial aimed to evaluatetheeffectsoflinagliptinonbothCVandkidneyoutcomes inastudypopulationofT2DMpatientsathighriskofCVand/or kidneyevents[85].Therecruitedpopulationinthisuniquestudy differedfromthoseofpreviousstudieswithDPP-4isinthat60% ofpatientshadsignsofrenaldysfunction(eithereGFR<60mL/ min/1.73m2oralbuminuria),incontrastto

<25%inothertrials. Whiletheprimaryoutcomewastheclassicthree-point combina-tion of major CV events, the key secondary outcome was a composite oftimetofirstsustainedappearanceofESRD,40% decrease in eGFR from baseline and kidney-related death. The resultswerepresentedatthe54thAnnualMeetingoftheEuropean AssociationfortheStudyofDiabetes(EASD;4October2018),but haveyettobepublished.Nosignificantdifferenceswereobserved betweenthelinagliptinandplacebogroupsforeitherCVorrenal compositeendpoints.Linagliptinwasassociatedwithasignificant reductioninalbuminuriawithnoeffectivechangeineGFR.

GLP-1receptoragonists

GLP-1RAsactonthetraditionalriskfactorsofprogressivekidney disease, including improvement of glucose control, lowering of bloodpressureandweightreduction.Moreover,GLP-1RAsmayalso havedirecteffectson thekidney,includingthe intrarenalRAAS, ischaemia/hypoxia,apoptosisandneuralsignalling(fora review, seeThomas[17]).However,themechanismsthatmayunderlieany directactionsinthekidneyhaveyettobeestablished[86].The GLP-1 receptor seems to be expressed in glomeruli and arterioles, whereas kidney-protective actions independent of the GLP-1 receptorhavebeenproposed.GLP-1inducesnatriuresisbyreducing sodium/hydrogenexchangerisoform3(NHE3)-dependentsodium reabsorptioninthe proximaltubule[17,87].GLP-1RAshavealso been shown to reduce inflammation, macrophage infiltration, oxidativestressandtype-IVcollagenaccumulationinthekidney

[17,88].Becausethebeneficialactionsofliraglutideareknowntobe

inhibitedbyaspecificadenylatecyclaseinhibitorandaselective protein kinase A (PKA) inhibitor, cAMP and PKA-dependent pathways downstream of GLP-1 receptor activation mayplay a criticalroleinrenalprotection[88].Inbothin-vivoandin-vitro studies, liraglutide prevented epithelial-to-mesenchymal transi-tion,which playsa significantrole in thedevelopment of renal fibrosis,byinhibitingactivationoftheTGF-

b

1/Smad3andERK1/2 signallingpathways,anddecreasingextracellularmatrixsecretion anddeposition[89].RenalGLP-1receptorshavebeenfoundtobe present in afferent arteriolar vascular smooth muscle cells, glomerular endothelial cells and macrophages, juxtaglomerular cells and proximal tubule, while GLP-1 has been reported to increase GFR,renal blood flow,and fractionalexcretion of both sodiumandpotassium[90].

GLP-1RAsaresafetouseinT2DMpatientswithDKD[67]: 12-weektreatmentwithliraglutidehadnomeasurableeffectsonrenal haemodynamics,and led tono observable sustained changesin eithertubularfunctionormarkersofrenaldamage[74].Inanother study, short-term liraglutide treatmentalsodid not affect renal haemodynamics, but did decrease proximal tubular sodium reabsorption.Furthermore,areductioninangiotensinII concentra-tionwasobserved,whichmaycontributetorenalprotection[91]. IntheLiraglutideEffectandActioninDiabetes:Evaluationof CardiovascularOutcomeResults(LEADER)studyofCVoutcomes [92],theprespecifiedsecondaryrenaloutcomewasacompositeof

Table 2 Renal outcomes reported with dipeptidyl peptidase-4 inhibitors (DPP-4is) in patients wit h type 2 diabetes and high cardiovascular risk. Studies DPP-4is vs comparator Active vs. placebo (n )

Median follow-up (years) Baseline mean eGFR Change in eGFR vs. placebo Baseline UACR (mg/g) Change in UACR (mg/g) vs. placebo

New-onset persistent macro

Doublin g o f serum creatinine Progression to ESRD requiring RRT

Composite renal outcome

Death from any cause a TECOS [75,76] Sitagliptin vs. placebo 7332 vs. 7339 3.0 74.9 1.34 ( 1.76 to 0.91), P < 0.0001 10.3 (3.5–34.6) 0.18 ( 0.35 to 0.02), P = 0.031 NA (micro: 7.8% vs. 7.9%) NA 1.4% vs. 1.5% NA 1.01 (0.90–1.14), P = 0.88 SAVOR–TIMI 53 [77,78] Saxagliptin vs. placebo 8280 vs. 8212 2.1 72.5 NA 203.6 (79.2– 848.4) 34.3 (NA), P < 0.004 2.2% vs 2.8% 1.1 (0.89– 1.36), NS 0.7% vs. 0.9%, 0.90 (0.61–1.3 2), NS b 1.08 c (0.88–1.32), P= 0.46 1.05 (0.74–1.50), P = 0.79 EXAMINE [80] Alogliptin vs. placebo 2701 vs. 2679 1.5 71.1 No difference d NA NA NA NA 0.9% vs. 0.8% NA 0.88 (0.71–1.09), P = 0.23 Results are expressed as hazard ratios (95% confidence interval). eGFR: estimated glomeru lar filtration rate; UACR: urinary albumin/creatinine ratio; macro/ micro: macroalb uminuria/microalbuminuria; ESRD: en d-stage renal disease; RRT: rena l replace ment therapy; NA: not available; NS: not significant. a Includes renal death, as those results are lacking in publications (presumably very few events). b includes serum creatinine > 6 mg/dL. c doubling of serum creatinine, dialysis, renal transplantation, serum creatinine > 6 mg/dL. d basal eGFR (mL/min/1.73 m 2):  90, 6.7 vs. 4.5; < 90 but  60, 0.6 vs. 1.0; < 60 but  30, 1.1 vs. 2.1; < 30, 0.2 vs. 1.6.

(6)

new-onsetpersistent macroalbuminuria, persistent doubling of serumcreatinine,ESRDanddeathfromrenaldisease[93].Aftera medianfollow-upof3.84yearsinT2DMpatientsathighriskofCV disease,thisrenaloutcomewasobservedinfewerparticipantsin theliraglutidethanintheplacebogroup(268/4668patientsvs. 337/4672,respectively; HR: 0.78, 95% CI: 0.67–0.92;P=0.003; TableIII).However,thisresultwasdrivenprimarilybythenew onset of persistent macroalbuminuria, whereas no significant differences were observed for persistent doubling of serum creatinine, ESRDand death due torenal disease(Table 3). The declineineGFRwasslightlylowerintheliraglutidethaninthe placebogroup(estimated36-monthtrialratio:1.02,95%CI:1.00– 1.03; P=0.01), corresponding to a 2% lower decrease with liraglutide: 7.44 vs. 7.82mL/min/1.73m2). Rates of renal

adverseevents(AEs)weresimilarinbothliraglutideandplacebo groups(15.1AEsand16.5AEsper1000patient-years, respective-ly),includingratesofacutekidneyinjury(7.1AEsand6.2AEsper 1000patient-years,respectively)[93].

In theTrial toEvaluateCardiovascularand OtherLong-term Outcomes with Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN-6), after a median follow-up of 2years, new or worsening nephropathy was less frequently reported in T2DM patientstreatedwithsemaglutidevs.placebo(HR:0.64, 95%CI: 0.46–0.88;P<0.01).Again,however,thiscompositeoutcomewas largely driven by a reduction in new-onset macroalbuminuria, whereasdoublingofserumcreatinineconcentrationsresultingin eGFRs45mL/min/1.73m2,ESRDand deathfromrenalcauses

were unaffected [94] (Table III). In the Exenatide Study of Cardiovascular Event Lowering (EXSCEL), a reduction in new-onset macroalbuminuria was reported in patients treated with once-weekly exenatide compared with placebo (2.2% vs 2.8%, respectively; P=0.03), with no significant changes in either microalbuminuria(7.2%vs.7.5%,respectively)orESRDrequiring renalreplacementtherapy(0.7%vs.0.9%)afteramedianfollow-up of3.2years[95](Table3).

In T2DMpatientswhohadhadrecentacutecoronaryevents fromtheEvaluationofLixisenatideinAcuteCoronarySyndrome (ELIXA),74.3% had normoalbuminuria, 19.2% had microalbumi-nuriaand6.5%hadmacroalbuminuria[96].After108weeks,the placebo-adjusted,least-squaresmeanpercentagechangesinUACR frombaselinewithlixisenatidewerenegligibleinpatients with normoalbuminuria,but reached 21.10%(95% CI: 42.25–0.04; P=0.0502)inpatientswithmicroalbuminuria,and 39.18%(95% CI: 68.53to 9.84;P=0.0070)inthosewithmacroalbuminuria. Lixisenatidewasalsoassociatedwithareducedriskofnew-onset macroalbuminuria compared with placebo when adjusted for baseline HbA1c (HR: 0.808, 95% CI: 0.660–0.991; P=0.0404).

However,nosignificantdifferencesineGFRdeclinewereidentified betweentreatmentgroupsinanyUACRsubgroup.Inaddition,the proportion of patients with renal AEs was low and did not significantlydifferbetweentreatmentgroups[96].

Integrateddatafromninephase-II/-IIItrialsinT2DMpatients (n=6005)showedthatdulaglutidehadnoeffectoneGFR,butdid decreaseUACRslightlywithoutincreasingkidneyAEscompared witheither placebooractive comparators[97]. Inthe52-week AWARD-7 trialof patients with T2DMand moderate-to-severe DKD, once-weekly dulaglutide resulted in glycaemic control similar to that achieved with insulin glargine withno greater reductioninUACR,butwithsignificantlylessofadeclineineGFR (P=0.005for dulaglutide 1.5mg and P=0.009 for dulaglutide 0.75mgvs.insulin)[98].ThiswasconfirmedbyaUSstudyina real-lifesettingwhereinitiationofdulaglutidetherapy,compared withinsulinglargine,wasassociatedwithasignificantlysmaller decreaseineGFRovera1-yearperiod[99].Overall,these short-termdatasuggestthatdulaglutidehasthepotentialtoexertrenal protection in patients with T2DM, an effect that should be Table

3 Renal outcomes report ed for glucagon-like peptide-1 receptor agonists (GLP-1RAs) in patients with type 2 diabetes and high cardiovascular risk. Studies GLP-1RA dose vs. comparator Active vs. placebo (n )

Median follow-up (years) Baseline mean eGFR Baseline UACR

Change

in

UACR

New-onset persistent macro

Doubling of serum creatinine Progression to ESRD requiring RRT

Composite renal outcome

Death from any cause a LEADER [92,93] Liragutide 1.8 mg once daily vs. placebo 4668 vs. 4672 3.84 80.4 Micro: 26.3%, macro: 10.5% 17% ( 12 to 21), P < 0.001 0.74 (0.60–0.91), P= 0.004 0.89 (0.67–1.19), P= 0.43 0.87 (0.61–1.24), P = 0.44 0.78 b (0.67–0.92), P= 0.003 0.85 (0.74–0.97), P= 0.02 SUSTAIN-6 [94] Semaglutide 0.5 or 1.0 mg once daily vs. placebo 1648 vs. 1649 2 N A N A N A 0.54 (0.37–0.77), P= 0.001 1.28 (0.64–2.58), P= 0.48 0.91 (0.40–2.07), P = 0.83 0.64 c (0.46–0.88), P= 0.005 1.05 (0.74–1.5 0), P = 0.79 EXSCEL [95] Exenatide ER 2 m g once weekly vs. placebo 7356 vs. 7396 3.2 76.6 NA NA 2.2% vs. 2.8% NA 0.7% vs. 0.9% NA 0.86 (0.77–0.98), P not tested Results are expressed as hazard ratios (95% confidence interval). eGFR: estimated glomerular filtration rate (mL/min/1.73 m 2); UACR: urinary albumin/creatinine ratio; ESRD: end -stage renal disease; RRT: renal replacement therapy; Micro: microalbuminuria; NA: not avail able; ER: extended release. a Includes renal death, as those results are lacking in public ations (presumably very few events). b Includes persistent doubling of serum creatinine, ESRD, death due to renal disease; another composit e endpoint was persistent doubling of serum cre atinine, need for continuous RRT (ESRD; HR: 0.85, 95% CI: 0.66–1.10 ,P = 0.20). c new or worsening nephropathy defin ed as new-onset persistent macroalbuminuria (macro), persistent doubling of serum creatinine, creatinine clear ance < 45 mL/min/1.73 m 2(as per Modification of Diet in Renal Disease equation), need for continuous RRT, death due to renal disease.

(7)

confirmed in long-term studies using clinical hard endpoints

[100]. Further renal data will also becomeavailable when the

resultsoftheongoingCVoutcometrial,Researching Cardiovascu-lar Events with a Weekly Incretin in Diabetes (REWIND), are published.

IntherecentlypublishedHarmonyOutcomestrial,albiglutide wassuperiortoplaceboasregardsmajorCVAEsinpatientswith T2DMandCVdisease(HR:0.78,95%CI:0.68–0.90;P=0.0006for superiority) [101]. A slight yet significant difference in eGFR betweenpatientsinthealbiglutidegroupandthoseintheplacebo groupwas noted at 8months( 1.11mL/min/1.73m2, 95% CI:

1.84to 0.39),buttendedtodisappearat16months( 0.43mL/ min/1.73m2, 95% CI: 1.26–0.41). No increased risk of severe

renalAEswasreportedwirhalbiglutide.Nootherrenalendpoint data,including changes in albuminuria, are availablefrom this trial.

Divergentresultshavebeenreportedinrecentmeta-analyses investigatingtheeffectsofGLP-1RAsonmicrovascular complica-tions. In the first meta-analysis of 51 trials to report valuable informationonrenalendpoints,GLP1-RAsloweredtheincidence ofnephropathy[Mantel–Haenszel(MH)oddsratio(OR):0.74,95% CI: 0.60–0.92; P=0.005], and was significantly different vs placebo, but not vs any other class of active comparators

[102].Inanothermeta-analysisof77randomizedtrialsinvolving

60,434T2DMpatients,treatmentwithGLP-1RAswasassociated withsignificantreductionsinall-causeandCVmortality,butwith no significantdecrease in risk of nephropathy (risk reduction: 0.866,95%CI:0.625–1.199;P=0.385)[103].Inyetanother meta-analysisof60studiesinvolving60,077T2DMpatients,GLP-1RAs marginally reduced UACR compared with placebo and other antidiabeticagents[weightedmeandifference(WMD): 2.55mg/ g,95% CI: 4.37 to 0.73, and 5.52mg/g, 95% CI: 10.89 to 0.16,respectively],butresultedinnoclinicallyrelevantchanges

ineGFR[104].Ofnote, asthecommerciallyavailableGLP-1RAs

maydifferbyarangeofproperties,whetherornotthereisaclass effectwhenconsideringcardiorenalprotectionremainsanopen question[105,106].

SGLT2inhibitors

SGLT2is exert their glucose-lowering effects by promoting glucosuria,aneffectthatalsoresultsinbody-weightandfat-mass reductions.Inadditiontotheseeffects,theyincreasenatriuresis andosmoticdiuresis,therebyloweringarterialbloodpressureand plasmaoverload[107],allfactorsthatmaycontributetobetterCV and renal outcomes and rates of mortality [108]. In addition, switching from low-dose thiazide diuretics to SGLT2is has improved various metabolic parameters(HbA1c, fastingplasma

glucose,serumuricacid,BMI,visceralfatarea)withoutaffecting bloodpressureinpatientswithT2DMandhypertension[109].

SGLT2iscertainlyrepresentthemostpromising pharmacologi-calclassofglucose-loweringagentsnotonlyforCVfactors,butalso forrenal protectionin T2DMpatients [21,110].In recentyears, numerousexcellentandextensive reviewsdevotedtothis topic havesummarizedtheirpreclinicalandclinicaldata,andprovided severalhypothesestoexplainthenephroprotectiveeffectsofthese newantidiabeticagents[18,19,21,111–115].SGLT2ieffectsonthe kidneyaremostlikely explained bymultiplepathwaysbeyond systemiceffectsviareductionsinbloodglucose,body-weightand bloodpressure.SGLT2isareassociatedwithreducedglomerular hyperfiltration,aneffectmediatedthroughincreasednatriuresis, andrestoredtubuloglomerularfeedbackindependentlyof glycae-miccontrol.Increasedsodiumandchloridedeliverytothemacula densa following SGLT2 inhibition results in activation of renal tubuloglomerular feedback,leading to afferentvasoconstriction

and attenuation of diabetes-induced renal hyperfiltration

[21,111]. This effect may explain the early decline in eGFR

commonlyobservedafterinitiationofSGLT2itherapy.Thisinitial dropisfollowedbyaslowerdeclineofeGFRthereaftercompared withplacebo,aneffectpresumablyexplainedbypreservationof glomerularintegrityduetoareductioninintraglomerularpressure

[21,111].Inaddition,SGLT2ismayimproverenaloxygenationand

cellular energy metabolism [21]while also reducing intrarenal inflammation [116],thereby slowing theprogression of kidney functiondecline.

Recent results for biomarkers have suggested that the albuminuria-lowering effect of SGLT2is may be the result of decreased intraglomerular pressure or less tubular cell injury possiblyrelatedtodecreasedinflammation[117]andperhapsalso linked to reduced activity of the intrarenal renin–angiotensin system[118].SGLT2isalsolowerserumuricacidlevels[119,120], anindependentriskfactorfordiminishedeGFRsinpatientswith

T2DM[121,122].

Because of their specific mechanism of action targeting the kidney,SGLT2islosepartoftheirglucose-loweringactivitywhen eGFR fallsto<45–60mL/min/1.73m2,which meansthattheir

useisnolongerindicatedandshouldbeinterruptediflevelsare belowthisthreshold[123,124].Nevertheless,the blood-pressure-loweringeffectsofSGLT2isappeartobemaintained[125,126],and reductions in both major CV events and mortality have been reported in subgroup analyses of T2DM patients with eGFRs<60mL/min/1.73m2inCVoutcometrials[127,128].

How-ever, even though SGLT2is consistently reduce systolic blood pressure[129],thisspecificeffectapparentlyplaysaminorrolein theimprovementofeitherCV[130]orrenal[131]outcomes.

In patients with T2DM at high CV risk recruited for the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 DiabetesMellitus Patients–Removing Excess Glucose (EMPA-REGOUTCOME)[120],empagliflozinwasassociatedwithslower progressionofkidneydisease,asreflectedbyreducedalbuminuria andasmallerdeclineineGFR,andlowerratesofclinicallyrelevant renalAEs,includingprogressiontoESRD,comparedwithplacebo whenaddedtostandardcare[132](Table4).Also,adetailed post-hocanalysissupportsbothshort-termandlong-termbenefitsof empagliflozin on UACR, irrespective of albuminuria status at baseline[133].Atweek12,theplacebo-adjustedgeometricmean ratioofUACRchangesfrombaselinewithempagliflozinwere 7% (P=0.013), 25%(P<0.0001)and 32%(P<0.0001)inpatients withnormoalbuminuria,microalbuminuriaand macroalbuminu-ria,respectively,andtheseUACRreductionsweremaintainedat 164weeks.Indeed,patientstreatedwithempagliflozinweremore likelytoexperiencesustainedimprovementsfrom microalbumi-nuria to normoalbuminuria (HR: 1.43, 95% CI: 1.22–1.67; P<0.0001)andfrommacroalbuminuriatomicroalbuminuriaor normoalbuminuria(HR:1.82,1.40to2.37;P<0.0001),andless likely toexperience sustaineddeteriorationfrom normoalbumi-nuriatomicroalbuminuriaormacroalbuminuria(HR:0.84,0.74to 0.95;P=0.0077)[133].Ofnote,reductionsinmajorCVeventsand mortalitywerealsoconsistentacrossbaselinecategoriesofeGFR

and UACR [127]. In patients with prevalent DKD at baseline

(2250 of the whole cohort of 7020 patients), empagliflozin compared withplacebo reduced the risks of CV death by 29% (HR:0.71,95%CI:0.5–0.98),all-causemortalityby24%(HR:0.76, 95%CI:0.59–0.99)andhospitalizationforheartfailureby39%(HR: 0.61, 95% CI: 0.42–0.87). The effects of empagliflozin on these outcomeswereconsistentacrossallbaselinecategoriesofeGFR

andUACR[127].

In the Canagliflozin Cardiovascular Assessment Study (CAN-VAS) Program, prespecified outcomes included a composite of sustainedandadjudicateddoublingofserumcreatinine,ESRDand death from renal causes, the individual components of this

(8)

composite outcome, annualreductions in eGFR and changesin

UACR [134,135]. The composite renal outcome presented less

frequentlyinthecanagliflozingroupcomparedwiththeplacebo group, with consistent findings across the prespecified patient subgroups.AnnualeGFRdeclineswereslower andmeanUACRs werelowerin participantstreated withcanagliflozinthanwith placebo.Afterarathershortmedianfollow-upof2.4years,onlya numerical trend for less progression to ESRD requiring renal replacementtherapywasnoted[135](TableIV).Renaloutcomes (HR:0.59,95%CI:0.44–0.79vs.HR:0.63,95%CI:0.39–1.02;P= 0.73forinteraction)weresimilarlyreducedinthesecondaryand primaryCVpreventioncohorts,respectively[136].Inaddition,the relativeeffectsonmostoftheCVandrenaloutcomesweresimilar acrossalleGFRsubgroups[128].

Canagliflozincomparedwithglimepirideslowedtheprogression ofrenaldiseaseover2yearsinpatientswithT2DMtogetherwith reductionsinalbuminuriaanddeclinesineGFRindependentlyofits glycaemiceffects[137].Theserenoprotectiveeffectsofcanagliflozin were confirmed in a 1-year open-label study of JapaneseT2DM patientswithCKD,whichalsoshowedareductionin tubulointers-titialmarkers[138].Thelarge-scaleongoingprospective Canagli-flozin and Renal Endpoints in Diabetes with Established NephropathyClinicalEvaluation(CREDENCE)comparestheefficacy and safety of canagliflozin vs. placebo in preventing clinically importantkidneyandCVoutcomes(primaryoutcomeisacomposite ofESRD, doublingof serumcreatinineand renalorCVdeath) in patientswithT2DMandestablishedCKD[139].Asimilarstudyis alsoongoingwithdapagliflozin[AStudytoEvaluatetheEffectof Dapagliflozin onRenalOutcomesandCardiovascularMortality in PatientswithChronicKidneyDisease(Dapa-CKD);ClinicalTrials.gov identifier: NCT03036150]to confirm andextend the preliminary positive results for albuminuria over 2 years with dapagliflozin therapyinT2DMpatientswithrenalimpairment[140].

Nevertheless,eventhoughSGLT2ishaveelicitedconsiderable enthusiasm,theymaybeassociatedwithAEs,someofwhichare potentiallysevere,therebyrequiringthatindividualbenefit–risk ratiosbetakenintoconsideration[141,142].Indeed,despitethe encouraging renal outcomesdescribed above, scattered reports havesuggestedthepossibleriskofacutekidneyinjurythatmay, onoccasions,requirerenalreplacementtherapy[143].Therefore, severalmechanismshavebeenproposedtoexplainthisriskwith SGLT2is,including:effectivevolumedepletion(withdehydration ordiuretictherapy);excessivedeclineintransglomerularpressure (with concomitant RAAS blockade); and induction of renal medullaryhypoxicinjury(triggeredby,forexample,non-steroidal anti-inflammatorydrugs)[123,142].Giventhehigherproportion ofreportsofacuterenalfailurewithSGLT2isintheUSFoodand Drug Administration Adverse Event Reporting System (FAERS) database[144],theFDAnowrequiresthatacutekidneyinjurybe listedasapotentialside-effectofSGLT2iswhilecautioningcareful prescription of these drugs with the other above-mentioned medications.

Intheevent,itisimperativetoascertainwhetherthereported acuterenal failurerepresents truestructuralkidneyinjury ora functionaldeclineineGFR[145].Theavailabledatasupportthe latter,especiallyincircumstancesexposingpatientsto dehydra-tion.IntheEMPA-REGOUTCOME,thenumberofpatients(mostly being treated with RAAS blockers) who developed acute renal failureappearedtobelessinthegrouptreatedwiththeSGLT2i thanwithplacebo[132].Infact,whenSGLT2isareproperlyusedin clinicalpractice,acutekidneyinjuryisarareevent.Inaddition,a network and cumulative meta-analysis of RCTs has provided diverse results for three SGLT2is regarding risk of renal AEs, therebyindicatingthatmoredatafromlargelong-termRCTsand well-conducted observational studies in real-life settings are clearlywarrantedbeforeanyconclusionscanbedrawn[146].

Table 4 Renal outcomes reported with sodium–glucose cotransporter type-2 inhibitors (SGLT2is) in patients with type 2 diabetes and high cardiovascular ri sk. Studies SGLT 2i daily dose vs. compar ator Active vs. placebo (n )

Median follow-up (years) Baseline mean eGFR Annual GFR decline (slope difference) Baseline UACR (g/g) Change in UACR (%)

New-onset persistent macro Doubling of serum creatinine Progression to ESRD requiring RRT Composite renal outcome Death from any cause a EMPA-REG OUTCOME [120,132,133] Empagliflo zin 10 or 25 mg vs. placebo 4687 vs. 2333 3.1 74.2 1.48 (NA), P < 0.001 Mic ro: 29%, macro: 11% Range: 15% to 49% b 0.62 (0.54–0.72), P< 0.001 0.56 (0.39–0.79), P< 0.001 0.45 (0.21–0.97), P = 0.04 0.61 c(0.53–0.70), P < 0.001 0.68 (0.57–0.82), P < 0 .001 CANVAS [134,135] Canagli flozin 100–300 mg vs. placebo 5795 vs. 4347 2.4 76.5 1.2 (1.0–1.4), NA Med ian: 11.3 (IQR: 6.5–33.0), micro or macro: 27% 18% ( 16 to 20), NA 0.73 (0.67–0.79) 0.50 (0.30 –0.84), NA 0.77 (0.30–1.97), NS 0.60 d(0.47–0.77), P < 0.001 0.87 (0.74–1.01), NS Results are expressed as haz ard ratios (95% confidence interval). eGFR: estimated glomerular filtration rate; UACR: urina ry albumin/creatinine ratio; ESRD: end -stage renal disease; NA: not available; IQR: interq uartile range; NS: not significant. a Includes rena l death, as those results are lacking in publications (presumably very few events). b Normoalbuminuria at baseline: 15%, 95% CI: 22 to 7, P = 0.0004; microalbuminuria (micro) at baseline: 42%, 95% CI: 49 to 34, P < 0.0001, macroalbuminuria (macro) at baseline: 49%, 95% CI: 60 to 36, P < 0.0001. c Progression to macro: doubling of serum creatinine , initiation of renal replacement therapy (RRT), death due to renal disease; another post-hoc out come was doubling of serum creatinine, initiation of RRT, death due to renal disease (HR: 0.54, 95% CI: 0.40–0.75, P < 0.001). d Sustained 40% reduction in eGFR, need for RRT, death due to renal causes; another composite endpoint was sustaine d doubling of serum creatinine, ESRD , death due to renal causes (HR: 0.53, 95% CI: 0.33–0.84).

(9)

Insulin

Surprisingly, few data have been published to support the nephroprotective effects of insulin in experimental preclinical studies,whichcontrastswiththeunexpectedinterestdevotedto C-peptidealmostadecadeago[147,148].Yet,severalkeyelements oftheinsulin-signallingcascadecontributetopodocytefunction and survival[149],and theinsulin receptor iscrucial for renal function in the glomeruli and tubules. When signalling is diminished in, for example, insulin-resistant states, it may be responsible for a number of important renal complications, includingglomerulardiseaseandalbuminuria,leadingto hyper-tension[150].Alsointriguingisthefactthattheeffectsofinsulin therapy on renal outcomes have been poorly investigated in patients withT2DM,and that thedatafromavailableRCTsare scarceanddifficulttointerpretforseveralreasons.IntheUKPDS, newlydiagnosedT2DMpatientswereatlowrenalrisk,andthe intensive group included sulphonylurea-treated and insulin-treatedpatients[151,152].IntheActiontoControlCardiovascular RiskinDiabetes(ACCORD)study,VeteransAffairsDiabetesTrial (VADT)andADVANCE,intensificationofbloodglucosecontrolwas based on more insulin therapy, but not exclusively, making it difficulttodifferentiatetheeffectsofreductionofhyperglycaemia fromthoseofinsulinperse[153].Finally,theOutcomeReduction withInitialGlargineIntervention(ORIGIN)trialincludedpatients with dysglycaemia, and renal outcomes were not analyzed separatelyfromeyedisease[154].

Few studies have provided data on renal endpoints when comparing insulintherapy with other glucose-lowering medica-tions,andnonehavesupportedbetternephroprotectionbyinsulin. In a retrospective cohort study usingdatafrom the UK General PracticeResearchDatabase,exogenousinsulintherapycompared withmetforminmonotherapyasthereferencewasassociatedwith anincreasedriskofdiabetes-relatedcomplications,includingrenal complications. However, differences in baseline characteristics between treatment groups (more advanced and complicated disease in insulin-treated patients) should be considered when interpretingtheseresults[155].Ofthepatientswhointensifiedtheir metformin monotherapy in the US Veterans Affairs national database,the additionofinsulincomparedwitha sulphonylurea wasnotassociatedwithalowerrateofadversekidneyoutcomes (persistenteGFRdecline35%frombaseline,adiagnosisofESRD). Incontrast,itwasassociatedwithahigherrateofthecomposite outcome,including death,whichwas not modified accordingto baselineeGFR[156].InthepreviouslymentionedAWARD-7trial, although insulinglargine was associated with a slightlygreater decline in eGFR compared with once-weekly dulaglutide at 52weeks,bothtreatmentsprovided similarglycaemiccontrolin patientswithT2DMandmoderate-to-severeDKD[98].InaUSstudy within a real-lifesetting, initiationof insulinglarginecompared withdulaglutidetherapywasassociatedwithasignificantlygreater decreaseineGFRafter1yeartogetherwithasmallerreductionin HbA1c [99]. Finally, in a study comparing basal insulin with pioglitazone asanadd-on therapyfor T2DM patients forwhom sulphonylureaandmetforminregimenshadfailed,bothtreatments improved glycaemic control, whereas only pioglitazone proved advantageousintermsofpreservingrenalfunction[58].

Combinedtherapies

DKDinT2DMisacomplexdisorderthatrequiresmultifactorial interventionstominimizetherisk,andRAASinhibitortherapyis themainstayofDKDprevention[6].InT2DMpatientsathighCV riskrecruitedforfourlargeprospectivetrialsshowingsignificant reductions in renal outcomes (LEADER, SUSTAIN-6, EMPA-REG

OUTCOME,CANVAS), almostthree-quartersofall patientswere treated with RAAS blockers. The potential complementary mechanism between RAAS inhibitors and SGLT2is has been emphasized,asdiscussedinarecentreview[157].

Whenfocusingonglucose-loweringtherapies,alargemajority ofpatients includedintheabove-mentionedtrialsweretreated withmetforminatbaselineandthroughoutthefollow-upperiod. Thus,liraglutide,semaglutide,empagliflozinorcanagliflozinwere added tothestandard carewhich, in mostpatients, comprised metformin; the latter, however, was prescribed at similar percentagesinboththetesteddrugandplacebogroups.

ApromisingcombinationistheassociationofanSGLT2iwitha GLP-1RA:theyappeartobesynergisticand,atleastaccordingto theavailableshort-termdataforeachpharmacologicalapproach, thiscombinationmayyetbethemostusefulwaytoprotectthe kidney(andheartaswell)inT2DMpatients[158].However,the strategy still requires further validation inclinical trialswitha focusonCVandrenaloutcomesbeforeitcanberecommendedfor moreextensiveuseinclinicalpractice,especiallyassuchadrug combinationismoreexpensive.Moreover,whethertheadditionof pioglitazonemightalsoresultinbetterrenaloutcomes,ashasbeen postulatedforCVoutcomes[159],remainsanopenquestion. Conclusion

TheoverallnumberofpatientswithDKDishighandisexpected tocontinuetoincreaseinparallelwiththegrowingglobalT2DM pandemic. Yet,based on some landmark clinical trials, DKD is preventablebycontrollingconventionalfactors,including hyper-glycaemia and hypertension, using a combination of lifestyle approachesand multifactorialdrugtherapies.Ofthe pharmaco-logicalapproaches,RAASinhibitorsareconsideredthecornerstone of renal protection, especially in T2DM patients with (micro)-albuminuria.Nevertheless,theremainingriskofDKDprogression isstillhigh.

Improvingglucosecontrolremainsessentialtoeitherprevent orslowtheprogressionofDKD.Yet,despitethenumerouspositive resultsinpreclinicalstudies,mostglucose-loweringagentshave only shown favourable effects on surrogate endpoints, such as albuminuria, in clinical studies, with almost no evidence of positiveeffectsonhardrenaloutcomes(Table1).Incontrast, GLP-1RAsandSGLT2ishaveproventheirabilitytoreducecomposite renaloutcomesincludingalbuminuria,eGFRdecline,doublingof creatinine and progression to ESRD or kidney-related death. However, only SGLT2is have proved capable of reducing hard clinicalendpoints,suchasdoublingofcreatinineandprogression toESRD,whilethepositiveeffectsofGLP-1RAsoncompositerenal outcomes were mainly driven by the reduction of new-onset macroalbuminuria.Thisiswhytheupdated2018consensusreport by the American Diabetes Association (ADA) and European Association fortheStudyofDiabetes(EASD)hasrecommended that,forpatientswithT2DMandCKDwithorwithoutCVdisease, thefirsttherapeuticoptionconsideredshouldbeanSGLT2ishown toreduceDKDprogressionor,ifcontraindicated(eGFRislessthan adequate) or not preferred, a GLP-1RA to exert CV protection

[160].Ofnote,asthesenephroprotectiveeffectsareindependentof

glucose-lowering,theunderlyingmechanismsremainasubjectof debate.Besidestheirpositiveeffectsonsystemicfactorssuchas blood glucose,body weightand blood pressure, GLP-1RAs and SGLT2isexerttheirnephroprotectionmainlyviadirectintrarenal effectsrelatedtohaemodynamicchangesortheir anti-inflamma-tory/antioxidative/antifibroticactivities.

Funding

Nosourcesoffundingwereusedtoassistinthepreparationofthismanuscript.No conflictsofinterestaredirectlyrelevanttothecontentofthismanuscript.

(10)

Disclosureofinterest

A.J. Scheen has received lecture/advisor fees from AstraZeneca, Boehringer Ingelheim,EliLilly,Janssen,MerckSharpandDohme, Novartis,NovoNordisk, SanofiandServier.HehasworkedasaclinicalinvestigatorintheTECOS,LEADER, EMPA-REGOUTCOME,HARMONY-OUTCOMESandCANVAS-Rtrials.

References

[1]TuttleKR,BakrisGL,BilousRW,ChiangJL,deBoerIH,Goldstein-FuchsJ,etal. Diabetickidneydisease:areportfromanADAConsensusConference.AmJ KidneyDis2014;64:510–33.

[2]BurkeJ,KovacsB,BortonL,SanderS.Healthcareutilizationandcostsintype 2diabetesmellitusandtheirassociationwithrenalimpairment.Postgrad Med2012;124:77–91.

[3]Assogba GF, CouchoudC, RoudierC, Pornet C,Fosse S,RomonI, et al. Prevalence,screeningandtreatmentofchronickidneydiseaseinpeople with type 2diabetes in France:theENTRED surveys(2001 and2007). DiabetesMetab2012;38:558–66.

[4]KoyeDN,MaglianoDJ,NelsonRG,PavkovME.Theglobalepidemiologyof diabetesandkidneydisease.AdvChronicKidneyDis2018;25:121–32.

[5]AlicicRZ,RooneyMT,TuttleKR.Diabetickidneydisease:challenges,progress, andpossibilities.ClinJAmSocNephrol2017;12:2032–45.

[6]AmericanDiabetesAssociation.MicrovascularComplicationsandFootCare: StandardsofMedicalCareinDiabetes-2018.DiabetesCare2018;41:S105–18 [10].

[7]MacIsaacRJ,JerumsG,EkinciEI.Glycemiccontrolasprimarypreventionfor diabetickidneydisease.AdvChronicKidneyDis2018;25:141–8.

[8]RuospoM,SaglimbeneVM,PalmerSC,DeCosmoS,PacilliA,LamacchiaO, etal.Glucosetargetsforpreventingdiabetickidneydiseaseandits progres-sion.CochraneDatabaseSystRev2017;6:CD010137.

[9]ScheenAJ.Pharmacokineticconsiderationsforthetreatmentofdiabetesin patients with chronic kidneydisease. Expert Opin DrugMetab Toxicol 2013;9:529–50.

[10]Roussel R, Lorraine J, Rodriguez A,Salaun-Martin C. Overviewof data concerningthesafeuseofantihyperglycemicmedicationsintype2diabetes mellitusandchronickidneydisease.AdvTher2015;32:1029–64.

[11]Sanchez-RangelE,InzucchiSE.Metformin:clinicaluseintype2diabetes. Diabetologia2017;60:1586–93.

[12]CocaSG,Ismail-BeigiF,HaqN,KrumholzHM,ParikhCR.Roleofintensive glucose controlin developmentof renal endpointsin type2 diabetes mellitus:systematicreviewandmeta-analysisintensiveglucosecontrolin type2diabetes.ArchInternMed2012;172:761–9.

[13]DaviesM,ChatterjeeS,KhuntiK.Thetreatmentoftype2diabetesinthe presenceofrenalimpairment:whatweshouldknowaboutnewertherapies. ClinPharmacol2016;8:61–81.

[14]TongL,AdlerS.Glycemiccontroloftype2diabetesmellitusacrossstagesof renalimpairment:informationforprimarycareproviders.PostgradMed 2018;130:381–93.

[15]NeumillerJJ,AlicicRZ,TuttleKR.Therapeuticconsiderationsfor antihypergly-cemicagentsindiabetickidneydisease.JAmSocNephrol2017;28:2263–74.

[16]GoldenbergRM,BerallM,ChanCTM,CherneyDZI,LovshinJA,McFarlanePA, etal.Managingthecourseofdiabetickidneydisease:fromtheoldtothenew. CanJDiabetes2018;42:325–34.

[17]ThomasMC.ThepotentialandpitfallsofGLP-1receptoragonistsforrenal protectionintype2diabetes.DiabetesMetab2017;43(Suppl1).2S20–2S27.

[18]FiorettoP,ZambonA,RossatoM,BusettoL,VettorR.SGLT2inhibitorsandthe diabetickidney.DiabetesCare2016;39(Suppl2):S165–71.

[19]NespouxJ,VallonV.SGLT2inhibitionandkidneyprotection.ClinSci(Lond) 2018;132:1329–39.

[20]AlicicRZ,JohnsonEJ,TuttleKR.SGLT2Inhibitionforthepreventionand treatment of diabetic kidney disease: a review. Am J Kidney Dis 2018;72:267–77.

[21]HeerspinkHJL,KosiborodM,InzucchiSE,CherneyDZI.Renoprotectiveeffects ofsodium-glucosecotransporter-2inhibitors.KidneyInt2018;94:26–39.

[22]RajaniR,Pastor-SolerNM,HallowsKR.RoleofAMP-activatedproteinkinase inkidneytubulartransport,metabolism,anddisease.CurrOpinNephrol Hypertens2017;26:375–83.

[23]AllouchS,MunusamyS.AMP-activatedproteinkinaseasadrugtargetin chronickidneydisease.CurrDrugTargets2018;19:709–20.

[24]RavindranS,KuruvillaV,WilburK,MunusamyS.Nephroprotectiveeffectsof metforminindiabeticnephropathy.JCellPhysiol2017;232:731–42.

[25]KimH,MoonSY,KimJS,BaekCH,KimM,MinJY,etal.Activationof AMP-activatedproteinkinaseinhibitsERstressandrenalfibrosis.AmJPhysiol RenalPhysiol2015;308:F226–36.

[26]LangerS,KreutzR,EisenreichA.Metforminmodulatesapoptosisandcell signaling ofhumanpodocytesunderhigh glucoseconditions. JNephrol 2016;29:765–73.

[27]FengY,WangS,ZhangY,XiaoH.Metforminattenuatesrenalfibrosisinboth AMPKalpha2-dependent and independent manners. Clin Exp Pharmacol Physiol2017;44:648–55.

[28]LeeM,KaterelosM,GleichK,GalicS,KempBE,MountPF,etal. Phosphor-ylationofAcetyl-CoAcarboxylasebyAMPKreducesrenalfibrosisandis essential for the anti-fibrotic effect of metformin. J Am Soc Nephrol 2018;29:2326–36[Epub].

[29]EisenreichA,LeppertU.Updateontheprotectiverenaleffectsofmetformin indiabeticnephropathy.CurrMedChem2017;24:3397–412.

[30]RogackaD,AudzeyenkaI,RychlowskiM,RachubikP,SzrejderM,AngielskiS, etal.Metforminovercomeshighglucose-inducedinsulinresistanceof podo-cytesby pleiotropiceffectsonSIRT1and AMPK.Biochim BiophysActa 2018;1864:115–25.

[31]NevenE,VervaetB,BrandK,Gottwald-HostalekU,OpdebeeckB,DeMareA, etal.Metforminpreventsthedevelopmentofseverechronickidneydisease anditsassociatedmineralandbonedisorder.KidneyInt2018;94:102–13.

[32]TainYL,HsuCN.AMP-activatedproteinkinaseasareprogrammingstrategy forhypertensionandkidneydiseaseofdevelopmentalorigin.IntJMolSci 2018;19.http://dx.doi.org/10.3390/ijms19061744[pii:E1744].

[33]UKPDS.Effectofintensiveblood-glucosecontrolwithmetforminon compli-cationsinoverweightpatientswithtype2diabetes(UKPDS34).UK Prospec-tiveDiabetesStudy(UKPDS)Group.Lancet1998;352:854–65.

[34]LachinJM,VibertiG,ZinmanB,HaffnerSM,AftringRP,PaulG,etal.Renal functionintype2diabeteswithrosiglitazone,metformin,andglyburide monotherapy.ClinJAmSocNephrol2011;6:1032–40.

[35]CrowleyMJ,DiamantidisCJ,McDuffieJR,CameronCB,StaniferJW,MockCK, etal.Clinicaloutcomesofmetforminuseinpopulationswithchronickidney disease,congestive heartfailure, or chronic liverdisease: asystematic review.AnnInternMed2017;166:191–200.

[36]InzucchiSE,LipskaKJ,MayoH,BaileyCJ,McGuireDK.Metformininpatients with type 2 diabetes and kidney disease: a systematic review. JAMA 2014;312:2668–75.

[37]DeBroeME,KajbafF,LalauJD.Renoprotectiveeffectsofmetformin.Nephron 2018;138:261–74.

[38]DiwanV, GobeG, Brown L. Glibenclamide improves kidney and heart structureandfunctionintheadenine-dietmodelofchronickidneydisease. PharmacolRes2014;79:104–10.

[39]ZhangG,LinX,ZhangS,XiuH,PanC,CuiW.Aprotectiveroleofglibenclamide ininflammation-associatedinjury.MediatorsInflamm2017;2017:3578702.

[40]PerkovicV,HeerspinkHL,ChalmersJ,WoodwardM,JunM,LiQ,etal. Intensiveglucosecontrolimproveskidneyoutcomesinpatientswithtype 2diabetes.KidneyInt2013;83:517–23.

[41]WongMG,PerkovicV,ChalmersJ,WoodwardM,LiQ,CooperME,etal. Long-termbenefitsofintensiveglucosecontrolforpreventingend-stagekidney disease:ADVANCE-ON.DiabetesCare2016;39:694–700.

[42]MasicaAL,EwenE,DaoudYA,ChengD,FranceschiniN,KudyakovRE,etal. Comparativeeffectivenessresearchusingelectronichealthrecords:impacts oforalantidiabeticdrugsonthedevelopmentofchronickidneydisease. PharmacoepidemiolDrugSaf2013;22:413–22.

[43]HungAM,RoumieCL,GreevyRA,LiuX,GrijalvaCG,MurffHJ,etal. Compar-ativeeffectivenessofincidentoralantidiabeticdrugsonkidneyfunction. KidneyInt2012;81:698–706.

[44]HungAM,RoumieCL,GreevyRA,LiuX,GrijalvaCG,MurffHJ,etal.Kidney functiondeclineinmetforminversussulfonylureainitiators:assessmentof time-dependentcontributionofweight,bloodpressure,andglycemic con-trol.PharmacoepidemiolDrugSaf2013;22:623–31.

[45]MarcumZA,ForsbergCW,MooreKP,deBoerIH,SmithNL,BoykoEJ,etal. Mortalityassociatedwithmetforminversussulfonylureainitiation:acohort studyofVeteranswithdiabetesandchronickidneydisease.JGenInternMed 2018;33:155–65.

[46]GoldshteinI,KarasikA,Melzer-CohenC,EngelSS,YuS,SharonO,etal. Urinaryalbuminexcretionwithsitagliptincomparedtosulfonylureaasadd ontometforminintype2diabetespatientswithalbuminuria:areal-world evidencestudy.JDiabetesComplications2016;30:1354–9.

[47]LeeYH,LeeCJ,LeeHS,ChoeEY,LeeBW,AhnCW,etal.Comparingkidney outcomesintype2diabetestreatedwithdifferentsulphonylureasinreal-life clinicalpractice.DiabetesMetab2015;41:208–15.

[48]SatoH,ShiinaN.Effectofanalpha-glucosidaseinhibitoronglomerular basementmembraneanionicsitesinstreptozotocininducedmildlydiabetic rats.DiabetesResClinPract1997;37:91–9.

[49]KimDM,AhnCW,ParkJS,ChaBS,LimSK,KimKR,etal.Animplicationof hypertriglyceridemiaintheprogressionofdiabeticnephropathyin metabol-icallyobese,normalweightpatientswithtype2diabetesmellitusinKorea. DiabetesResClinPract2004;66(1):169–72.

[50]ChenYH,TarngDC,ChenHS.Renaloutcomesofpioglitazonecomparedwith acarboseindiabeticpatients:arandomized controlledstudy.PLOSOne 2016;11:e0165750.

[51]HolmanRR,ColemanRL,ChanJCN,ChiassonJL,FengH,GeJ,etal.Effectsof acarboseoncardiovascularanddiabetesoutcomesinpatientswithcoronary heartdiseaseandimpairedglucosetolerance(ACE):arandomised, double-blind,placebo-controlledtrial.LancetDiabetesEndocrinol2017;5:877–86.

[52]ScheenAJ,EsserN,PaquotN.Antidiabeticagents:potential anti-inflamma-toryactivitybeyondglucosecontrol.DiabetesMetab2015;41:183–94.

[53]TeschGH.Diabeticnephropathy–isthisanimmunedisorder?ClinSci(Lond) 2017;131:2183–99.

[54]SarafidisPA,GeorgianosPI,LasaridisAN.PPAR-gammaagonismfor cardio-vascularandrenalprotection.CardiovascTher2011;29:377–84.

[55]SarafidisPA,BakrisGL.Protectionofthekidneybythiazolidinediones:an assessmentfrombenchtobedside.KidneyInt2006;70:1223–33.

[56]SarafidisPA,StafylasPC,GeorgianosPI,SaratzisAN,LasaridisAN.Effectof thiazolidinedionesonalbuminuria andproteinuriaindiabetes: a meta-analysis.AmJKidneyDis2010;55:835–47.

Figure

Table III). However, this result was driven primarily by the new onset of persistent macroalbuminuria, whereas no significant differences were observed for persistent doubling of serum creatinine, ESRD and death due to renal disease (Table 3)

Références

Documents relatifs

ABSTRACT A cross-sectional study in Isfahan city, Islamic Republic of Iran, compared the frequency of coronary artery disease risk factors in known and newly diagnosed

We suggest that renal biopsies should be performed in diabetic patients with a sudden onset of renal failure, proteinuria without retinopathy, or other evidence of

The strength of our study is the standardized evaluation of diabetic patients including a questionnaire of possible osteoporosis risk factors and BMD measurements, which applied

In conclusion, in this work we demonstrated that Wan- nier functions are exponentially localized for insulators that satisfy time-reversal symmetry, and we showed that the vanishing

Data from the Empagli fl ozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients e Removing Excess Glucose (EMPA-REG OUTCOME) trial demonstrated that patients

In this section we shall exploit the properties of b p,2 ν (Ω) to obtain new (and sharp) results for the Bergman spaces A p,2.. ν (T

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Our scaling relation fits a large range of experimental data obtained for completely different nanoemulsion systems and prepared through different techniques. Also, the dimensionless