• Aucun résultat trouvé

Towards Smart Visualization Framework for Climate Simulations

N/A
N/A
Protected

Academic year: 2021

Partager "Towards Smart Visualization Framework for Climate Simulations"

Copied!
33
0
0

Texte intégral

(1)

HAL Id: hal-01290268

https://hal.inria.fr/hal-01290268

Preprint submitted on 17 Mar 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Towards Smart Visualization Framework for Climate Simulations

Lokman Rahmani, Matthieu Dorier, Luc Bougé, Gabriel Antoniu, Robert Sisneros, Tom Peterka

To cite this version:

Lokman Rahmani, Matthieu Dorier, Luc Bougé, Gabriel Antoniu, Robert Sisneros, et al.. Towards Smart Visualization Framework for Climate Simulations. 2016. �hal-01290268�

(2)

Towards Smart Visualization Framework

for Climate Simulations

Lokman Rahmani, Matthieu Dorier, Luc Bougé ENS Rennes, IRISA Gabriel Antoniu INRIA Rennes

Roberto Sisneros University of Illinois at Urbana Champaign

(3)

Outline

1. HPC Climate Simulations & In Situ Visualization

2. Smart In Situ Visualization

3. Experimental Results

4. Conclusion

(4)

Outline

1.

HPC Climate Simulations & In Situ Visualization

2. Smart In Situ Visualization

3. Experimental Results

(5)

CM1 : Atmospheric Phenomena Simulation

● CM1 on Kraken

– Simulated space : 48 x 44 x 200 per process – 9216 cores

– 14.2 GBytes/Iteration (~1.69 MBytes for each compute process)

● CM1 on BlueWaters

– Simulated space : 3840 x 3840 x 400 – 6400 cores

(6)

In Situ Visualization

Off-line

In Situ

In Situ Visualization Workflow

Simulation Rendering - In Situ The visualization tool

(7)

In Situ Visualization

Off-line

In Situ

In Situ Visualization Workflow

Simulation Rendering - In Situ The visualization tool

1 2 3

May block the simulation Skip complete iterations

(8)

In Situ Visualization

Off-line

In Situ

In Situ Visualization Workflow

Simulation Rendering - In Situ The visualization tool

1 2 3

(9)

In Situ Visualization Implementation

Time-Partitioning

Space-Partitioning

Resources

R1

R2

R3

Rn

Iter1 Iter2 Iter2 Iter1

Iter1 Iter2 Iter2 Iter1

Iter1 Iter2 Iter2 Iter1

Iter1 Iter2 Iter2 Iter1 Iter2 Iter3 Iter1 Iter1 Iter1 Iter2 Iter2 Iter3 Calculating data Visualizing data

(10)

In Situ Visualization Implementation

Time-Partitioning

Space-Partitioning

Resources

R1

R2

R3

Rn

Iter1 Iter2 Iter2 Iter1

Iter1 Iter2 Iter2 Iter1

Iter1 Iter2 Iter2 Iter1

Iter1 Iter2 Iter2 Iter1 Iter2 Iter3 Iter1 Iter1 Iter1 Iter2 Iter2 Iter3

Blocks the simulation

To avoid blocking the simulation, we may need to drop complete

dataset's iteration

Calculating data Visualizing data

(11)

Be Smart, Visualize only relevant data

● Avoid blind drop of data

– Keep all iterations

– Reduce the amount of data on each iteration

● On each iteration, visualize only relevant data considering the physical phenomena

being simulated

– Interesting data will be visualized in full resolution – The rest will be visualized in low resolution

(12)

Be Smart, Visualize only relevant data

● Avoid blind drop of data

– Keep all iterations

– Reduce the amount of data on each iteration

● On each iteration, visualize only relevant data considering the physical phenomena

being simulated

– Interesting data will be visualized in full resolution – The rest will be visualized in low resolution

(13)

Be Smart, Visualize only relevant data

● Avoid blind drop of data

– Keep all iterations

– Reduce the amount of data on each iteration

● On each iteration, visualize only relevant data considering the physical phenomena

being simulated

– Interesting data will be visualized in full resolution – The rest will be visualized in low resolution

What is 'relevant' data?

and

(14)

Outline

1. HPC Climate Simulations & In Situ Visualization

2.

Smart In Situ Visualization

3. Experimental Results

4. Conclusion

(15)

What is Relevant in a Dataset?

The solution needs to be:

Generic: application-independent

Automatic: user-transparent

Efficient

Defined semantic : Variation of the data

Filtering

dx dy dz full resolution: low resolution: dx×dy×dz 2×2×2

(16)

How to Automatically Detect Relevant Data?

Metrics used to do filtering should :

Provide different levels of variation measurement

Can be 'normalized'

To detect variation in , a set of values :

Entropy (Information Theory) : of a random variable

Coefficient of Variation (Statistics)

● Independent from the unit of measurement ● Hard to normalize

Gradient (Image Processing)

● Calculate the derivate over each axis ● Is not a complete metric

χ

{

x1 , x2 ,..., xn }

Χ

C

v

= σ

μ

(17)

Integration int Existing ISV Frameworks

Damaris/Viz ISV framework:

– Damaris : I/O framework

– VisIt : Client-Server visualization tool

Rendering (VisIt Client) Simulation

Supercomputer side Network Client side Simulation cores Dedicated cores Visualization (VisIt Client) Forward the data libSim

(18)

Integration int Existing ISV Frameworks

Damaris/Viz ISV framework:

– Damaris : I/O framework

– VisIt : Client-Server visualization tool

Rendering (VisIt Client) Simulation

Supercomputer side Network Client side Simulation cores Dedicated cores Visualization (VisIt Client) Forward the data libSim Filtering

(19)

Outline

1. HPC Climate Simulations & In Situ Visualization

2. Smart In Situ Visualization

3.

Experimental Results

(20)

CM1 on Grid5000

cm1-256-3d-low.mkv full resolution low resolution Smart Vis 720 cores ● CM1 on Reims cluster:

– 30 nodes, 24 cores each – 1Gbits/s Ethernet

(21)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(22)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(23)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(24)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(25)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(26)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(27)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(28)

CM1 on Grid5000

cm1-256-3d-low.mkv

full resolution low resolution Smart Vis

(29)

CM1 on Grid5000

cm1-256-3d-low.mkv full resolution low resolution Smart Vis Rendering (VisIt Server) Simulation

Supercomputer side Network Client side

Si m ul at io n co re s Dedi ca ted core s Visualization (VisIt Client) libSim

(30)

Gaining the Trust of Scientists

● Provide a window to show filtered areas ● Implement a VisIt plug-in with :

– A slider to control the metrics – A list of available metrics

● Provide a metric to calculate the QoV

– Objective metrics (ex MSRE, MSR) : bad metrics – Working with image processing researchers

on a best metric Entropy Coefficient of variationOther Use gradient 0 100% Precision

(31)

Outline

1. HPC Climate Simulations & In Situ Visualization

2. Smart In Situ Visualization

3. Experimental Results

4.

Conclusion

(32)

Conclusion

Defined a semantic based on variation in the data

Propose different metrics to automatically detect

relevant data

Integrate it in existing ISV framework in a complete

transparent way

Provide a gain up to 40% with no considerable

(33)

On going work

Implement a slider to control the metrics as a

plug-in in VisIt

Propose a metric to calculate the quality of

visualization QoV => Hard to use an objective

metric

Validation tests at larger scale on BlueWaters are

Références

Documents relatifs

The atomic scale structure of aluminum in amorphous alumina films processed by direct liquid injection chemical vapor deposition from aluminum tri-isopropoxide (ATI) and

OSGi specification releases some advises to use Ser- viceFactory Interface or Indirection mechanism in service object implementation in order to limit, "but not

1 بيلاسأ لزنملا نم اهبوره و ةاتفلا فارحنإ ىلع اهريثأت و ةيدلاولا ةلماعملا ةقيفش يجاح عامتجلاا ملع مسقب "أ " ةدعاسم ةذاتسأ

The visualization plugin is such an example, which provides a direct connection between the metabolic model, simulation and optimization methods used in OptFlux, and the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The modeled data further showed that the forest photosynthesis rates or the plant au- totrophic respiration rates between WSF and DSF were close to each other but the soil

In this paper, we aim to investigate to what extent the notion of Triple Pattern Fragments can be extended to allow agents to engage with geospatial data. The contributions of

Design Requirements The requirements for our tool, SPARQL Faceter, are based on our earlier experience on tediously implementing server side faceted search over and over again