• Aucun résultat trouvé

Amélioration d’un distillateur solaire plan à effet de serre dans la région sud-est de l’Algérie

N/A
N/A
Protected

Academic year: 2021

Partager "Amélioration d’un distillateur solaire plan à effet de serre dans la région sud-est de l’Algérie"

Copied!
5
0
0

Texte intégral

(1)

République Algérienne Démocratique et Populaire

Ministère de l’enseignement supérieur et de la recherche

scientifique

Université Echahid Hamma Lakhder

d’El-oued

Faculté de la technologie

Département de mécanique

N° d'ordre : /2019/DM N° de série

Thèse présentée pour l’obtention du diplôme de

Doctorat LMD

en

Génie mécanique

Spécialité : énergétique

Préparé dans le laboratoire VTRS de l’université d’El oued

Présenté par

Abderrahmane Khechekhouche

Thème

:

Devant le jury:

Dr. Djilani Necib

Dr. Hocine Ben Moussa

Dr. Djamel Bechki

Dr. Abdelmalek Atia

Dr. Boubaker Ben Haoua

Dr. Zied Driss

MC.A. Université d’El oued

Prof. Université Batna 2

Prof. Université d’Ouargla

MC.A. Université d’El oued

Prof. Université d’El oued

Prof. ENIS. Université de Sfax

Président

Examinateur

Examinateur

Examinateur

Encadreur

Co-encadreur

Année universitaire 2018-2019

Amélioration d’un distillateur solaire plan à

effet de serre dans la région sud-est de l’Algérie

(2)

Contents Table

General introduction

Chapter I: Bibliographic study

Dedications ... 4 Acknowledgment ... 5 Publications list ... 1 Publications ... 1 Communications internationales ... 1 Communications nationales ... 2 II.1. Introduction ... 25

II.2. Factors influence distillation ... 25

II.2.1. Climatic factors ... 25

II.2.1.1. Solar radiation ... 25

II.2.1.2. The Wind ... 25

II.2.1.3. Ambient temperature ... 26

II.2.2. Geometric factors ... 26

II.2.2.1. Surface, thickness and positioning of the condenser ... 26

II.2.2.2. The condenser cooling system ... 26

II.2.2.3. The water heating system ... 26

II.3. Different type of solar distillers ... 27

II.4. Measurement instrumentation ... 27

II.4.1. Card Arduino ... 27

II.4.2. LM35 thermal sensor ... 28

II.4.3. Pyranometer ... 28

II.4.4. PHM210 Standard Device ... 29

II.4.5. Device CDM210 Conductivity Meter ... 29

II.4.6. Graduated beaker ... 30

II.5. Energy balances in the solar still ... 30

II.5.1. Balance of glazing ... 30

II. 5.2. Water balance ... 31

II. 5.3. Bottom balance sheet (the absorber) ... 32

II.5.4. Balance sheet insulation ... 32

II.6. Heat exchange coefficients ... 33

(3)

II.6.2. By convection water-glass ... 33

II.6.3. By vaporization ... 34

II.6.4. By radiation: glass - ambient environment ... 34

II.6.5. Flow by convection: glass - ambient ... 35

II.6.6. Flow by convection: basin – glass ... 35

II.7. Main characteristics of a solar distiller ... 36

II.7.1. Yield of a solar distiller ... 36

II.7.2. The hourly exergy output ... 36

II.7.3. The hourly exergy input ... 36

II.7.4. Solar distiller efficiency ... 36

II.7.4.1. Global efficiency ... 36

II.7.4.2. Thermal efficiency ... 37

II.7.4.3. Fxergy effectiveness ... 37

II.9. Performance ... 37

II.10. Experience series ... 37

II.10.1. Experiment no1: Choosing Distillers ... 38

II.10.2. Experiment no2: Effect of radiation ... 38

II.10.3. Experiment no3: Effect of temperature difference between pond water-glass ... 39

II.10.4. Experiment no4: Effect of a metal absorber on distillation ... 39

II.10.5. Experiment no 5: Effect of an external refractor on distillation... 40

II.10.6. Experiment no6: Effect of glass cover thickness ... 40

II.10.7. Experiment no 7: effect of cylindrical plastic fins ... 41

II.10.8. Experiment no 8: effect of aluminium balls ... 42

II.10.9. Experiment no 9: effect of a flat solar collector ... 42

II.10.10. Experiment no 10: The choice of hot water outlet hole ... 43

II.10.11. Experiment no 11: effect of sand dune... 43

II.10.12. Experiment no 12: effect of an insulated air chamber as a glazed cover ... 44

II.11. Conclusion ... 44

References ... 45

III.1. Introduction ... 48

III.2. Method and Experience ... 49

III.2.1. Description of the solar distiller ... 49

III.2.2. Principle of operation ... 49

(4)

III.2.4. Treatment data of the first experiment ... 50

III.2.5. Treatment data of the second experiment ... 51

III.3. Result and discussion ... 52

III.3.1 Result of the first experience ... 52

III.3.1.1. Evolution of solar radiation ... 52

III.3.1.2. Evolution of ambient temperature ... 53

III.3.1.3. Evolution of the inner glazing temperature ... 54

III.3.1.4. Evolution of water temperature ... 54

III.3.1.5. Evolution of water productivity ... 55

III.3.1.6. Evolution of water accumulation ... 56

III.3.2. Result of the second experience ... 56

III.3.2.1. Solar radiation ... 56

III.3.2.2. Ambient temperature ... 57

III.3.2.3. Temperatures between water- inner face glass ... 58

III.3.2.4. Distilled water productivity ... 59

III.3.2.5. Accumulated of distilled water ... 60

III.4. Conclusion ... 61

References ... 61

IV.1. Introduction ... 65

IV.1. Evaluation of experiences ... 65

IV.1.1. Similarity experience ... 65

IV.1.2. Effect of a metallic absorber ... 67

IV.1.3. Effect of an external refractor ... 70

IV.1.4. Effect of glass cover thickness ... 71

IV.1.5. Effect of cylindrical plastic fins ... 72

IV.1.6. Effect of effect of aluminium balls ... 73

IV.1.7. Effect of a flat solar collector ... 74

IV. Conclusion ... 77

V.1. Introduction ... 80

V.2. Method and material ... 81

V.2.1 Groundwater in the El Oued region - Algeria ... 81

V.2.2. Description and principle of operation ... 81

V.2.3. Experience and measuring instruments ... 82

(5)

V.3. Results and Discussion ... 85

V.3.1. Variation of solar irradiance and ambient temperature ... 85

V.3.2. Time-wise variation of water, interior and exterior glass temperature ... 86

V.3.3. Time-wise variation of distilled water production ... 86

V.3.4. Time-wise variation of cumulative distilled ... 87

V.3.5. Time-wise variation of Thermal efficiency ... 88

V.3.6. Exergy efficiency ... 89 V.3.7. Discussion ... 90 V.4. Economic evaluation ... 91 V.5. Conclusion ... 92 References ... 92 VI.1. Introduction ... 97

VI.2. Experiment data ... 98

VI.2.1. Description of the solar distiller ... 98

VI.2.2. Principle of operations ... 99

VI.2.3. Meteorological conditions of the experiments ... 100

VI.2.4. Experimental error analysis ... 100

VI.3. Results and discussion ... 101

VI.3.1 Ambient temperature and solar radiation ... 101

VI.3.2. Variation of the temperatures of the two distillers ... 102

VI.3.3. Effect of water-glass temperature on productivity ... 103

VI.3.4. Productivity of the distilled water ... 103

VI.3.5. Accumulated distillate ... 104

VI.6. Hourly efficiency of the solar distillers ... 105

VI.7. Cost analysis ... 106

VI.8. Conclusion ... 106

References ... 107

Références

Documents relatifs

The aim of this work is to highlight an equivalence between the strain rate, the temperature and the water content effect on the dynamic mechanical response of polyamide 6,6.. The

4.1 — Explain briefly the nature and the origin of the Cosmic Microwave Background (CMB).. 4.2 — Describe briefly how the curve of figure 1 is derived from a measured CMB

Extremal points in a Laplacian scale space have long been known to provide scale invariant feature points [5] for matching or registering images.. Such points, known as

EN : énergie nette requise pour les fonctions de survie, de production, de déplacement et de reproduction (MJj -1 ); EN c : énergie pour la croissance (MJ -1 j); TES :

En combinant tous les éléments, nous avons produit une bonne quantité d’eau distillée de 6,485 litres (Fig. 11), soit une amélioration de 2,020 litres qui équivaut à un

Il apparaît en outre et comme le présenterons dans le cadre de ce travail que de nombreux paramètres, notamment l’irradiation globale, la température ambiante, la vitesse du vent

La distillation solaire est un procédé de production d’eau douce à fort économique, surtout dans les régions caractérisées par un bon ensoleillement [1]. L’optimisation de la

(c) Transition frequency (see text) as a function of azimuth and elevation in humans (left) and in the spherical model (right).. Normalized units converted