• Aucun résultat trouvé

Treating $I^{-}$ anion as a zero-electron system : the $LiI^{-}$ and $CsI^{-}$ alkali halides anions.

N/A
N/A
Protected

Academic year: 2021

Partager "Treating $I^{-}$ anion as a zero-electron system : the $LiI^{-}$ and $CsI^{-}$ alkali halides anions."

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-00003049

https://hal.archives-ouvertes.fr/hal-00003049

Submitted on 11 Oct 2004

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Treating I

anion as a zero-electron system : the LiI

and CsI

alkali halides anions.

Vincent Robert, Fernand Spiegelman, Marie-Bernadette Lepetit

To cite this version:

Vincent Robert, Fernand Spiegelman, Marie-Bernadette Lepetit. Treating I

anion as a zero-electron

system : the LiI

and CsI

alkali halides anions.. Chemical Physics, Elsevier, 2003, 287, pp.217.

�hal-00003049�

(2)

Vin ent ROBERT , Fernand SPIEGELMAN, and Marie-Bernadette LEPETIT 1

Laboratoire de Physique Quantique, IRSAMC/UMR5626, Université Paul Sabatier,

118 route de Narbonne, F-31062 Toulouse Cedex 4, FRANCE

2

Permanent address: Institut de Re her hes sur laCatalyse, Laboratoire de Chimie Théorique,

2 av. Albert Einstein, 69626 Villeurbanne Cedex, FRANCE



(Dated: O tober31,2002)

The a ura y of a full ore treatment of I anion based on a zero-ele tron pseudo-potential

(ZEP) in luding ore polarization pseudo-potential (CPP) is examined on referen e ompounds

LiI andCsI onsideredasone-ele tronsystems.Theresultsare omparedtoabinitioCASPT2

al ulations involving 8a tive ele tronson iodine and 3(respe tively 9) onlithium (respe tively

esium). An original s heme is proposed to build a pseudo-potential des ribing the short-range

ele tron-I intera tion beyond the point hargeapproximation. The importan e of the ZEP in

one-ele tron al ulationsisestimatedforthementionedanions.

I. INTRODUCTION

The quantum me hani aldetermination of ele troni

propertiesoflargemole ulesandsophisti atedmaterials

has be ome one of the major hallenges in the ab

ini-tio ommunityoftheoreti al hemists. However,theuse

of quantum hemi al approa hes has longbeen limited

to small systems due, in parti ular, to the number of

ele tronswhi haretobetakeninto a ount. Therefore,

mu heortwasdevotedto redu ethenumberofa tive

ele trons in the al ulations. It is known that

hemi- al bonding as well as most hemi al properties

essen-tially depend on the valen e ele trons. Su h

observa-tionhasleadtheoreti ianseithertofreezetheinner

ele -trons as in their mean-eld des ription or to elaborate

so- alled Model Potentials (MP), ee tive ore

poten-tials(ECP) orpseudo-potentials(PP)theories. These

ideas date ba k to early pioneering works

14

and have

been extensively developed in atomi physi s and

ele -troni ollisions

511

, quantum hemistry

1216

and solid

statephysi s al ulations

1720

. It isnoti eable that the

nowadays derivations of ECP's and PP's allow oneto

rea h quantitative a ura y for many systems in their

groundandex itedstates. ExtensionsofthePP theory

hasmadeavailablethein orporationofs alarrelativisti

ee ts leading to an a urate and still tra table

treat-ment of mole ules in luding heavy atoms

16,21,22

. F

ur-thermore, overpassing the stri tly frozen s heme,

te h-niques havealso been proposed to restore the ore

po-larizationand ore-valen e orrelation in an operatorial

form 23

.

Beyond these standard and now routine

determina-tionand useofvalen e ECP's, dierentstrategieshave

beendevelopedtoentirelyrepla einertatoms andions,

and evenmorere ently fun tionalgroups

24

, by

pseudo-potentials. The former approa h orresponds to

zero-ele tronpseudo-potentials(ZEP), withtwomain elds

of appli ations. Therst one involves thetreatment of

rare-gas atoms in mole ules, lusters and even

embed-ding matri es. Rare-gas omplexes are indeed of

inter-textof ollisionalorspe tros opi studies,manyauthors

haveput mu h eort to derivemodel potentials (MP)

or pseudo-potentials for rare-gas atoms in alkali

rare-gas mole ules. The early studies suggested empiri al

or l-independent MP's

5,8,10

. More re ent versions

in- ludethe l-dependen y ofthe PP's and were extra ted

by tting ele tron rare-gaselasti dierential ross

se -tions 9,27

. Re ent works have demonstrated the power

of these PP treatments sin e quasi-spe tros opi

a u-ra yhas beenrea hed onalkali rare-gasand rare-earth

rare-gasdiatomi s

25,26

. These ond lassofappli ations

foratomi ZEP involveshalogennegativeions

(isoele -troni torare-gasatoms),metinessentiallyioni

materi-als.Thesesystemsin lude ondensedmatter ompounds

aswell asioni lusters for whi h lo al spe tros opy is

widely investigated

29

. The des ription of inert ions in

periodi systems hasattra tedsometheoreti al interest

in the ab initio ommunity. Indeed, ab initio

spe tro-s opi te hniques are limited to nite systems.

There-fore,embedded fragmentmodels must be onsidered in

order to simultaneously restri t the quantum hemi al

al ulationtoasmallnumberofatomsandproperly

de-s ribethe fragmentspe tros opy in its rystalline

envi-ronment. Few groupshave tried to address the

impor-tantissueofsurroundingee tsmodeling

28

. Spe i PP

te hniques havebeendevelopedto a ountforthe

inu-en e of the rest of the rystal on the fragment under

onsideration 29

. One main a hievement is the so- alled

AbInitioModelPotential(AIMP)methodsuggestedby

SeijoandBarandiáraninwhi hmaterialspe i PP are

derivedfrom periodi Hartree-Fo k al ulations

30

. This

s hemeisparti ularlyinterestingsin eitallowsthe

treat-mentofbothanionsand ationsonthesamefootingwith

equaleort. However,themaindrawba kisthattheuse

ofthePP is onstrainedto thestru tural onditionsin

whi h it has been extra ted. Hen e, appli ations in a

dynami al ontext or in situations for whi h the

geom-etryis apriori unknown, seemto belimited. Similarly,

su h approa h is not adapted to the study of surfa es,

nor lusters in whi h the lo al geometry may strongly

dier from the bulk situation. In the investigation of

(3)

lus-ters withex essele trons 31 (namelyM n X p , Malkali,X

halogen),theX ionswereusually onsideredassimple

point harges

32,33

. Su h approximationsmightbe

ques-tionableforheavyhalogenatoms. Indeed,onemaythink

thatanextrapseudo-potentialisrequiredtoa ountfor

theele tron-X short-rangeadditionalrepulsion. Ab

ini-tio al ulationsusingtheperturbedionmodel with

or-relations ontributions have been re ently presented on

similarsystems

34

. However,this typeof approa hhasa

veryhigh omputational ost.

The s ope of the present work is to investigate the

reliability of a zero-ele tron treatment of the I ion.

As ben hmark al ulations, we onsider the smallest

mole ules whi h an be des ribed as one-ele tron

sys-tems for whi h ab initio referen e al ulations anstill

bea hieved, namelythe diatomi alkali halogenanions.

Wehave hosenthe LiI andCsI diatomi s,as

exam-plesoflight-heavyandheavy-heavy ompounds. Wewill

hereafterexaminethereliabilityofone-ele tron

al ula-tions a hieved within both the point- harge, and point

harge+extra short-range pseudo-potential

approxima-tions. For the latter, a zero-ele tron pseudo-potential

(ZEP)extra tions hemeissuggestedfortheI ion.

While system-independent zero-ele tron ations

pseudo-potentials(ZEP) aneasilybedeterminedusing

similar methods as those derived for standard ECP's,

the situation is mu h less favorablefor anions. Indeed,

the referen e system in luding one extra ele tron does

not usually exist. One ould think of using dierential

ele tron-anion rossse tionsfor this purpose. However,

thosearemostofthetimenotavailable assu h,neither

experimentally nor theoreti ally, in ontrast with the

situation for rare-gas atoms. In the s ope of

theoret-i ally understanding the hemistry of silver-bromide

surfa es 35

, Flad et al. derived a pseudo-potential for

the Br anion. In order to stabilize the Br

2

spe ies,

theyembeddedtheanionin agaussian-shapedauxiliary

potential.

Followingasimilarinspiration,weproposetostabilize

oftheextraele tronviaapositively hargedsurrounding.

InadditiontotherepulsivePP, orepolarizationee ts

will be in luded using the s heme developed by Müller

et al

23

. Se tion II isdevotedto the PP extra tion

pro- edure andinternal he ksof itstransferability. Se tion

IIIdetails thetest al ulationsonalkali-iodinediatomi

neutralsandanions. Thepotentialenergy urvesof

neu-tralsareindeedrequiredas ore- ore ontributionsinthe

one-ele trontreatmentofanions.

II. METHOD

The I zero-ele tron pseudo-potential will be

on-stru teda ordingtothel-dependentsemi-lo al

expres-sionofBarthelatandDurand

12 ^ W = 1 r + X W l ^ P l (1) with W l = X i C li e lir 2 r nli (2) and ^ P l = m=l X m= l jlm><lmj (3) ^ P l

istheproje torontheusualspheri alharmoni sjlmi.

Itshould beremindedthat inthepresentstudy,the

lo- al part is repulsive. The PP operator is expe ted to

mimi theintera tionofextraele tronswiththeI ion.

Therefore,a referen esystemin luding at leastone

ex-tra ele tron has to be onsidered. Quantum hemi al

standardpro eduresforPP extra tionsarebasedonthe

existen eofatomi boundstatesofthereferen esystem,

from whi h orbital energies, pseudo-orbitals and nally

pseudo-potentials anbedetermined. Here,themain

is-suestemsfromtheunstable hara terofI

2

spe ies. We

thereforeimposed an arti ial onstraint onthe system

in order to stabilize the extra ele tron. This goal was

a hievedbyembeddingtheI

2

anionwithinapositively

harged ageofsodium ations. The hoi eofthe ageis

obviouslypartlyarbitrary. However,several riteriahave

guidedour hoi e. First,thewavefun tion oftheextra

ele tronmustkeepanon-vanishingdensity losetotheI

ore. Se ond,thesymmetry ofthe agehas beentaken

o tahedral so that it preservesthe degenera y of the p

orbitals, whi h orrespond to thehighest l omponents

of thePP onsidered in thepresent work. One should

note that the dorbitals of iodine split in su h an

o ta-hedralenvironment. A age of highersymmetry should

beusedtoevaluatethepseudo-potentialsd omponents.

The iodine-sodium distan e R

I Na

was set to 6:0a

0 as

ompared to the equilibrium distan e 5:2a

0

in the NaI

diatomi s 36

. Aslongastheinformation fromthe

wave-fun tion is transferable, this parti ular distan e should

notbea riti alparameter. This importantissueis

dis- ussedlaterin thetext. Thus, ourpro edure onsistsin

onstru tingaPP fromanHartree-Fo k al ulationfor

anextraele tronin theeld ofI (Na

+ )

6

. Usualvalen e

relativisti PP's were used to des ribe both the iodine

anion 37

(8 a tiveele trons) andsodium ations

38

(1

a -tiveele tron per sodium)in orderto avoid the ollapse

oftheextraele trononthesurroundingions.

Thereferen e al ulationof thissystem wasa hieved

asfollows. First,weperformedanHartree-Fo k

al ula-tion on I . The resulting orbitals were left frozen, I

being the referen e ore system. This pro edure

pre-ventsthe oreele tronsfrom beingpolarizedor

delo al-izedwith thein lusion ofthe age inthefollowingstep.

Then, the al ulation of the full I

2 (Na + ) 6 systemwas

performedandtheresultingorbitalsandorbitalenergies

weretakenasreferen es. Third,forea hl-manifold,the

standard methodology was used : i) determination of

the nodeless, normalized and shape- onsistent

pseudo-orbitals, ii) inversion of the one-ele tron S hrödinger

(4)

Sin ethepotentialgeneratedbythesixNa +

ationsdoes

not havea spheri alsymmetry, wewere lead to use an

adaptedleast-squareminimizationpro edurein orderto

extra t thePP. Within ea h symmetry, the al ulated

normL

l

intheleast-squarepro edurereads

L l =  ^ F+ ^ W l  ^ ' l " l ^ ' l (4) where'^ l

isthereferen epseudo-orbitalinea hsymmetry

l. A rather large un ontra ted basis set of

Gaussian-type orbitals (9s and 9p un ontra ted primitives) was

used. The L

l

minimization with respe t to

^ W l leadsto L l  10 2

a:u: Thepseudo-potentialparametersin

semi-lo alrepresentationarelistedinTable I.

l li Cli nli

0 0 :19022 0 :15536 1

11 :92021 11 :18667 1

1 0 :13759 0 :28112 1

TABLEI:Zero-ele tronpseudo-potentialparametrizationfor

I . li ,C li andn li

aredenedinEq.2.

Inordertoroughlyevaluatethezero-ele tron

pseudo-potential transferability, one an look into the

La-grangian L =

P l

L l

variations under distortions of the

(Na

+ )

6

age. The deviation from the referen e value

L ref

= 7:9 10

2

enables to validate this important

riterion. Two types of deformations hara terized by

themodi ationoftheR

I Na

distan eswere onsidered,

either a ordingto an homotheti expansion preserving

the O

h

symmetry, or to an axial D

4h

distortion. The

resultsarepresentedinTableII. FortheD

4h

distortion

thefour equatorialI Nadistan es areset equalto the

originalvalue6:0a

0

. Oneimmediatelyseesthatthe

vari-ations ofL areless than20%of itsnominal value,that

is an order of magnitude lessthan the errorin thePP

extra tion. RI Na (a:u:) 10 2 L (a:u:) Oh D4h 5 :0 10 8 :2 5 :5 9:2 7 :9 6 :5 8:3 7 :8 7 :0 10 8 :3

TABLEII:Variations ofthe LagrangianunderO

h

andD

4h

deformations of the age (Na

+

)6 . The referen e value is

Lref=7:910

2 .

The I ion beingquite polarizable,it is ne essaryto

introdu eaCPPoperatorinordertore overthe ore

po-larizationand ore-valen e orrelationee ts. Itshould

beemphasizedthatthepreviouslymentionedfreezingof

theI orbitalsavoidsthedouble ountingofthese

ontri-butions. FollowingMülleretal.

23

, the orepolarization

potential ^ V CPP (CPP)isin orporatedas: ^ V CPP = 1 2 I f I f I (5) where I

standsfortheI polarizabilityandf

I

isthe

ele tri eldprodu edbythesinglevalen eele tronand

allother oresa ting onI . Theele tri eld integrals

utoradius, 

, hasbeentakenasastepfun tion,

a - ordinglytotheworkofFou raultetal.

39 .

The dipole polarizability has been previously

al- ulated to be 69a

3 0

from time-dependent se ond-order

Möller-Plesset perturbation theory

40

. Based on

ele -troni ex itations experimentsof salt lusters

32

, the

po-larizationtermshave been estimated to a rather

dier-entvalue,40a

3 0

. Inourstudy,theabinitiopolarizability

value has been assumed. The uto radius 

was

de-terminedtomake onta tbetweentheionizationenergy

oftheembeddedI

2

spe iesandtheone-ele tronenergy

omputed from the ombined ZEP +CPP approa h.

Therefore,werst performedreferen e CASPT2

al u-lationsonI andI 2 in the( Na + ) 6 environment. Then,

aone-ele tron al ulationin ludingdynami al

polariza-tion ee ts by means of the CPP was adjusted to the

CASPT2energiesdieren e. TheCPPparametrization

andtheenergeti ontributionoftheCPP orre tionon

theionization energyof embedded I

2

are given in

Ta-bleIII.

Energeti ontribution IE(a.u.) forI

2 Parametrization PP ontribution .5886 8s;8p CPP ontribution .0011 I =69  =3:50

TABLEIII:CPP parametersandenergeti ontributionsto

theembeddedI

2

ionizationenergy(IE).Allvaluesaregiven

inatomi units.

III. CALCULATIONS WITHINA ZEP

TREATMENT

Sin e transferability is a main on ern in our study,

inthisse tionweinvestigatethepotentialenergy urves

of two model systems, namely LiI and CsI . Let us

remindthattheZEP wasextra tedinano tahedral

en-vironment. Within the C

1v

symmetry, the degenera y

of thep orbitals is obviouslylifted. Thus, both the

lo- alsymmetryandthe hemi alenvironmentaredierent

fromthepseudo-potentialextra tion onditions.

Based on our ZEP + CPP parametrization, the

energy urves of LiI and CsI were omputed and

ompared to referen e ab initio al ulations. In the

ZEP + CPP s hemethe(MI) systemis represented

byaoneele tronhamiltonian

^ h = 1 2 ^  1 r + + ^ W M ++ ^ W CPP M + (6)

(5)

+ 1 r I + ^ W I + ^ W CPP I + ^ V M + I (R )

where R is the M I distan e, r

M + and r I are the ele tron-nu lei distan es, ^ W M + and ^ W I the

mean-eld ZEP, and

^ W CPP M + and ^ W CPP I

the orepolarization

pseudo-potentialsofM + andI ,respe tively. ^ V M + I (R )

is a lassi al potential representing the ore- ore

rigid-ionintera tionbetweentheM

+ andI ions. ^ V M + I (R )

modelstheintera tion ofthezero-ele tron(M

+

,I )

sys-tem, ex luding the ions polarization already a ounted

for in theCPP operator. The MIsystems, from whi h

the ore- oreV

M +

I

(R ) potentials were extra ted, and

the referen eanions MI were omputedusing a

Com-pleteA tiveSpa eSelfConsistentFieldplusse ondorder

perturbationtheory(CASPT2,MOLCASVersion5

41 ).

ThetypeofCI methodwasmotivatedbythe

multi on-gurational hara ter of the wave-fun tion in ludingat

least the ion pair and the ovalent ongurations. For

thesakeof onsisten y, thesameCI treatmentwas

ap-pliedtothemole ularanions. The al ulationswere

per-formed using a 11s5p3d, 7s6p4d3f and 5s5p4d3f basis

sets for Li, Cs and I, respe tively. The iodine and

e-sium oreele tronsweretreatedviarelativisti ee tive

ore potentialwith 7valen e ele tronsfor iodine and 9

for esium

42

. Conversely,the1sele tronsoflithiumwere

expli itly onsideredinthe al ulations. Thea tivespa e

onsisted of 8and 9ele trons in 8orbitals for the

neu-tralandioni ompounds, respe tively. Thus, thea tive

spa ein ludesthemole ularorbitals(MO)derivedfrom

the 5s and 5p atomi orbitals (AO's) of iodine, those

orrelatedwiththe6s(or2s)AOof esium(orlithium)

andthefour nexthighervirtualMO's. TheinnerMO's

(5s, 5p for esium, 1s for lithium) were left ina tive in

thea tivespa e,butwere onsideredintheperturbative

pro edure.

Letusnote thatamajorpartofthe ore-valen e

or-relation ee ts (last inner shell, valen e) is treated at

the perturbativelevel. Under these onditions, the

al- ulated ionizationpotentials(IP's)of LiandCsare5.31

and3.66eV, tobe omparedwith theexperimental

val-ues 5.39 eV and 3.89 eV

43

. The ele tron anity (EA)

of I is al ulated to be 3.15 eV, slightly

overestimat-ing the experimental value of 3.06 eV

46

. Figure 1

dis-playstheCASPT2potentialenergy urvesof LiI, LiI

(Fig.1a)andCsI,CsI (Fig.1b). Thespe tros opi

on-stants of theneutrals potentialenergy urves are given

inTableIV. Theyareinfairlygoodagreementwiththe

experimentaldata(seeTableIV).

The equilibrium distan es absolute errorsare smaller

than 0:05a

0

, whereas the disso iation energies,

deter-mined relatively to the ions pairs M

+

+I are

under-estimatedby-1700and-2100 m

1

forLiIandCsI,

respe tively. One should point out that the adiabati

disso iationyieldstotheneutralfragmentsM+X. The

spe tros opi onstants!

e

arealsovery loseto the

ex-perimentaldata(490versus498 m

1

forLiI,115versus

119 m

1

for CsI). CCSD(T) al ulationson LiI have

47

systems sour e Re(a0) De( m

1 ) !e( m 1 ) EA(eV) LiI expt. 4.52 a 48390 a 498 a 0.75 CASPT2 4.56 46620 490 0.65 Coul omb 0.82 ZEP 0.76 CsI expt. 6.25 b 35490 b 119 b 0.62 CASPT2 6.30 33360 115 0.55 Coul omb 0.54 ZEP 0.58 LiI CASPT2 4.84 10100 370 Coul omb 4.95 10450 367 ZEP 4.91 9950 361 expt. 10960 CsI CASPT2 6.77 7380 86.3 Coul omb 6.89 6870 79.3 ZEP 6.91 6700 78.2 expt. 9110

TABLE IV: Spe tros opi analysis of LiI, LiI , CsI and

CsI . a Ref.43. b Ref.44. Ref.47. tan eR e =4.57a 0

almostidenti altoourCASPT2value.

Those potential energy urves have been tted using

anexpressionin ludingtheBorn-Mayerrepulsion

(expo-nential form), the ele trostati and polarization

ontri-butions E CASPT2 M + I = V M + I (R ) I + M + 2R 4 = Aexp( aR ) 1 R I + M + 2R 4 (7)

3

5

7

9

R (a

0

)

−6.5

−5.5

−4.5

−3.5

−2.5

energy (eV)

(a)

4

6

8

10

12

14

R (a

0

)

−5

−4

−3

−2

−1

energy (eV)

(b)

FIG.1: Potentialenergy urvesofa)LiIandLiI ;b)CsIand

CsI . Thezero energy orresponds to the disso iated pairs

M +

(6)

where V M

+ I

(R ) is the rigid-ion energy dened above,

whereastheCASPT2obviouslyin ludesthepolarization

ee tsonea hion,duetothepresen eoftheotherone.

The Born-Mayer parameters in atomi units are given

in Table V. Sin e the disso iation energies of the ions

pairsareunderestimatedwithrespe ttoexperiment(see

above), we have also determined experimental

Born-Mayer parametersin order to avoidthe propagation of

su herrorin the ore- ore ontributionof theMX

an-ionsintheZEP approa h.

LiI CsI

A=91:526=89:714 A=140:450=134:047

a=1:5994=1:5788 a=1:3292=1:3126

TABLEV:Born-Mayerparametersinatomi units. Therst

data refer to the t of the CASPT2 values, the se ond to

experimentaldisso iationenergies

44,45

(Eq.7).

The CASPT2 potential energy urvesfor the anions

are also displayedin Fig. 1and the al ulated

spe tro-s opi onstants given in Table IV. Partial

experimen-tal data an be extra ted from the above MX

experi-mental spe tros opi data,themole ular ele tron

ani-ties 48

(0.62eV forLiI,0.75eV for CsI), and the

ioniza-tion potential of M. Estimatedexperimental values are

D e

= 10960 and 9110 m

1

for LiI and CsI ,

respe -tively. The CASPT2 D

e

valuesare found to be10100

and7380 m

1

. Thedis repan ywithexperimentseems

to be mu h larger for the CsI anion ( -1600 m

1 )

thanforLiI (-800 m

1 ).

We now turn to the single ele tron des ription using

the ombined ZEP + CPP + ore ore s heme.

TheanionsLiI ,CsI potentialenergy urvesare

read-ilydeterminedbythediagonalizationoftheone-ele tron

hamiltonian, omplementedbytheBorn-Mayerterm

(us-ingtheexperimental parametersin TableV).

E (MI)  = V M + I (R )+" (8)

where"isthesingle-ele tronenergyofMI .

Inthisone-ele tronpi ture,weusedratherlargebasis

sets, namely 6s4p3d, 5s5p4d and 8s8p7d for Li, Cs and

I,respe tively. Figure2reportsthereferen e CASPT2

potential energy urves, the ZEP +CPP al ulations

and those assuming MI being a one-ele tron systems

without the

^ W I

pseudo-potential. In this parti ular

approa h, theele tron-I repulsion isonlydes ribedby

the1=r

I

term. The al ulatedspe tros opi onstants

are summarized in Table IV. In both systems, the

in- rease of the equilibrium distan es with respe t to the

MXsystemsexhibitedbytheCASPT2results,is fairly

reprodu ed in the one-ele tron approa hes. In the ase

of LiI , the disso iation energies with and without the

short rangePP operator( oulombi repulsiononly)are

9950 and 10450 m

1

, respe tively. Both values are

3

4

5

6

7

8

9

R (a

0

)

−1.35

−1.15

−0.95

−0.75

−0.55

−0.35

energy (eV)

(b)

5

6

7

8

9

10

11

12

13

R (a

0

)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

energy (eV)

(a)

FIG.2: Potentialenergy urvesofa)LiI ;b)CsI . Solidlines

aretheCASPT2referen e;dashedlinesthepurely oulombi

al ulations, and dotted lines the ZEP +CPP. The zero

energy orrespondstothedisso iatedpairsM+I .

or10960 m

1

). However, the totalZEP result o urs

to be in good agreement with the CASPT2 referen e

value. Theee t of theshort-rangepseudo-potentialis

to redu e D

e

by  500 m

1

. On the other hand, the

resultsare slightly less a urate for CsI , sin e the

en-ergies with and without short range PP are 6700 and

6870 m

1

, respe tively. Theee t ofthePP issmaller

thaninLiI sin etheequilibriumdistan eissigni antly

larger,redu ingtheroleoftheI - enteredPP. An

over-all600-800 m

1

underestimationofD

e

with respe tto

theCASPT2resultisobserved. However,thethree

the-oreti al al ulationsprovidesmallerdisso iationenergies

thanthe experimental estimation. This dis repan y

re-mainstobe laried. Finally,letusnotethatinCsI,the

PP orre tion is smaller than the residual errors in all

al ulations.

IV. CONCLUSION

Inthis paper,wehavedevelopedan originalstrategy

to parametrize a zero-ele tronpseudo-potential (ZEP)

for ananioni spe ies. As long as ore-valen e

orrela-tion (CPP) and ore- ore intera tion ee ts are

intro-du ed, a very satisfa tory level of a ura y is rea hed

within this ZEP formalism for LiI . The ee t of the

shortrangePP istode reasethedisso iationenergyby

500 m

1

withrespe ttoapure oulombi treatment

ofthehalogen. Theee t isonly 200 m

1

forCsI .

(7)

one-withrespe ttotheab initioCASPT2referen e

al ula-tion. Obviously,monitoringthe ut-o radius toadjust

theCASPT2result ouldbedone. However,su h

pro e-durewouldhindertheabinitioextra tionphilosophyand

would require tranferability ontrols on larger systems.

The CASPT2 disso iation energy value might be

im-provedbyin reasingthealreadylargebasisset and

per-forming CI al ulations. Nevertheless, the one-ele tron

resultson both systemsturn outto befairly onsistent

with the ab initio CASPT2 referen es. The

omputa-tional ost in ZEP al ulations is obviously mu h

re-du ed withrespe t to astandardapproa hrelyingona

seven-ele trondes ription ofiodine. Sin e the hemi al

environmentsofthediatomi systemswe onsidered are

verydierent from the extra tion situation, we believe

thattransferability,amajor on ern,isa hieved.

There-fore, su h a formalismmightbe extremelyuseful to

re-du ethenumberofa tiveele tronswithoutany

tremen-dous lost of a ura y. In this respe t, the limiton the

number ofele tronsin largesystemssu h asioni

lus-tersissigni antlymoved. Itmightalso beworth

om-paringthepresentPP extra tionstrategywithprevious

parametrizationofele tron-Arpseudo-potentialsrelying

ons attering properties

27

. A verysimilar approa h is

nowbeing arriedonfor ounter-ionsCl andBr whi h

arefrequentlymetin rystalstru turesofsolidstate

om-pounds. Finally,oneshouldmentionthatsimilarZEP's

ould be extra ted within the DFT framework

exten-sivelyusedto investigatelargesystems. Theire ien y

should howeverbe he ked onsistently withthe ability

of various fun tionals. Besides, the implementation of

CPP'sforseveralvalen eele tronswithindensity-based

formalismremainstobedevelopped.



Ele troni address: vrobertirsam .ups-tlse.fr,f ax:

(+33)561556065 1

E.Fermi,NuovoCimento11(1934)157.

2

P.Gombas,Z.Phys.94(1935)473.

3

H.Hellmann,J.Chem.Phys.3(1935)61.

4

J.C.PhillipsandL.Kleinman,Phys.Rev.116(1959)287.

5

W.Baylis,J.Chem.Phys.51(1969)2665.

6

C.Bott herandA.Dalgarno,Pro .Roy.So A340(1974)

197. 7

J.N.Barsley: CaseStudyAt.Phys.4(1974)299.

8

P. Valiron, R. Gayet, R.M Carrol, F. Masnou-Seuuws,

andM.Philippe,J.Phys.B12(1979)53.

9

J.Pas ale,Phys.Rev28(1983)632.

10

J.Pas aleandJ.Vandeplanque,J.Chem.Phys.60(1974)

2278. 11

E.Czu hajandJ.Senkiewie z,Z.Naturfors h.A34(1979)

694; E. Czu haj, F.Rebentrost, H. Stoll, and H.Preuss,

Chem.Phys.136(1989)79.

12

Ph.Durandand J.C.Barthelat,Theoret. Chim.A ta 38

(1975) 283; Y. Bouteiller, C. Mijoule, M. Nizam, J. C.

Barthelat, J.P. Daudey, andM. Pélissier, Mol. Phys.65

(1988)295.

13

S. Huzinaga and A. A. Cantu, J. Chem. Phys. 55 5543

(1971); S. Huzinaga, L. Seijo, S. Barandiarán, and M.

Klobukowski, Chem. Phys. Lett. 86 (1987) 2132; M.

Klobukowski, Chem. Phys.Lett. 183 (1991) 417; ibidem

Theoret.Chim.A ta83(1992)239.

14

M.KraussandW.J.Stevens,Ann.Rev.Phys.Chem.35

(1985)357.

15

P.J.HayandW.R.Wadt,J.Chem.Phys.82(1985)264;

ibidem82(1985)270; ibidem82(1985)299.

16

W.Ku hle, M.Dolg, H.Stoll, andH.Preuss, Mol.Phys.

74(1991)1245; M.Dolg,W.Ku hle,H.Stoll, H.Preuss,

andP.S hwerdtfeger,Mol.Phys.74(1991)1265.

17

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48

(1982)1425.

18

N. Troullier and J. L. Martins, Phys. Rev. B 43 (1991)

1993. 19

G.B.Haman,D.R. HamanandM. S hluter,Phys.Rev.

B26(1982)4199.

20

D.R.Haman,Phys.RevB40(1989)2980.

21

C.Tei hteil,M.Pélissier,andF.Spiegelman,Chem.Phys.

81(1983)273.

22

P.A.Christiansen,Y.K.Lee,andK.S.Pitzer,J.Chem.

Phys.71(1979)4445.

23

W. Müller, J. Fles h,and W. Meyer, J. Chem.Phys.83

(1984)3297;W.MüllerandW.Meyer,J.Chem.Phys.80

(1984)3311.

24

J.-L. Heully, R. Poteau, S. Berasalu e, and F. Alari, J.

Chem.Phys.116(2002)4829.

25

M. B.ElHadjRhouma,H. Berri he,Z. B.Lakhdar, and

F.Spiegleman,J.Chem.Phys.116(2002)1839.

26

F. Spiegelman, L. Maron, W. H. Bre kenridge, J.-M.

Mestdagh, and J.-P. Visti ot, J. Chem. Phys.(2002), in

press. 27

P.DuplaaandF.Spiegelman,J.Chem.Phys.105(1996)

1492;ibidemJ.Chem.Phys.105(1996)1500.

28

M.-B.Lepetit,InRe entResear h Developmentsin

Quan-tumChemistry,editedbyS.G.Pandalay(Transword

Re-sear hNetwork2002),andreferen estherein.

29

N.W.Winter,R.M. Pitzer,andD.K.Temple,J.Chem.

Phys. 86 (1987) 3549; Z. Barandiarán and L. Seijo, J.

Chem.Phys.89(1988)5739;Z.BarandiaránandL.Seijo,

InComputational Chemistry: Stru ture,Intera tionsand

Rea tivity,editedbyS.Fraga(Elsevier,Amsterdam1992),

Vol.77B,p.357.

30

L. Seijo, Z. Barandiarán, and L. G .M. Pettersson, J.

Chem.Phys.98(1993)4041.

31

S.Fran k,N.Malinowski,F.Tast,M.Heinebrodt,I.M.L.

Billas,andT.P.Martin,J.Chem.Phys.106(1997)6217,

andreferen estherein.

32

X.LiandR.L.Whetten,J.Chem.Phys.98(1993)6170.

33

X.Li,R.D.Be k,andR.L.Whetten,Phys.Rev.Lett.68

(1992)3420.

34

A. Aguado, A. Ayuela, J. M. López, and J. A. Alonso,

Phys.Rev.B58(1998)9972.

35

J.Flad,H.StollandH.Preuss,Z.Phys.D6(1987)193;

ibid 6 (1987) 287; J.Flad, H. Stoll, A. Ni klass and H.

Preuss,Z.Phys.D15(1990)79.

36

R.A. Bergand G.W.Skewes, J.Chem.Phys.51(1969)

5430. 37

(8)

Mol.Phys.80(1993)1431. 38

P. Fuentealba, H. Preuss, H. Stoll, and L. V. Szentpaly,

Chem.Phys.Lett.89(1982)418.

39

M.Fou rault,Ph.Millie,andJ.-P.Daudey,J.Chem.Phys.

96(1992)1257.

40

C.HättigandB.A.He ,J.Chem.Phys.108(1998)3863.

41

Mol asVersion5.K.Anderson,M.Barysz,A.

Bernhards-son,M. R. A. Blomberg, D. L. Cooper, T. Fleig, M. P.

F 

ls her,C.deGra,B.A.Hess,G.Karlström,R.Lindh,P.

Malmqvist,P.Neogrády,J.Olsen,B.O.Roos,A.J.Sadlej,

M. S hütz, B. S himmelpfennig, L. Seijo, L.

Serrano-Andrés,P.E.M. Siegbahn,J.Stalring,T.Thorsteinsson,

V. Veryazov, and P. Widmark, LundUniversity, Sweden

(2000).

42

A.Bergner,M.Dolg,W.Kue hle,H.Stoll,andH.Preuss,

Mol.Phys.80(1993)1431.

43

C.E.Moore,InAtomi EnergyLevels,U.S.Natl. Bureau

Standards,U.S.GPO,Washington,D.C.,1971),Vol.2.

44

W. Klemperer andS.A. Ri e, J.Chem. Phys.26(1957)

618. 45

A.Honig, M. L.Stit h,andM. Mandel,Phys.Rev.B92

(1953)901.

46

D.HanstorpandM.Gustafsson,J.Phys.B25(1992)1773.

47

X.-B. Wang,C.-F.Ding,L.-S.Wang,A.I.Boldyrev,and

J.Simmons,J.Chem.Phys.110(1999)4763.

48

T. M. Miller, D. G. Leopold, K. K. Murray, and W. C.

Figure

TABLE II: Variations of the Lagrangian under O
FIG. 1: Potential energy 
urves of a) L i I and L i I ; b) C sI and
TABLE V: Born-Mayer parameters in atomi
 units. The rst

Références

Documents relatifs

It can be seen that when the VDF has an enhanced tail of suprathermal particles approximated by a kappa or Lorentzian function, the total density in the exosphere is

M. ATOMIC TRANSPORT IN ALKALI HALIDES DOPED BY DIVA- LENT ANIONS AND CATIONS.. BENIERE Laboratoire d'Electrochimie. - Les resultats obtenus recemment dans le domaine des

slip systems, extensive network formation, production of debris (edge dislocation dipoles and s n ~ a l l dis- location loops) and frequent cross-slip on other than

The symbol (I, in figure 1 represents the penetration of the peak t o be expected from conductivity measurements. It was not possible, by any refinement of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In the case of the I-frame, the utility function is derived with respect to the individual contribution d i , and in the We-frame, all individual contributions d j are equal

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des