• Aucun résultat trouvé

Pulp and paper mill sludge management practices : what are the challenges to assess the impacts on greenhouse gas emissions?

N/A
N/A
Protected

Academic year: 2021

Partager "Pulp and paper mill sludge management practices : what are the challenges to assess the impacts on greenhouse gas emissions?"

Copied!
27
0
0

Texte intégral

(1)

Resources,ConservationandRecycling108(2016)107–133

ContentslistsavailableatScienceDirect

Resources,

Conservation

and

Recycling

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / r e s c o n r e c

Review

Pulp

and

paper

mill

sludge

management

practices:

What

are

the

challenges

to

assess

the

impacts

on

greenhouse

gas

emissions?

Patrick

Faubert

a,∗

,

Simon

Barnabé

b

,

Sylvie

Bouchard

a

,

Richard

Côté

a

,

Claude

Villeneuve

a

aChaireenéco-conseil,Départementdessciencesfondamentales,UniversitéduQuébecàChicoutimi,555,boulevarddel’Université,Chicoutimi,Québec,

CanadaG7H2B1

bChairederechercheindustrielleenenvironnementetbiotechnologie,Départementdechimie,biochimieetphysique,UniversitéduQuébecà

Trois-Rivières,3351,boul.desForges,C.P.500,Trois-Rivières,Québec,CanadaG9A5H7

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29June2015

Receivedinrevisedform8January2016 Accepted11January2016

Availableonline6February2016 Keywords: Biosolid Climatechange Landfilling Landapplication Energyrecovery Lifecycleanalysis

a

b

s

t

r

a

c

t

Pulpandpapermillsludge(PPMS)isanorganicresidualgeneratedfromthewastewatertreatments.PPMS managementinvolveseconomic,environmentalandsocialcoststhatwilllikelyincreaseinthefutureas landfillingtendstobereducedorbannedincertainjurisdictions.Thereductionorthebanningof landfill-ingmaybeconsideredasaclimatechangemitigationmeasuresinceorganicwastedisposalisnormally associatedwithgreenhousegas(GHG)emissions.Thiscriticalreviewaimsto(1)describethevarietyof thecurrentandemergingPPMSmanagementpracticesthatarealternativestolandfillingand(2) under-linethecrucialneedforGHGemissionassessments.ThemanagementpracticesofthethreemainPPMS types(primary,secondaryandde-inking)comprisedinthisreviewarelandapplication(agriculture, silvi-culture,landreclamationandcomposting),energyrecovery(combustion,anaerobicdigestion,pyrolysis, bioethanol,hydrogenproductionanddirectliquefaction)andintegrationinmaterials(biocomposite, cement,asphaltandadsorbent–absorbent).Futureresearchshouldfocustoincreasethecomprehension ofknownGHGdeterminantsfromthePPMSmanagementpracticesandrevealunknownfactors.Life cycleanalyses,basedondirectGHGemissionmeasurements,areneededtodetermineGHGemissions fromcurrentandemergingpracticesandplanaresponsiblefuturereductionorbanningoflandfilling. SuchanalyseswillcontributetoassistdecisionmakersinimplementingthebestPPMSmanagement practiceswiththeleastimpactonclimatechange.

©2016ElsevierB.V.Allrightsreserved.

Contents

1. Introduction...108

2. PPMS:types,propertiesandoverviewofend-of-lifeoptions...109

3. LandapplicationofPPMS...110

3.1. LandapplicationofPPMSinagriculture...110

3.2. LandapplicationofPPMSinsilviculture...114

3.3. LandapplicationofPPMSforlandreclamation...115

3.4. PPMScompostingpriortolandapplication...115

4. PPMSenergyrecovery...115

4.1. CombustionofPPMS...117

4.2. AnaerobicdigestionofPPMS:biogasproduction...117

4.3. PPMSpyrolysis...117

4.4. BioethanolproductionfromPPMS ... 118

4.5. Otherenergyrecoverypractices...118

∗ Correspondingauthor.

E-mailaddress:patrick1faubert@uqac.ca(P.Faubert). http://dx.doi.org/10.1016/j.resconrec.2016.01.007 0921-3449/©2016ElsevierB.V.Allrightsreserved.

(2)

108 P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133

5. IntegrationofPPMSinmaterials...119

5.1. Biocomposite:PPMSinwoodandplasticmaterials ... 119

5.2. PPMSintegratedincementandasphaltproductions...121

5.3. PPMSusedinadsorbent–absorbentproductions...121

6. DeterminantsofGHGemissionsfromPPMSmanagementpractices:knownsandunknowns...122

7. Conclusionsandrecommendations...127

Acknowledgments ... 128

References...128

1. Introduction

Pulpandpapermillsludge(PPMS)isthemainorganicresidual

generatedfromthewastewatertreatmentsofthepulpandpaper

industry.Theannualworldproductionofpaperandpaperboardis

estimatedto400milliontons(FAOSTAT,2015)andispredicted

toreachupto550million tonsby 2050,which couldincrease

thePPMSproductionby48–86%comparedwiththeactualrates

(MabeeandRoy,2003).PPMSmanagementanddisposalinvolve

economic,environmentalandsocialcoststhatwilllikelyincrease

inthefuture.Somejurisdictionsactuallytendtoreduceorban

land-fillingoforganicresidualsbyimprovingtheefficiencyofresource

useandrecycling(CounciloftheEuropeanCommunities,1991;

USEPA,1994;LjunggrenSöderman,2003;EC-BiPRO,2007;Fytili and Zabaniotou, 2008; Monte et al., 2009; MfE, 2010; MDDEP, 2011;GouvernementduQuébec,2012),whichwilllikelyinducea

changeintheactualmanagementpractices(MabeeandRoy,2003;

PervaizandSain,2015).Theactualgreenhousegas(GHG)emissions

fromthevarietyofPPMSmanagementpracticesareunknownand

shouldbeaddressedespeciallyinthelightofupcomingchanges,

consequenceofreducingorbanninglandfilling.

The actual and common PPMS management practices are

landfilling, land application for agricultural, silvicultural and

reclamationpurposes,andenergy recoverythroughcombustion

(CANMET,2005;Camberatoetal.,2006;Gavrilescu,2008;Likon andTrebˇse,2012;MDDELCC,2015;PervaizandSain,2015).The

proportionsofPPMSdirectedtooneofthesepracticesvarywith

timeandjurisdictionpolicies.Forinstance,intheU.S.,upto87%of

PPMSwaslandfilledin1979(Amberg,1984)whereasthis

propor-tionhasnowdecreasedto52%(PervaizandSain,2015).Nowadays

intheprovinceofQuebec,Canada,theannualproductionof1.4

milliontonsofPPMSaremanagedat29%bylandfilling,31%by

landapplication,35% byenergy recoveryand5%byother

prac-tices(MDDELCC,2015).TheQuebec’sgovernmentpoliciesaimto

banlandfilling ofPPMSby 2020(MDDEP, 2011;Gouvernement

duQuébec,2012)resultinginmajorchallengesfortheindustry

tochangetheirPPMSmanagementpracticesinordertomeetthe

governmentobjectives.Thepracticeoflandfillingwillalsotendto

decreaseinotherjurisdictions followingtheapplicationofsuch

policiesandpressurefromthelowpublicacceptance(Wangetal.,

2008;Jooetal.,2015;PervaizandSain,2015).Dependingonthe

localcontextforeachpapermill,thetonnagesactuallydirectedto

landfillsitesmaynotbeonlymanageablebycurrentenergy

recov-ery installations and land availability. Energyrecovery through

combustionbenefitstopulpandpaperindustry(e.g.,heatand

elec-tricityproduction)but itcan becostlyduetothe implantation

ofcombustionfacilitiesand theprior PPMSdewatering process

(CANMET, 2005;MahmoodandElliott, 2006;Xuand Lancaster,

2008). Land application is generally feasible (Camberato et al.,

2006;PervaizandSain,2015)andwellacceptedbutthisoption

canbepracticallyandeconomicallydifficultforcertainpapermills.

Forinstance,somepapermillsarelocatedatgreatdistancesfrom

agriculturallands,leading tohigh management costsand GHG

emissionsrelatedtotransport.Moreover,theheavymetalcontents

ofsometypesofPPMSandtheodor,especiallywhenthe

spread-ingisdoneinthevicinityofresidentialareas,canbeenvironmental

andpublicacceptanceissuesinrareexceptions(Rashidetal.,2006;

PervaizandSain,2015).

ThereisaneedtointegratenovelPPMSmanagementpractices

aslandapplicationand/orenergyrecoverythroughcombustion

maynotbethecommonalternativestodisposethePPMStonnages

actuallydirectedtolandfillsites.Severalalternativemanagement

options,otherthancombustionforenergyrecovery,areemerging,

suchasanaerobicdigestionforbiogasproduction,pyrolysisand

bioethanolproduction (Monte etal.,2009;Meyerand Edwards,

2014).PPMScanalsobeintegratedasa componentof

biocom-posites,bioplastics,cementandasphalt,aswellasbeingusedfor

adsorbent-absorbentproductions(Beauchampetal.,2002;Mari

etal.,2009;Monteetal.,2009;Lietal.,2011;Yanetal.,2011; LikonandTrebˇse,2012;AlmquistandQin,2013;Soucyetal.,2014; Pervaizand Sain, 2015).These emerging options alsohave the

potentialof beingopportunitiesforindustrialsynergies,leading

tomutualeconomicbenefits.Theresidualofoneindustrybecomes

theprimarymatterforanotherindustry,fittingwiththeconcept

ofindustrialecology.

ThereductionorthebanningofPPMSlandfillingcould

repre-sentapotentialabatementforGHGemissions,especiallyinNorth

America(Fischedicketal.,2014).Sofar,theGHGemissionsfrom

PPMSlandfillinghaveonlybeentheoreticallyestimated(1tonof

landfilledlow-ashPPMScouldrelease2.69tonsofCO2and0.24ton

ofCH4duetoaerobicandanaerobicdecomposition;Buswelland

Mueller,1952;LikonandTrebˇse,2012)androbustdataseriesfrom

directGHGmeasurementsarenon-existentfordifferentlandfill

conditionsandmilloperations(NCASI,2005;IPCC,2006).TheGHG

emissions fromwastewater treatmentplants canbe estimated

withmodelsandlifecycleanalyses(Ashrafietal.,2013a,2013b,

2015;O’Connoretal.,2014;Zangetal.,2015)buttheemissions

fromPPMSmanagementareunknownoutsidethemilloperations.

Theimpactsonclimatechangefromthepulpandpaperindustry

canalsobeestimatedthroughitsGHGemissionsusing

calcula-tiontoolssuchas theonebuiltbytheNationalCouncil forAir

andStreamImprovement(NCASI,2005).However,datafromdirect

GHGemissionmeasurementsthatisolatethecontributionofPPMS

managementpracticesontheGHGemissionbudgetsaremissing

intheNCASIcalculationtoolandarenotconsideredinthe

guide-lines ofthe IntergovernmentalPanel onClimate Change (IPCC)

fornational greenhousegasinventories(IPCC,2006).Therefore,

directmeasurementslinkedtovariousPPMSmanagement

prac-ticescouldbeusedindatabasessuchastheEcoinventdatabase

utilizedby theSimaPro softwareforexample (Ecoinvent,2013;

PRéConsultants,2014),ortobuildmodelssimilartothebiosolids

emissionsassessmentmodel(BEAM)thatestimatesGHGemissions

frommunicipalbiosolidmanagement(SYLVIS,2009;Brownetal.,

2010).

Thisreviewaimstodescribethevarietyoftheactualand

emerg-ingPPMSmanagementpracticesthatarealternativestolandfilling.

Moreover,theobjectiveistounderlinethatGHGemission

(3)

P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133 109

Table1

Physicalandchemicalpropertiesofprimary,secondary,mixed(primary-secondary)andde-inkingpulpandpapermillsludge(PPMS).

Parameter PrimaryPPMS SecondaryPPMS MixedPPMS De-inkingPPMS Referencesc

Drymatter(%FMa) 15–57 1–47 19–60 32–63 1–23

Ashcontent(%drysolids) 10–15 10–20 20 40–60 8,13

Nitrogen(%DMb) 0.045–0.28 1.1–7.7 0.7–3.6 0.15–1.0 1–3,6,7,9–13,15–17,19–28 Phosphorus(%DM) 0.01–0.06 0.25–2.8 0.22–0.74 0.0012–0.16 1–3,7,9,11,12,15–17,19,20,22,25–28 Potassium(%DM) 0.02–0.09 0.078–0.7 0.03–0.33 0.0029–0.2 1–3,7,9–11,15–17,19,20,22,26–28 C:Nratio 111:1–943:1 8:1–50:1 13:1–31:1 34:1–344:1 1–3,6,9–11,15–17,19–31 pH 5.0–11.0 6.0–8.5 3.8–8.1 7.2–9.2 1–3,5–7,9–12,14–16,19–22,24–26,28,32 Heatingvalue(MJkg−1DM) 5.5 0–25 14–19 1.5–5.7 8,12,23 aFreshmatter. bDrymatter.

c References:1Aitkenetal.(1998);2Simardetal.(1998);3Charbonneauetal.(2001);4IPPC(2001);5Calaceetal.(2003);6Allahdadietal.(2004);7

Legendreetal.(2004);8–CANMET(2005);9–Geaetal.(2005);10–Curnoeetal.(2006);11–N’Dayegamiye(2006);12–ElliottandMahmood(2007);13–Gavrilescu (2008);14–OchoadeAlda(2008);15–PriceandVoroney(2008);16–RatoNunesetal.(2008);17–N’Dayegamiye(2009);18–Yanetal.(2011);19–GagnonandZiadi (2012);20–Gagnonetal.(2012);21–Chantignyetal.(2013);22–Ziadietal.(2013);23–Navaee-Ardehetal.(2006);24–Chantignyetal.(1999);25–Fierroetal.(1999); 26–CharestandBeauchamp(2002);27–Feldkirchneretal.(2003);28–Cabraletal.(1998);29–Dolaretal.(1972);30–Fieldetal.(1996);31–Trépanieretal.(1996); 32–Méndezetal.(2009b).

• Determinetheimpactsofthecurrentscenariosthatareactually

unknown,aswellasfromthefuturescenariosinwhichlandfilling

willnotbepossible.

• Build upcoming approved protocols that could be used in a

cap-and-tradeprogramsuchastheoneoftheWesternClimate

Initiative(WCI)aimingtoreduceandoffsetindustrialGHG

emis-sions.

2. PPMS:types,propertiesandoverviewofend-of-life options

Pulpandpaper productionrequires largeamountsof water,

ranging between 15 and 100m3Mg−1 dry pulp, used as

reac-tionmediaandwashwater(Ackermannetal.,1999;IPPC,2001;

CANMET,2005;Ashrafietal.,2015),whicheffluentneedstobe

treated beforebeing releasedto theenvironment. PPMS is the

organicresidualmaterial remainingafterwastewater treatment

inthepulpandpapermills.ThreemaintypesofPPMSare

pro-duced:primary,secondaryandde-inking(Thompsonetal.,2001;

Pokhreland Viraraghavan,2004;CANMET,2005;Mahmoodand Elliott,2006;Monteetal.,2009).PrimaryandsecondaryPPMSare

oftencombinedindifferentratios(PervaizandSain,2015)toform

“mixed”PPMS(Table1;theterm“mixedPPMS”isusedhereafteras

acombinationofprimaryandsecondaryPPMS).Inrarecases,PPMS

and municipalbiosolids canbecombined(Gagnonet al.,2010)

butthistypeofPPMSisnotdocumentedinthisreview.

Proper-tiesofthemaintypesofPPMSaresummarizedinTable1;studies

showthatthesecanbequitevariable.Pulpandpaper

manufac-turingprocessesareoffivemaintypes:mechanical(i.e.,grinding

andrefiningprocesses),chemical(i.e.,Kraftandsulfiteprocesses),

chemo-mechanical(i.e.,batchandcontinuoussystems),

thermo-mechanicalandpapermaking(CANMET,2005;Ashrafietal.,2015).

Thus,thevariabilityinthePPMSpropertiesreflectsthequalityand

compositionofthewastewatereffluentsthatare,uptoacertain

extent,particulartoeachmilldependingonthetypeofraw

mate-rialandinput,papermakingprocessand wastewatertreatment

(CANMET,2005;PervaizandSain,2015).However,certain

proper-tiessuchastheashcontent,carbon:nitrogenratio(C:N)andheating

valuecanbeusedtocharacterizeeachtypeofPPMS(Table1).

PrimaryPPMSistheresiduefromtheprimarytreatmentwith

highfibrousand organiccontents(i.e.,highC:Nratio,Table1),

consisting mainly of a mixture of coarse and fine fibers and

fillersobtainedbygravitythroughaprimaryclarificationprocess

(CANMET,2005;PervaizandSain,2015).Wastewatertreatments

leadingtoprimaryPPMSaremainlyphysicochemicalconsistingof

sedimentationandfloatation(Thompsonetal.,2001;Pokhreland

Viraraghavan,2004;CANMET,2005).

Secondary PPMS (also called biological sludge, biosludge or

wasteactivatedsludge–WAS)istheresidueleftafterthe

biolog-icaltreatmentofthewastewater,wheremicroorganismsareused

toreducethechargeindissolvedorganicmatter,chemical

oxy-gendemandandbiochemical oxygendemand(Thompsonetal.,

2001;PokhrelandViraraghavan,2004;CANMET,2005;Mahmood andElliott,2006).TheamountofsecondaryPPMSgeneratedisless

thanthatofprimaryPPMSasalltheresidualcellulosicfibersand

inorganicmaterialsareremovedbytheprimaryclarification

pro-cess(CANMET,2005).Nitrogen,phosphorusandoxygenmustbe

addedtotheprocesstomaintainmicroorganismactivity,which

explainsthelowC:Nratioandhighphosphoruscontent(Table1).

ThemostcommontreatmentleadingtosecondaryPPMSisaerobic

(e.g.,activatedsludgeprocess),aerationisperformedintobasins,

tanks,pondsorlagoonscontainingaerobicbacteriathatdecompose

andremoveorganicsubstances(Thompsonetal.,2001;Pokhrel

andViraraghavan,2004;CANMET,2005).Watereffluentsresulting

fromthesecondarytreatmentandclarificationprocessdonotneed

anyfurthertreatmentandareusuallyreleasedtotheenvironment

(CANMET,2005).Existingoremergingtechnologiescancontroland

reducethequantityofsecondarysludgefrompulpandpapermills

(MahmoodandElliott, 2006), whichcoulddecreasetheamount

ofPPMStomanage.However,moreresearchwouldbeneededto

enhancethesereductiontechnologiesandtheircommon

utiliza-tionbytheindustry(Jooetal.,2015).PrimaryandsecondaryPPMS

areoftencombinedtobedewateredbyamechanicalprocess,and

furtherdisposedorrecycledbydifferentmeans(Table1).

Paperrecyclingproduces de-inking PPMSwhich is a

combi-nationoftheviscousfloatorscum createdbythedissolvedair

floatation processused toremove inksand dyes fromrecycled

paperfibersandtheprimaryandsecondaryclarificationprocesses

(CANMET,2005).De-inkingPPMScontainsfibers,inorganic

com-poundssuchasinkparticles(colorpigments),de-inkingagents,

adhesive componentsand fillers (e.g., kaolin, clay and calcium

carbonate;CANMET,2005;Gavrilescu,2008;Monteetal.,2009).

Heavymetalsand mineralcontents ofde-inkingPPMS arehigh

whereasheatingvaluesaretypicallylow(Table1;CANMET,2005;

Rashidetal.,2006).De-inkingPPMSisusuallycharacterizedbya

highC:Nratioexplainedbythehighorganiccontentofwastepaper

(Table1).

PPMScontainssomeheavymetals,whichcanbean

environ-mentalissueregardingtheirdisposal(IPPC,2001;CANMET,2005;

Camberatoetal.,2006;Rashidetal.,2006;Gavrilescu,2008;Monte et al., 2009; Mäkelä et al., 2012; Pervaiz and Sain, 2015). For

instance,PPMSappliedasasoilamendmentmustfollow

regula-torystandardsinordertoavoidsoilandwatershedcontaminations

(4)

110 P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133

Fig.1.Overviewoftheactualandemergingmanagementpracticesforpulpandpapermillsludgeregardingtheunknowneffectsonthegreenhousegasemissions.

areusuallylessthanmunicipalbiosolidsandastheyarewithinthe

regulatorylimitsofallprovincestheycanbeusedassoil

amend-ments(Camberatoetal.,1997,2006).Itisalsoimportanttotake

intoaccountheavymetalcontentsofPPMSwhenusingitinenergy

recoverypractices(CANMET,2005;Tsuparietal.,2007;Gavrilescu,

2008).EmissionsandashesfromthePPMScombustioninbiomass

boilersaretreatedbymoderntechnologiesandrespectthe

regula-torystandardsinCanada(CANMET,2005).

Thefollowing sections willdescribe the actualand possible

futurepracticesforPPMSmanagement. Thepractices presented

inthispapercanbeeconomicallyandenvironmentallyattractive

optionsand/oralternativestotheactualdisposal bylandfilling,

whichisbeingreducedorbannedinsomejurisdictions(Council

of the EuropeanCommunities, 1991; US EPA, 1994; Ljunggren Söderman, 2003; EC-BiPRO, 2007; Fytili and Zabaniotou, 2008; Monteetal.,2009;MfE,2010;MDDEP,2011;Gouvernementdu Québec,2012).These PPMSmanagement practices are

summa-rizedinFig.1whichunderlinesonecrucialandimportantquestion

regardingclimatechange:whatwillbetheimpactofthesePPMS

managementpracticesonGHGemissions?Severalcountriesmake

someorgreateffortstoapplyGHGemissionreductionplans.These

plansneedtoconsiderGHGemissioncontributionsfromthe

cur-rentPPMSmanagementpracticesinordertocomparetheformer

emissionstothoseoffuturemanagementpracticesasestimated

inlifecycleanalyses.Thus,oneofthefuturechallengeswillbeto

integratePPMSmanagementpracticesinscenarioswithlowerGHG

emissionsthanthecurrentscenarioswithoutincreasingthe

over-allmanagementcostsforpulpandpapermills.Lifecycleanalyses

willbecomeakeytooltoassessthechangesinPPMSmanagement

practicesandtheirimpactonGHGsbutatthemomentdataare

missingtofeedthemodels.

It is important to define which GHGs are targeted in

cur-rentandfuturescenariosofPPMSmanagementpractices.Inthis

review,GHGemissionsrefertocarbondioxide(CO2;Global

warm-ing potential for 100 years – GWP100=1), nitrous oxide (N2O;

GWP100=265)andmethane(CH4;GWP100=28),threeimportant

GHGsincludedinusualGHGinventories(IPCC,2006,2013).CO2

emissionsfrombiogenicsources(e.g.,biomass)areexcludedfrom

GHGinventories,asfarastheyareincludedinthecarbonstock

changesifthereisachangeofthelandusecategory(IPCC,2006).

Thus here,GHG inventoriesrefer to CO2 emissions from

non-biogenic sources (e.g.,fossilfuel), and N2O and CH4 from both

biogenicandnon-biogenicsources(IPCC,2006).

3. LandapplicationofPPMS

LandapplicationofPPMS isa commonalternativeoptionto

landfilling.PPMSisusedasanorganicsoilamendmentin

agricul-ture,silvicultureandlandreclamation,andcanbecompostedprior

tolandapplication(Table2).Onceappliedontotheland,PPMS

nutrients(Table1)arerecycledfromthebiomasstothesoil.

3.1. LandapplicationofPPMSinagriculture

Acompleteliteraturereviewhasbeenpublishedonthe

ben-efitsofusingPPMSasanorganicsoilamendmentinagriculture

(Camberatoetal.,2006),butfewstudiesreportedontheimpactof

thispracticeonGHGemissions(Baggsetal.,2002;Chantignyetal.,

2013).LandapplicationofPPMSinagricultureisperformedatthe

beginningand/ortheendofthegrowingseasonbyspreadingand

incorporatingtheorganicmatterintothesoil.Benefitsof

apply-ingPPMSarewellknowninagricultureasitincreasessoilquality

andconsequentlycropyield(Tables2and3).PPMSlandapplication

improvessoilfertilitybyincreasingorganicmattercontent(i.e.,

car-bon),nutrientcontent(e.g.,nitrogen,phosphorusandpotassium),

pH,aggregatesandwaterholdingandcationexchangecapacities

(Table3;Camberatoetal.,2006).PPMScanalsobeusedasaliming

agent(Camberatoetal.,2006;RatoNunesetal.,2008),whichcan

substitutecommerciallime.

LandapplicationofPPMSincreasessoilmicrobialactivityand

biomass as well as the abundance of invertebrates (Table 2).

Chantignyetal.(2000)reportedthatappliedde-inkingPPMS

stim-ulatedmicrobialgrowthandactivitywhileenzymeactivityleveled

off ata rateof 50Mgdryha−1 resulting froman excessive

car-boninput.Similarly,alaboratorystudyrevealedthatapplication

ofsecondaryPPMSfromKraft millatratesrangingbetween10

and50Mgwetha−1(PPMScollectedfromthelandfillsiteafterone

yeardisposal)increasedmicrobialandenzymeactivities(Gallardo

etal.,2010).However,thesametypeofPPMSappliedinafield

(5)

P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133 111

Table2

Summaryofthebeneficialusesofpulpandpapermillsludge(PPMS)forlandapplicationinagriculture,silviculture,landreclamationandcomposting.

TypeofPPMS Beneficialuses References

Agriculture

-Alltypes -ReviewsonthebeneficialusesofPPMSasasoilamendmentanda plantnutrientsource

Cabraletal.(1998) Camberatoetal.(2006) -Alltypes -Effectsonyieldsofvariouscrops(corn,barley,wheat,soybean,

cranberrydrybean,oat,sugarcane,turfgrass,tallwheatgrass,meadow foxtail,hardfescue,galega,blackmedic,yellowsweetclover,and strawberry)andsoilpropertiesoffineandcoarse-texturedsoils

Dolaretal.(1972) Fieldetal.(1996) NorrieandGosselin(1996) Trépanieretal.(1996) Fierroetal.(1997) Aitkenetal.(1998) Simardetal.(1998) Zibilskeetal.(2000) Legendreetal.(2004) Curnoeetal.(2006) N’Dayegamiye(2006,2009) PriceandVoroney(2007) RatoNunesetal.(2008) Tripathyetal.(2008) Fanetal.(2010) Gagnonetal.(2010) Aminietal.(2012) GagnonandZiadi(2012) Gagnonetal.(2012) Ziadietal.(2013) -Primary

-Secondary

-DefinitionofaPPMSapplicationindexusingGIStools Ribeiroetal.(2010) -Secondary(extractedfrom

alandfillsiteafter1year)

-Effectonsoilproperties(volcanicsoils),microbialcommunityand yields(crop:LoliumperenneL.)

Gallardoetal.(2010) Gallardoetal.(2012) -De-inking -DynamicsofPPMSdecompositionanditsroleonsoilmicrofloraand

structureinfine-texturedsoils: •Aggregateformation •Microbialbiomass •Enzymeactivity •Activecarbonpool

Chantignyetal.(1999) Chantignyetal.(2000)

-De-inking -Effectsoninvertebrates(variousearthwormspecies)infineand coarse-texturedsoils

PiearceandBoone(1998) PriceandVoroney(2008) -De-inking -Effectondinitrogenfixationinforagelegumes(alfalfa,birdsfoot

trefoil,redcloverandsweetclover)

Allahdadietal.(2004)

Silviculture

-Alltypes -Effectsonforeststandgrowth(variousstands:radiatapine,redpine, lodgepolepine,whitespruce,Douglas-fir,maple,alder,aspenand shrubwillow)andsoilproperties

Henry(1991)

KraskeandFernandez(1993) Henryetal.(1994) Cabraletal.(1998) Macyk(1999) Jacksonetal.(2000) Feldkirchneretal.(2003) Filiatraultetal.(2006) Quayeetal.(2011) -Primary -PPMSusedasherbicideonclear-cutareas Loetal.(1996) -Mixed -Effectofthetoxicchlorinatedorganiccompound

2,3,7,8-tetrachlorodibenzo-p-dioxinonbreedingbirdsandsmall mammals

VeraandServello(1994)

-De-inking -DevelopmentofaforestsoilamendmentcombiningPPMSwith residuesfromsteelandpulpandpaperindustries

Mäkeläetal.(2010)

Landreclamation

-Alltypes -ReviewsonthebeneficialusesofPPMSasanorganicamendmentfor therestorationandrehabilitationofreclaimedsites

Camberatoetal.(2006) LarneyandAngers(2012) -Alltypes -Effectsonthevegetation(species:bermudagrass,tallwheatgrass),

soilpropertiesandrunoffwaterqualityofreclaimedsites

Feagleyetal.(1994) Fierroetal.(1999) ShipitaloandBonta(2008) -De-inking(byproductof

paperrecycling)

-Effectsoninvertebrates(variousearthwormspecies)inthe restorationofaformerlandfillsite

Piearceetal.(2003)

Composting

-Alltypes -ReviewspresentingsomebeneficialusesofcompostedPPMS Camberatoetal.(2006) Hubbeetal.(2010) -Alltypes -VermicompostingofPPMSaloneorcombinedwithmunicipal

biosolidsordairysludge

Elviraetal.(1998) Quintern(2014) -Secondary

-De-inking

-Effectsofco-compostingwithotherresidues(i.e.,poultrymanure, chickenbroilerfloorlitter,hogmanure)on:

•Compostandsoilproperties •Crops(snapbean,potatoandwheat)

BaziramakengaandSimard(2001) CharestandBeauchamp(2002) Lalandeetal.(2003)

Charestetal.(2004) Geaetal.(2005)

(6)

112 P. Faubert et al. / Resources, Conservation and Recycling 108 (2016) 107–133 Table3

Summarizedresultsfromselectedstudiesontheeffectsoflandapplicationofpulpandpapermillsludge(PPMS)inagricultureonsoilandcropproperties.

TypeofPPMS C:N Applicationrate Soiltextureand

location

Crop MainPPMSeffects Reference

-Secondary −11:1 -Control,38,88and

120Mgha−1,equivalentto 0–40gkg−1 -188days,greenhouse study -CambicArenosol (cmAR)

-SandyloamCromic Cambisol(crCM) -Portugal

-Wheat -Soil:

IncreaseofpH,organicCandNcontents,availableP andexchangeableK

-Crop:

Rateof38Mgha−1:increaseofgrainyieldincrCM

soil

Rateof120Mgha−1:32%and36%decreaseofgrain

yieldincmARandcrCMsoils,respectively IncreaseofwheatNcontent

DecreaseofwheatZn,MnandCucontents

RatoNunesetal. (2008)

-Secondary −16:1–27:1 -Control,15and 25Mgdryha−1 -5-yrfieldstudy

-Sandyloam -Ontario,Canada

-Corn -Soil:

Increaseoforganicmatterbutlittleevidencefor long-termaccumulation

-Crop:

Rateof15Mgdryha−1:123%increaseofgrainyield Rateof25Mgdryha−1:152%increaseofgrainyield IncreaseofplanttotalNcontent

Curnoeetal.(2006)

-Mixed(frombleached Kraftpulp)with3% additionofmunicipal biosolids

−13:1–16:1 -Control,30,60and 120Mgwetha−1 -3-yrfieldstudy

-Loamysand -Ontario,Canada

-Silagecorn -Soil:

IncreaseofNO3-NcontentandPsaturationindex Increased(oratleastmaintained)organicmatter CdandZnaccumulations

Recommendationtonotexceedarateof60Mgwet ha−1tolimitcontaminationbyNO3,Pandmetals -Crop:

Rateof120Mgwetha−1:50%increaseofcornyield inthe3rdyear

Ratesof30Mgwetha−1withreducedmineralNand 60Mgwetha−1resultedinyieldscomparablewith thoseobtainedwithcompletemineralNfertilization CdandZnaccumulationsinplanttissues

Gagnonetal.(2010) -Mixed(60% primary–40% secondary) −14:1 -Control,18,36and 54Mgwetha−1 -6-yrfieldstudy

-Sandyloam -Clayloam -Quebec,Canada -Graincorn -Silagecorn -Barley -Soybean -Soil:

Sandyloam:increaseofNmineralization,microbial respirationratesandCcontent

Clayloam:increaseofthemacroaggregatesizes, meanweightdiameterofwaterstableaggregates, microbialrespirationratesandCcontent -Crop:

Sandyloam:increaseofsilageandgraincornyields Clayloam:increaseofgraincornyield

N’Dayegamiye (2009) -Mixed(60% primary–40% secondary) −19:1–24:1 -Control, 20–60Mgwetha−1 -3-yrfieldstudy

-Siltloam -Quebec,Canada

-Corn -Soil:

Rateof40Mgwetha−1:22%and16%increasesofC andNcontents,respectively

Rateof60Mgwetha−1:26%and16%increasesofC andNcontents,respectively

-Crop:

35–65%increaseofgrainyieldcomparedtothe control

N’Dayegamiye (2006)

(7)

P. Faubert et al. / Resources, Conservation and Recycling 108 (2016) 107–133 113 Table3(Continued)

TypeofPPMS C:N Applicationrate Soiltextureand

location

Crop MainPPMSeffects Reference

-ND −22:1–25:1 -Control,30,60and

90Mgwetha−1

-6-yrfieldstudy

-Loam -Quebec,Canada

-Graincorn -Soil:

IncreaseoforganicPavailability

PromotedtransformationofresidualPtomorelabile Pforms

IncreaseoftotalCandNcontents SupplyofCa

Fanetal.(2010)

-Mixed −22:1–26:1 -Control,30,60and 90Mgwetha−1 -9-yrfieldstudy: Years1–3:mixedPPMS fromthermo-mechanical pulp

Years4–9:mixedPPMS frombleachedKraftpulp

-Loam -Quebec,Canada

-Graincorn -Cranberrydrybean -Nattosoybean

-Soil:

Increaseoforganicmatterandallmajornutrients, exceptKandMg

-Crop:

Rateof90Mgwetha−1:19%increaseofgraincorn yield;26%increaseofcranberrydrybeanyield

GagnonandZiadi (2012)

-Twotypesofmixed PPMS

-De-inking

-Mixed:31:1,14:1 -De-inking:65:1

-Control,30and 60Mgwetha−1formixed andde-inkingPPMS -Greenhousestudy -Combinationofsandy soils:Gleyed Humo-FerricPodzol andOrthic Humo-FerricPodzol -Quebec,Canada -Mixed:

DrybeanwithPPMS atC:N31 BarleywithPPMSat C:N14 -De-inking Soybean -Soil: Mixed:

Rateof60Mgwetha−1(C:N=14):increaseofNO3-N availability

De-inking:

NO3-Nimmobilization;littlechangeinothersoil properties

-Crop: Mixed:

Drybean:rateof60Mgwetha−1increasedtotal plantN,PandCaaccumulations

Barley:increaseofgrainyield,strawandroot biomass,andtotalplantN,P,CaandMg accumulations

De-inking:

Soybean:higherstrawyieldat30Mgwetha−1than withthecontroland60Mgwetha−1;nosignificant effectongrainyield

Ziadietal.(2013) -Mixed (primary–secondary) -De-inking -Mixed:13:1–21:1 -De-inking: 50:1–71:1 -Mixed: Control, 4.24–6.90Mgdryha−1 -De-inking: Control, 25.9–38.1Mgdryha−1 -3-yrfieldstudy

-Clay

-Quebec,Canada

-Silagecorn -Soil:

De-inkingPPMSincreasedZnavailability -Crop:

MixedPPMS(2–3-yraverage): Yield:34%higherthancontrol

N-useefficiency:16kgdrymatterkg−1Napplied N-accumulation:30%higherthancontrol P-accumulation:13%higherthancontrol De-inkingPPMS(2–3-yraverage): Yield:43%lowerthancontrol

N-useefficiency:−20kgdrymatterkg−1Napplied N-accumulation:12%lowerthancontrol P-accumulation:34%lowerthancontrol

Gagnonetal.(2012)

-De-inking −219:1 -Control,50and 100Mgdryha−1 -3-yrfieldstudy

-Clayloam -Siltyclayloam -Quebec,Canada

-Alfalfa -Bromegrass -Sweetcorn

-Soil:

IncreaseofCcontentafter2years ResidualCattributedtode-inkingPPMS: Particulatefraction:remainedconstantat70–90% Lightfraction:decreasefrom>95%to<50% Increaseoftheproportionofsoilwater-stable aggregates(>1mm)from2to6times.Effectswere stilldetectableafter3years.

Chantignyetal. (1999)

(8)

114 P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133

Table4

Summarizedresultsfromselectedstudiesontheeffectsoflandapplicationofpulpandpapermillsludge(PPMS)insilvicultureonsoilandstandproperties.

TypeofPPMS Applicationrate Standdescription MainPPMSeffects Reference

-Primary(composted) -Control,20,40and 60Mgdryha−1 -1-yrfieldstudy

-Radiatapine(Pinus radiata)

-Soil:

•NreleasefromcompostedPPMSwas mostlyabsorbedbyplantrootswithin the20cmsoildepth;nosignificant movementbelowthisdepthwas measured

-Stand:

•Increaseofstemdiameterby40–66%, withthehighestapplicationrate resultinginhighergrowth •Increaseof17–37%ofthefoliarN concentration

•Decreaseofwaterstress

Jacksonetal.(2000)

-Mixed -Control,40Mgdryha−1

-2-yrfieldstudy

-Redpine(Pinusresinosa) -Soil:

•IncreaseofforestfloorpHby approximatelyoneunit

•IncreaseofexchangeableCa2+and

Mg2+by100%and60%,respectively

•Increaseofcation-exchangecapacity andbasesaturationby60%and34%, respectively

•OneyearaftermixedPPMS application,onlyN+andSO2− 4

concentrationsamongbasecations remainedfiveandthreetimeshigher thanthecontrol

•Whencomparedtotheharvesting operations,PPMShadmuchlessimpact onsoilbiogeochemicalprocesses

KraskeandFernandez (1993)

-Mixed -Ratesinthe1styear: Control,16and 33Mgwetha−1

-Ratesinthe2ndyear: Control,32and 64Mgwetha−1

-2-yrfieldstudy

-Maplestandsdominated bysugarmaple(Acer saccharum)

-Aspenstandsdominated byquakingaspen(Populus tremuloides)

-Soil: •Maplestands:

•Inthesoillayer0–10cm:increaseof soilpHby10%andCaconcentration with64Mgwetha−1

•IncreaseofunderstoryFeandMg concentrationswith64Mgwetha−1

•Aspenstands:

•IncreaseofsoilpH(0–10cmlayer)by 15%with64Mgwetha−1

•Forbothstands:

•IncreaseofunderstoryNandP concentrationswith64Mgwetha−1

-Stand:

•IncreaseoffoliarNconcentrationfor bothstandswith64Mgwetha−1

•NoPPMSeffectsonstandgrowths

Feldkirchneretal. (2003)

-De-inking -Control,73Mgwetha−1 -3-yrfieldstudyontwosites

-Shrubwillow(Salix dasyclados)

NoPPMSeffectsonsoilandstand properties

Quayeetal.(2011)

greatlythesoilmicrobialcommunityoffungiandbacteria(Gallardo

etal.,2012).Appliedde-inkingPPMSalsoincreasestheabundance

ofearthworms,thusimprovingsoilproperties(PiearceandBoone,

1998;PriceandVoroney,2008).

Severalstudieshavereportedanincreasedcropyieldfollowing

landapplicationofPPMS(Tables2and3).Oneoftheconclusions

fromthesestudieswasthatrepeatedapplicationsofmixedPPMS

withreducednitrogenfertilizerratewasasustainableagricultural

practice withthe potential to maintain crop quality and yield

andimprovesoilproperties(N’Dayegamiye,2006,2009;Gagnon

and Ziadi, 2012). It is important to consider the effect of the

PPMS C:N ratio on soil nitrogen immobilizationwhich in turn

affects crop yield (Camberato et al., 2006).Problems with soil

nitrogenimmobilizationcanbeavoidedbytheadditionofmineral

nitrogenfertilizercombinedwithappliedPPMSoruseoflegumes

(Camberatoetal.,2006).Optimumnitrogenrateswilldependon

thecrop,soilandPPMScharacteristics(Camberatoetal.,2006).

LandapplicationofPPMSinagricultureisgenerallywellaccepted

andcommoninareaswherepulpandpapermillsarelocalizedbut

somefactorscanlimitthispractice(Camberatoetal.,2006;Rashid

etal.,2006).Forinstance,heavymetalcontentisoneofthemajor

publicconcernsalthoughitisusuallylessthanmunicipalbiosolids

andbelowtheregulatorylimits(Camberatoetal.,2006).Insome

cases,other considerationssuchassite and soilcharacteristics,

distance from surface water and wells, depth to groundwater,

potential erosion and runoff, and proximity to floodplains or

wetlandscanbeobstaclestolandapplication(Camberatoetal.,

2006).However,PPMSlandapplicationisusuallywellmonitored

forthedosagesandtimesofapplicationandmustrespectthestate

rulesinordertoavoidsoilandwatercontamination(Camberato

etal.,2006;Rashidetal.,2006).

3.2. LandapplicationofPPMSinsilviculture

LandapplicationofPPMSispracticedinsilviculturetoimprove

soilpropertiesafterharvestingand promotestandregeneration

(Tables 2 and4).However,this practiceseemstobeless

com-monthantheapplicationonagriculturallandsaccordingtothe

fewerstudiesonthetopic(Tables2and4).Asitdoesonto

agri-culturalland,PPMSappliedasanorganicamendmentinmanaged

forestsaffectsoilpropertiesbyincreasingnitrogencontentaswell

(9)

P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133 115

applicationhasalsopositiveeffectsonmanagedstandgrowthsand

foliarnutrientstatus(Table4;Macyk,1999).Macyk(1999)reported

thatPPMSapplication(frommechanicalpulpmill)increasedwhite

spruce(Piceaglauca)andlodgepolepine(Pinuscontortavar.

latifo-lia)seedlingheightanddiameterbyupto2.5timescomparedwith

thecontrol.Applicationofcomposted primaryPPMS couldalso

beanacceptablerecyclingalternativeasitwasfoundtoimprove

plantationproductivity(Jacksonetal.,2000).However,contrasting

resultswerealsoreportedontheeffectofmixedandde-inking

PPMSapplicationsasitdidnotbenefitmaple,aspenandwillow

standgrowthsandaffectsoilproperties(Feldkirchneretal.,2003;

Quayeetal.,2011).

PrimaryPPMScanalsoactasherbicideonclear-cutareas

tar-getedforstandregenerations(Table2).Loetal.(1996)applied

primaryPPMSasasubstituteforherbicides,oneyearpriortothe

plantationofhybridpoplarcuttings.Weedgrowthwasdecreased

by75–90%andtheeffectlastedduringthesecondyearwithout

additionalapplication.

The use of mixed PPMS on forest soil for stand

regener-ation could have adverse effects on wildlife as they contain

2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD),achlorinatedorganic

compound,knowntobetoxicand/orsublethalonadultanimals

andbirdembryos(Table2).Nevertheless,VeraandServello(1994)

reportedthatmixedPPMSapplicationatarateof45Mgdryha−1on

regeneratingspruce-fir(Piceaspp.–Abiesbalsamea)foreststands

didnotaffectbreedingbirdsor smallmammalcommunities in

thefirstandsecondyearsfollowingapplication.However,species

knowntobeaffectedbyTCDDwereinnegligibleabundanceinthe

studiedforests,whichmostlikelyexplainedtheabsenceof

notice-ableadverseeffects(VeraandServello,1994).TCDDlevelsinPPMS

usedinsilvicultureshouldthereforeremainacauseforconcernas

moreresearchisneededontheirimpactsonthesurroundingfauna.

PPMScanbecombinedwithvariousindustrialresiduestobe

usedas forest soilamendments (Table2).Mäkelä et al.(2010)

developedsuchanamendmentbyincorporatingde-inkingPPMS

asareactiveaggregatewithotherresiduesfromFinnishsteeland

pulpandpaperindustries.Theresultingforestsoilamendmenthad

propertiescomparabletocommercialgroundlimestoneproducts

(Mäkeläetal.,2010).Thetotalconcentrationofchromeexceeded

theFinnishstatutorylimitvalueforforestsoilamendmentonly

undersevereleachingtests(Mäkeläetal.,2010).Thus,therecould

beapotentialtointegratePPMSwithresiduesfromdifferent

indus-triestoproduce forestsoil amendments as longas it doesnot

counteractclimatechangemitigationactions.

3.3. LandapplicationofPPMSforlandreclamation

PPMSisavaluablesoilorganicamendmentforland

reclama-tion(Table2).Examplesofdegradedsoilsareerodedagriculture

sites,oilandgaswellsites,minetailingsites,abandonedquarries

andtemporaryroadsonmanagedforestsites(LarneyandAngers,

2012).Suchtypesofsoilslackorganicmatter,whichcanbe

reme-diatedbythehighorganiccontentofPPMS(ShipitaloandBonta,

2008;LarneyandAngers,2012).Sludgeapplicationondegraded

soilscanalsoincreaseitsbiotabysustainingearthworm

commu-nities(Piearce etal., 2003).Moreover,soilaggregate formation

favoredbyPPMSapplicationcanbecomehotspots formicrobial

andfaunalactivity(LarneyandAngers,2012).Nitrogencontent

immediatelyavailable for plant growth(i.e., mineralized

nitro-gen)isalsoincreased,aslongasahighC:Nratiodoesnotfavor

nitrogenimmobilization(Larneyand Angers,2012;Thangarajan

etal.,2013),whichcouldseriouslyhinderalandreclamation

opera-tion.Cation-exchangecapacityofamendeddegradedsoilincreases,

especiallyifthePPMScompostedpriortotheirapplication(Fierro

etal.,1999;LarneyandAngers,2012).Asmeasuredforagricultural

land,PPMSapplicationondegradedsoilsincreaseswater-holding

capacity(Fierroetal.,1999;LarneyandAngers,2012),whichcanbe

animportantimprovementforcoarsetexturedsoils.Therefore,the

positiveeffectsofPPMSamendmentsondegradedsoilproperties

candecreaseitserosionandfavorplantgrowthonreclaimedland

(ShipitaloandBonta,2008;LarneyandAngers,2012).Shipitaloand Bonta(2008)showedthatmixedPPMSappliedtoreclaima

surface-coal mine at rates of 224 and 672Mgdryha−1 increased plant

growthanddecreasedsoilerosionfrom47Mgha−1 to1Mgha−1

comparedwiththecontrol.Althoughwaterrunoffwasdecreased,

itcontainedsignificantamountsofdissolvedorganiccarbonand

increasedthechemicaloxygendemand(ShipitaloandBonta,2008).

The authors concluded that PPMS application for surface-mine

reclamationcouldreducetheoperationalcostsasthesizeofthe

sedimentbasinscouldbesmallerthanstandardpracticesdueto

lowerwaterrunoff(ShipitaloandBonta,2008).

3.4. PPMScompostingpriortolandapplication

Composting of PPMS prior to land application enhancesits

overallqualityasasoilamendment(Table2;Jooetal.,2015).

Com-postingisabiologicalprocessthatconvertslignocellulosicresidues,

suchasPPMS,intoastabilizedandnon-hazardousmaterial,richin

humic-likesubstancesdevoidofpathogens(Hubbeetal.,2010).

Compostingofprimaryand de-inkingPPMSwithothertypesof

nitrogen-rich wastesdecreasesC:Nratio,preventssoil nitrogen

immobilizationandrenderstheresultingamendmentsuitablefor

plantgrowth(Camberatoetal.,2006;Hubbeetal.,2010).Some

studiesreportedontheco-composting ofPPMSwithmunicipal

biosolids,fertilizers,animalmanuresandchickenbroilerfloor

lit-ter(Table2).De-inkingPPMSwascompostedwithpoultrymanure

andchickenbroilerfloorlitterduring24weeksatthreeinitial

nitro-gencontentsof0.6%,0.7%and0.9%(CharestandBeauchamp,2002;

Charest et al.,2004).Results showed thatthe composting

pro-cessoccurredintwosteps:thefirsteightweeksconsistedofhigh

celluloseandhemicellulosedegradationfollowedbythe

decompo-sitionofresistantcarbonfractions(Charestetal.,2004).Microbial

biomasswasatthehighestlevelatthe12thweek(Charestetal.,

2004).Thecomposting mixturewithaninitialnitrogencontent

of0.6%yieldedthelowestC:Nratioafter24weeksandwasthe

besttoenhancede-inkingPPMScompostingbymechanicalturning

(CharestandBeauchamp,2002).TheinitialpHandC:Nratiowere

foundtobethekeyfactorsinthecompostingprocesshowever,the

24-weekcompostingperiodwasnotlongenoughtoproducefull

maturecompost(CharestandBeauchamp,2002).Thefinalproduct

mettherequirementsoftypesAAandAoftheCanadianCompost

Standards,exceptforcopperconcentrationcorrespondingtotype

B(CharestandBeauchamp,2002).Geaetal.(2005)showedthe

feasibilityofcompostingde-inkingandsecondaryPPMSaloneand

combinedwitheachotherbothatthelaboratoryandpilotscales.

Nobulking agentswereneededwhen secondaryPPMS was

co-compostedwithde-inkingPPMS.Compostingofde-inkingPPMS

didnot needanyamendments orbulking agents,which would

reducetheoperatingcostsiftheprocesswastobeappliedona

largerscale(Geaetal.,2005).Thepilotscalecomposting

experi-mentshowedthatC:Nratioofthede-inkingPPMSwasdecreased

(Geaetal.,2005).

4. PPMSenergyrecovery

PPMSisatypeofbiomassthatallowsavarietyofenergy

recov-erypractices(Table5),therebyreducingthevolumethatwouldbe

otherwisedirectedtolandfilling.Thesubstratesresultingfromthe

energyrecoveryofPPMS,suchasashesandbiochar(seeSection

4.3below),canalsoberecycledorreclaimedassoilamendments

(10)

116 P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133

Table5

Summaryofthetechnologiesinwhichpulpandpapermillsludge(PPMS)isusedinenergyrecoverypractices.

TypeofPPMS Technologies References

Combustion

-Alltypes -ReviewsorreportspresentingtechnologiesforPPMScombustion CANMET(2005)

Oraletal.(2005) Gavrilescu(2008) -Alltypes -Technologiesondryingpretreatmentsthatincreasetheenergyrecoveryfrom

combustion Krogerusetal.(1999) Freietal.(2006) Navaee-Ardehetal.(2006) Stoicaetal.(2009) Velisetal.(2009) -ND -Effectsofcombustionparameters(i.e.,watercontent,feedingrate,secondary

airinjection;lab-scaleexperimentwithaninternallycyclonedcirculating fluidizedbed)oncarbonconversionratio,meancarbonconversiontime, pollutantemissionratioandestimatedarealmassburningrate

Shinetal.(2005)

Anaerobicdigestion

-Alltypes -ReviewontheanaerobicdigestionofPPMS MeyerandEdwards(2014) -Alltypes -Modelingapproachevaluatingthepotentialforthesubstitutionoffossilfuelby

biogasfromthepulpandpaperindustryinSweden

MagnussonandAlvfors(2012) -Alltypes -ModelingapproachesestimatingGHGemissions Ashrafietal.(2013a)

Ashrafietal.(2013b) O’Connoretal.(2014) Ashrafietal.(2015) -Secondary -PretreatmentsaimingtoincreasethePPMSdigestibilityanddecreasedigester

sizes

ElliottandMahmood(2007) Woodetal.(2009) ElliottandMahmood(2012) -Secondary -MicroSludgeprocess:analkalinepretreatment(900mgL−1NaOHfor1h)to

weakenthecellmembranecombinedwithhighpressurehomogenizer(≈ 83MPa)tolysethecells,resultinginanincreasedbiogasyield

RabinowitzandStephenson(2005) Stephensonetal.(2005) Woodetal.(2009) Sahaetal.(2011) Caulfield(2012) -Secondary -Co-digestionwithmunicipalbiosolids:thesubstitutionofupto50%ofthe

mixturewithsecondaryPPMSdidnotdecreasetheCH4yieldcomparedwitha

fullmixtureofmunicipalbiosolids

Hagelqvist(2013)

-ND -Pretreatmentswithrumenmicroorganismstoincreaselignocellulose degradation

Gijzenetal.(1988) Gijzenetal.(1990) Pyrolysis

-Alltypes -AssessmentsofPPMS:

•Characteristicsforpyrolysis:e.g.,pH,electricalconductivity,cationexchange capacity,metalcontent,organicmatterandCaCO3contents

•Pyrolysisbehavior:e.g.,maximumweightlossrateanditstemperature •Products:gases,bio-oil,biochar

Méndezetal.(2009b) StrezovandEvans(2009) JiangandMa(2011) Louetal.(2012) Hossainetal.(2013) Ouadietal.(2013) Reckampetal.(2014) Bioethanolproduction -Fermentationprocesses:

•Separatehydrolysisandfermentation(SHF)

-De-inking Marquesetal.(2008)

-FromableachedKraftprocess PengandChen(2011)

-Fromachemicalpulpingprocess Zhuetal.(2011)

•Simultaneoussaccharificationandfermentation(SSF)

-Primaryandde-inking Kangetal.(2010)

-De-inking Larketal.(1997)

Marquesetal.(2008)

-FromableachedKraftprocess Fanetal.(2003)

FanandLynd(2007a,2007b) •Simultaneoussaccharificationandco-fermentation(SSCF)

-Primaryandde-inking Kangetal.(2010)

-ND ZhangandLynd(2010)

•Consolidatedbioprocessing(CBP)

-Primary Moreauetal.(2015)

Otherenergyrecoverypractices

-Hydrogen–biologicalproduction

-Primary Moreauetal.(2015)

-Secondary Valdez-Vazquezetal.(2005)

-ND Kádáretal.(2003)

Kádáretal.(2004) -Hydrogen–Productionwithsupercriticalwaterprocesses:

•Supercriticalwatergasification(SCWG)

-Secondary Zhangetal.(2010)

•Supercriticalwateroxidation(SCWO)

-Alltypes •ReviewontheprocessesforPPMS MahmoodandElliott(2006)

-ND Crainetal.(2000)

-Directliquefaction–productionofliquidfuel

-Secondary XuandLancaster(2008)

Zhangetal.(2011) ND:PPMStypenotdeterminedorspecifiedinthestudy.

(11)

P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133 117

practiced directlyby combustionor indirectly by

microbiologi-caland physicochemical processesleadingtotheproduction of

biogas(throughanaerobicdigestion)andbiofuel(through

pyrol-ysisandbioethanolproduction).AcompleteprocessofPPMSto

energyrecoverytypicallyincludes(1)dewateringand(2)drying

toincreasetheeffectivethermalheatcapacity,(3)thermal

conver-sionorrecoveryofbiofuelordirectuseoftheaqueousphasein

whichPPMSisprocessedforbiofuelproduction(CANMET,2005).

Theintensityofthedewateringanddryingprocessesdependon

thetechnology.Combustionrequiresdewateringanddryingprior

toburning,dewateringisalsoneededforanaerobicdigestionfor

biogasproductionwhereasfermentation forethanol production

canusePPMSwithlowsolid content(aslow as20%),reducing

energyconsumptionforpretreatments(CANMET,2005;Meyerand

Edwards,2014).

4.1. CombustionofPPMS

SomepapermillsusePPMSasarenewablesourceoffuelin

biomassboilersandrecoveryfurnaces(Table5).Themainbenefits

ofusingPPMSasfuelare:thehygienicdisposal,volumereduction,

recoveryofthermalenergybyproductionofsteamorsuperheated

water usedfurtherforheat inthepaperproduction operations

and power generation, for instance electricity (CANMET, 2005;

Gavrilescu,2008).PPMS combinedwithotherbiomassresidues

fromthepulpandpaperindustrycanbeaneconomicallyattractive

option.Theuseofbiomassinsteadoffossilfuelreducestheoverall

operatingcostsatthemillsandmayleadtofuelself-sufficiency

(Gavrilescu,2008).ThereportfromCANMET(2005)suggeststhat

5–34%ofthethermalloadfromfossilfuelmaybesubstitutedwith

PPMS,basedonadrysludgegenerationrateof5–15%ofmill

pro-ductionanddependingonthenetenergyconsumptionofthemill.

OneofthemainlimitingfactorsofusingPPMSasfuelisthe

highwatercontent(CANMET,2005;Gavrilescu,2008).Dewatering

thesludge isessential inorder toachieve anefficient

combus-tion(CANMET,2005;Ruohonenetal.,2010).PPMStypeaffectsthe

dewateringpotential:mixedPPMS,whichcontainshigher

propor-tionsofcellulosicfibers,iseasiertodewaterthande-inkingPPMS

containinginkparticles,adhesives,mineralfillers(e.g.,kaolin,clay

and calcium carbonate) and some cellulosic fibers (Gavrilescu,

2008;Mäkinenetal.,2013).Mechanicaldewateringisacommon

practiceresultingindrycontentsbetween15%and50%whereas

thecriticallevelis ∼42%for anefficientandstablecombustion

(Krogerus et al.,1999; Navaee-Ardeh et al.,2006; Stoica et al.,

2009).Biologicaldrying(biodrying)isapracticethatconsistsof

dryingPPMSwithventilatedheatgeneratedbymicrobialactivity

fromthePPMSitself (Navaee-Ardehetal.,2006).Biodryingisa

promisingtechnologythatcanbecost-effective(Freietal.,2006;

Navaee-Ardehetal.,2006).

ThelowheatingvalueofPPMSisalsoalimitingfactorfor

com-bustion(Table1).Sludgeisusuallyco-firedinsmallproportions

withother residues from paper mills (Gavrilescu, 2008; Stoica

et al., 2009). Dewatered PPMS has a heating value commonly

rangingbetween0and6MJkg−1 drysolidsbutcanreachupto

25MJkg−1drysolidsinrarecases(Table1;ElliottandMahmood,

2007).Thus,thecommonPPMSheatingvaluesarelowcompared,

forinstance,withwoodthathasheatingvaluesrangingbetween

17 and 21MJkg−1 dry solids (Raitio, 1992; Mabee and Roy,

2003).TheheatingvalueofmixedPPMSondrybasiscanreach

14–19MJkg−1,whichissimilartowoodandpeat,butonlyifthe

sludgeisdriedtoabovethecriticallevelof42%drynessforgood

combustion(Navaee-Ardehetal.,2006).WhenPPMSismixedwith

barkandotherligninresiduesfromthepapermills,theheating

value can reach up to 26MJkg−1 dry solids (Mabee and Roy,

2003).Combustioninfluidizedbedboilerseemstobethemost

efficienttechnologytorecoverenergyfromPPMSnowadayswhen

consideringthelowheatingvalue,economicandenvironmental

aspects(MabeeandRoy,2003;CANMET,2005;Gavrilescu,2008).

4.2. AnaerobicdigestionofPPMS:biogasproduction

Anaerobicdigestionoforganicmaterialisabiologicalprocess

leading tobiogasproduction, which is furtherusedtoproduce

energy.Severaltypesoforganicwastescanbeprocessedby

anaer-obicdigestionsuchasfoodwastes,municipalbiosolids,manure

andagriculturalwastes(Wangetal.,2008;MagnussonandAlvfors,

2012).MagnussonandAlvfors(2012)investigatedthepotentialof

usingPPMSasasubstrateforbiogasproductioninSweden.The

modelingapproach demonstratedthatonethird ofthenational

biogasproductioncouldbeachievedifallpulpandpapermillsin

SwedenwouldusePPMSasasubstrateforanaerobicdigestion.This

biogascouldbeusedinthetransportsectortosubstitutefossilfuel,

whichwouldbeastepforwardtoreducetheimpactofthissector

onclimatewarming(MagnussonandAlvfors,2012).

The modeling approach of Magnusson and Alvfors (2012)

encourages togo forward withanaerobic digestion, but biogas

production fromPPMS isin itsinfancy and facestechnicaland

economicchallengessuchasinvestmentcoststoinstallthe

tech-nologyandtheappropriatepretreatmentleadingtoanincreased

biogas yield (Elliott and Mahmood,2012; Meyer and Edwards,

2014;Ashrafietal.,2015;Sawatdeenarunatetal.,2015).Actual

biogasproductionfromPPMS canbecostlyfor papermillsdue

tolongretentiontimesrequiredbytheprocessandlarge

invest-mentstoinstallefficientbioreactors(ElliottandMahmood,2012;

MeyerandEdwards,2014;Sawatdeenarunatetal.,2015).However,

thereviewofMeyerandEdwards(2014)showedthatpretreated

PPMS leadstoincreasedbiogas yield,themost effective

meth-odsbeingthermalandmicrowavetreatmentsandhigh-pressure

homogenization.Severalstudiesreportedonpretreatmentsthat

candecreasetheretentiontimeanddigestersizetoproduce

bio-gasandincreasethebiodegradabilityofPPMS(Table5;Carlsson

etal.,2012).RetentiontimesforanaerobicdigestionofPPMSin

conventionalbioreactorsusuallyusedformunicipalbiosolidscan

rangefrom20to30days,butaseriesofpretreatmentshavebeen

reviewedandappliedatthelaboratoryscaletoreducethe

reten-tiontimedowntothreetosevendays(ElliottandMahmood,2007,

2012).Rumenmicroorganismswerefoundtohavehighcellulolytic

activityandincreasetherateoflignocellulosedegradation

com-paredwithconventionalinoculasuchasanaerobicsewagesludge

(Gijzenetal.,1990;Yueetal.,2013;Sawatdeenarunatetal.,2015).

MeyerandEdwards(2014)concludedthatfutureresearchshould

focusontherelationshipsbetweentheanaerobicdigestibilityand

PPMSproperties,asbiogasyieldsfromnon-pretreatedPPMSare

largelyvariable.Moreover,moreresearchshouldbeconductedon

theanaerobicdigestionofprimaryPPMSasitisthemost

abun-dant(MeyerandEdwards,2014).Forinstance,inCanadianpulp

andpapermills,theaverageratioprimary:secondaryPPMSis

esti-matedtobe70:30(ElliottandMahmood,2005),althoughitcan

differamongmills(e.g.,50:50,40:60or67:33;Rashidetal.,2006;

Stoicaetal.,2009;MeyerandEdwards,2014;PervaizandSain,

2015).Futureresearchshouldalsofocusontheanaerobic

diges-tionofthehighcontentoflignocellulosicmaterialinPPMS(Meyer

andEdwards,2014;Sawatdeenarunatetal.,2015).Thus,new

tech-nologiesforbiogasproductionfromPPMSareemergingandhave

aconcretepotentialtobeusedinthenearfuture.

4.3. PPMSpyrolysis

Pyrolysisdecomposesorganicmatterbythermochemical

con-versionpracticedatelevatedtemperatureintheabsenceofoxygen.

Theendproductsofpyrolysisaregasesandliquidsthatareused

(12)

118 P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133

charcoal,commonlynamedcharorbiochar.Energyproducedby

pyrolysiscanbeusedinpulpandpapermillsorsustainsthe

pyrol-ysisitself.Forinstances,bio-oilcanbeadaptedandusedinmodified

dieselengines,orinconventionalengines,ifblendedwith

conven-tionalfuel(Ouadietal.,2012,2013).Therearestudiesreportingon

theuseofPPMSasanorganicinputforpyrolysis(Table5),another

alternativetolandfilldisposal.

De-inkingPPMScanbeusedforenergyrecoverybypyrolysis

(Louetal.,2012;Ouadietal.,2013).Papermillsthatrecyclepaper

needhighamountsofenergywhichcouldbepartlyproducedby

pyrolysisofde-inkingPPMSatthemillsite(Ouadietal.,2013).Lou

etal.(2012)reportedthattubularfurnacepyrolysisofde-inking

PPMS,asa low-qualitybiomass,producedhigh-qualityfueland

chemicalsonapilotscale.Yieldsfrompyrolysisat800◦Cof

de-inkingPPMSwere46%assolids,30%asgaseousproducts(CO2,CO,

CH4,C2H4andH2)and24%asbio-oil(Louetal.,2012).Thus,some

ofthegasescanbeconsideredasfuelandenergysources(Louetal.,

2012).Ouadietal.(2013)addressedsomeoftheresearchquestions

raisedbyLouetal.(2012)byapplyinganintermediatepyrolysis

techniqueusingdriedandpelletizedde-inkingPPMStoproduce

combinedheatandpower.Bio-oilproducedbythistechniquehad

ahighheatingvalueof36–37MJkg−1,similartobiodiesel.This

bio-oilwasfullymisciblewithbiodieselandcouldbeusedinmodified

orconventionaldieselengines(Hossainetal.,2013;Ouadietal.,

2013).Theobtaingaseshadaheatingvalueof5–6MJNm−3(Ouadi

etal.,2013).Thisintermediatepyrolysistechniquedidnotfully

decomposetheorganicmatterfromde-inkingPPMS,which

pro-ducedsolidresidueswithaheatingvalueof3–5MJkg−1(Ouadi

etal.,2013).Thistechnique wasfeasiblein principleandcould

beappliedatsecondaryfiberpapermillswithapotentialpayback

periodoflessthanfiveyearsintermsofsavingsfromthechanges

inthedisposalpracticesandenergyrecovery(Ouadietal.,2013).

Bio-oilandbiocharcanbeusedforotherpurposesthanenergy

recovery.Componentsofthebio-oilproducedbythepyrolysisof

de-inkingPPMShavethepotentialformanyusesonceisolated(Lou

etal.,2012).Forinstance,toluenecanbeusedasanorganicsolvent

(Louetal.,2012).Thecompoundo-cresolcanbeusedinthe

syn-thesisofantioxidants,adhesivesandexplosives(Louetal.,2012).

Phenolscanbeusedforthesynthesisofphenolicresinand

syn-theticfiberwhereasnaphthaleneisactuallyusedinspices,plastics,

syntheticdyesandasanintermediateforcertaindrugs(Louetal.,

2012).

4.4. BioethanolproductionfromPPMS

PPMS is a source of lignocellulosic biomass which is used

forbioethanolproduction,classifiedassecond-generationbiofuel

(Mtui,2009;Demirbasetal.,2011;Joshietal.,2011;Nigamand Singh,2011;Guoetal.,2015).Materialsusedforsecond-generation

biofuel generally are from the biological or thermochemical

processingofagriculturallignocellulosicresidues,whichare

non-ediblecropresidues(NigamandSingh,2011).Second-generation

biofueldoes not competefor arable landsas it is thecase for

first-generationbiofuelproducedfrombasicfeedstock(i.e.,sugar,

starch,vegetableoiloranimalfat;Demirbasetal.,2011;Nigam

andSingh,2011;Guoetal.,2015).Commercial-scaleproduction

ofsecond-generationbioethanolfromlignocellulosicbiomasshas

recentlybeenreached(Guoetal.,2015),althoughfurtherresearch

isneededontheprocessestobeeconomicallyviable(Baeyensetal.,

2015).Briefly,thereviewofBaeyensetal.(2015)discussedonfive

possibleinterventionsthatcouldimprovebioethanolproduction:

(1)energyintegrationwithinthecurrentproductionprocess,(2)

useofveryhighgravityfermentation,(3)developmentofhybrid

systems,(4)finalethanoldewateringtofuelgradeand(5)other

developmentssuchascross-flowfiltrationofbioethanol

fermen-tationbroth,noveldistillationconceptsandimprovedbioethanol

productionplant.Thus,PPMScouldbeanoptionfortheproduction

ofsecond-generationbiofuel,whichwouldincreasethelanduse

efficiencyandhavelowerenvironmentalimpactscomparedwith

first-generationbiofuel(Fargioneet al.,2008;NigamandSingh,

2011;Moralesetal.,2015;Nandaetal.,2015).

SeveralstudiesreportedonPPMSconversionintobioethanol

(Table 5). Bioethanolproduction is economically feasible when

the process leads to concentrations above 4% (w/v) which is

achievableandcanbesurpassed(ZacchiandAxelsson,1989;Fan

etal., 2003;Kanget al.,2010; Zhangand Lynd,2010).

Conver-sionintobioethanoliscontrolledbydifferentfactorssuchasthe

fermentation process, thecellulose and hemicellulose contents

and the type of PPMS. Three common fermentation processes

havebeenappliedtoPPMSfortheirconversionintobioethanol:

separate(orsequential)hydrolysisandfermentation(SHF),

simul-taneoussaccharificationandfermentation(SSF),andsimultaneous

saccharificationand co-fermentation(SSCF;Table5).Moreover,

consolidated bioprocessing(CBP), which is the direct microbial

conversionofcellulosetoethanol,wasrecentlyperformedwith

primaryPPMS(Moreauetal.,2015).Differentbacteriaareusedin

theSHF,SSF,SSCFandCBPprocessesaffectingthebioethanolyields.

Energyrequiredfortheconversioncanalsodependontheprocess

used,asithasbeenreportedforsugarcanebagassefollowingan

exergyanalysis(Ojedaetal.,2011).Asmentioned,PPMSconversion

intobioethanolalsodependsonthecellulosecontentasitwill

pro-portionallyaffecttheconcentrationsinfermentablesugars(Monte

etal.,2009;ZhangandLynd,2010)andthePPMStypes(e.g.,from

Kraftvs.thermo-mechanicalprocesses)affectthebioethanolyields

(Monteetal.,2009).Technologicaladvanceshavebeenachievedto

convertPPMSintosecond-generationbioethanol.Thefive

inter-ventionsdiscussedbyBaeyensetal.(2015)couldbeconsideredto

upscaletheproductionatlowcostsforpulpandpapermills.

4.5. Otherenergyrecoverypractices

Biowastes,biomassandindustrialwastewaterhavebeenused

for thebiological productionof hydrogen(Mizunoet al.,2000;

Noikeetal.,2002;Kádáretal.,2003,2004;Valdez-Vazquezetal., 2005;Kotharietal.,2012;RamaMohan,2015;SharmaandGhoshal,

2015).Hydrogenisanenergycarrier(notafuel)andisoneofthe

potentialoptionstoreplacefossilfuel,asitisarenewablesource

withamoderatefootprintonGHGemissionsfollowingcombustion

(Kotharietal.,2012;AmooandFagbenle,2014).PPMShasbeen

investigatedasa potentialresiduefor thebiological production

of hydrogen (Table 5). Anaerobic fermentation of PPMS using

thermophilebacteriahadahydrogenyieldthatremainedlower

comparedwithothertypesofsugars,suchasglucoseandxylose

(Kádáretal.,2003,2004).Asuccessiveapplicationofthree

incu-bationcyclesofPPMSwithmicrobialconsortiaofsolidsubstrate

anaerobicdigestersincreasedthehydrogenyieldcomparedwith

oneincubationcycle(Valdez-Vazquezetal.,2005).Thisprocedure

wasnamed as“intermittently vented solid substrate anaerobic

hydrogengeneration”(IV-SSAH)andclaimedtobeafeasible

strat-egyforobtaininghigherhydrogenyieldsfromthefermentationof

industrialsolidwastes(Valdez-Vazquezetal.,2005).Moreauetal.

(2015)succeededinproducingbiohydrogenfromprimaryPPMS

fermentation,buttheirworkwasconductedatthelaboratoryscale.

Biological production of hydrogenfrom PPMS and other types

ofbioindustrialwastesisstillinitsearlystageandneedfurther

developments(Kotharietal.,2012).Inidealconditions,about40%

ofthechemicalenergyinindustrialwastewatercanbeconverted

intohydrogenenergywhileby-productsfromtheprocess(acids

andalcohols)requirefurthertreatmentsforfullenergyrecovery,

which requires the development of a sustainable technology

(Kotharietal.,2012).Isolationsofnewbacterialstrainsresulting

(13)

P.Faubertetal./Resources,ConservationandRecycling108(2016)107–133 119

combinationwithgeneticengineering,reactoroptimizationand

useoflowcostrawmaterials(Kotharietal.,2012).

Technologies involvingsupercritical water can also produce

hydrogenfrombiomass.Supercritical water hasa pressure and

temperaturethatare,atorabovetheircriticalpoints(22.1MPa

and374◦C).Inthesupercriticalphase,waterhasahighdiffusion

capacity,alowviscosityandactsasasolventfororganicmolecules

(Gloynaetal.,1994;Matsumuraetal.,2005;MahmoodandElliott, 2006;Yaniketal.,2007;Zhangetal.,2010).Supercriticalwater

treatmentsweresuccessfullyappliedtoPPMStoproduceenergy

andremovecontaminants(Table5).Supercriticalwater

gasifica-tion(SCWG)produceshydrogenfromthebiomasswiththemain

advantageofhavingahighsolidconversion,i.e.,withloworno

for-mationofcharandtar(XuandAntal,1998;Matsumuraetal.,2005;

Yaniketal.,2007;Zhangetal.,2010).SCWGfrombiomassalso

producesothergasessuchasCH4,CO2andCO(Yaniketal.,2007).

Unlikecombustionandpyrolysis,biomasstreatedwith

supercriti-calwaterdoesnotneedtobedewatered/driedpriortotheprocess

(Furness et al.,2000; Mahmoodand Elliott, 2006; Zhanget al.,

2010),whichisoneofthebenefitsofthistechnologyasPPMS

dewa-teringcanbecostly.Zhangetal.(2010)reportedthatsecondary

PPMStreatedbySCWGhadthehighestgasyieldwith37.7%ofPPMS

(ondrybasis) convertedintogases,fromwhichhydrogenyield

was14.5molH2kg−1.GasyieldfromsecondaryPPMSwashigher

thanmunicipalbiosolids treatedby SCWG(Zhang et al.,2010).

Supercriticalwateroxidation(SCWO)ofsecondaryPPMShasbeen

reviewedbyMahmoodandElliott(2006).SCWOproduceswater,

CO2,nitrogen(withouttheformationofNOXandSOX),acidsand

salts(MahmoodandElliott,2006;Wangetal.,2008).SCWOwas

efficientin removingcontaminantsfromvarioustypesofPPMS,

whichcouldbeappliedinsludgeremediationtechnology(Crain

etal.,2000).SCWOalsohasthepotentialtoproduceenergy(hot

waterandhigh-pressuresteam)asreportedforthetreatmentof

municipalbiosolids (Svanströmet al.,2004;Wangetal.,2008).

SCWGandSCWOprocessesappliedonvarioustypesofwetbiomass

(e.g.,sewagesludge,woodsawdustandglucose)werereportedto

beeffectivefortheproductionofhydrogen(Xuetal.,1996;Xuand

Antal,1998).

Directliquefactionisaone-stepprocessthatconvertsbiomass

intoliquidfuelwithoutthegasificationstep(Behrendtetal.,2008).

Directliquefactionispracticedattemperaturesvaryingbetween

150and420◦C,lowerthanpyrolysis,andpressuresrangingfrom

0.1to24MPa(Behrendtetal.,2008).Watercanbeaneffective

sol-ventforliquefaction,whichisoneofthebenefitswhentheprocess

isappliedtoPPMSasdewateringisnotrequired(Table5;Zhang

etal.,2011).Catalystsarealsousedduringliquefactioninorderto

improvethefuelyieldanddecreasetheformationofchar(Xuand

Lancaster,2008;Zhangetal.,2011).XuandLancaster(2008)

per-formedliquefactionexperimentsondriedsecondaryPPMSpowder

insuspensionindistilledwaterusingabombreactor(temperature

rangeof250–380◦C),withandwithoutcatalysts.Yieldsofheavy

andwatersolubleoilwereaffectedbytheliquefaction

tempera-ture,residencetime,initialbiomassconcentration,catalystsand

liquefactionair(inertorreducing).Thehighestheavyoilyieldwas

26%withaheatingvalueabove35MJkg−1,obtainedinthe

pres-enceofacatalyst(0.1MCa(OH)2)andapressurizedhydrogenous

(2MPaofH2)air(XuandLancaster,2008).XuandLancaster(2008)

pointedoutthattheyfirstaimedtounderstandthecontrolling

fac-torsoftheprocessandthatfutureworkshouldberealizedatthe

commercial-scale,wheresecondary PPMSistreated asreceived

(i.e.,withoutanydrying treatment).Zhanget al.(2011)

experi-mentedontheco-liquefactionofvariousratiosofsecondaryPPMS

mixedwithwastenewspapersusingdifferentcatalysts.Theheavy

oilyieldincreasedattemperaturesrangingbetween250and350◦C

withamaximumof28%at350◦C.Theheavyoilyieldincreasedto

34.4%whenusingthemosteffectivecatalystHCO2H(Zhangetal.,

2011).Theirexperimentswereperformedinabench-scalebatch

reactor.

5. IntegrationofPPMSinmaterials

TherearenumerousoptionsforusingPPMSasamaterial

com-ponent(Table6).Itisintegratedinavarietyofmaterialssuchas

biocompositesofwoodandplasticandotherconstruction

materi-als.PPMSisalsousedintheadsorbent–absorbentproductions.

5.1. Biocomposite:PPMSinwoodandplasticmaterials

PPMScontainsorganic(e.g.,cellulosefibers)andinorganic

com-ponents(e.g.,clay,calciumcarbonate)thatimprovestheproperties

of composites such as polypropylene, polyethyleneand rubber

(Table6).Forinstance,PPMScanreplacetheinorganicfillersin

theproductionofrubberandpolypropylene–ethylenepropylene

dieneterpolymer(PP-EPDM;usedinrubberindustry)composites

toimprovetheproductpropertiesandreducetheproductioncost

(Ismailetal.,2005,2006).Theirincorporationincreasedthetensile

modulus(i.e.,Young’smodulusorelasticity)butdecreasedthe

ten-silestrengthandelongationatbreak(Ismailetal.,2005,2006).The

sludgealsoincreasedthethermalstabilityabove500◦Candwater

absorptionofPP-EPDMcomposites(Ismailetal.,2005).

PPMScanbeusedinthecompositionofwoodand

polyethyl-enematerials(Table6).Soucyetal.(2014)determinedtheimpact

ofusingprimaryandsecondaryPPMS,fromthermo-mechanical,

chemithermomechanicalandKraftpulping,onthedevelopmentof

highdensitypolyethylene-wood-plasticcomposites(HDPE-WPC).

HDPE-WPCpropertieswerebetterwhenusingPPMSfromKraft

pulping,withitshighcellulosiccontentandlongerfibers,compared

withPPMS produced bythermo-mechanical and

chemithermo-mechanicalpulping(Soucyetal.,2014).Thecompositestrength,

waterabsorptionandthicknessswellingimprovedbyincreasing

PPMS proportion (Soucy et al., 2014). However,Hamzeh et al.

(2011)reportedthatwaterabsorptionandthicknessswellingwere

decreasedwithincreasingPPMSproportionusingdifferent

PPMS-composite formulationsthanSoucyetal.(2014).PrimaryPPMS

fibersreinforcedHDPE-WPCwhereassecondaryPPMScontent

neg-ativelyaffectedthephysicalandmechanicalHDPE-WPCproperties

(Soucyetal.,2014).

PPMScanalsobeusedtosubstitutewoodintheproduction

ofpallets(Table6).IntheU.S.,palletsmadeofwoodrepresent

approximately95%ofthepalletmarketshareandtheannual

pro-ductionisestimatedto450millionnewpallets(Kimetal.,2009).

Thesubstitutionof10%ofwoodparticlebyPPMSresultedin

pal-letshavingthesamemechanicalpropertiesthanpalletsmadewith

onlywoodparticlesandmeetingtheminimumrequirementsfor

standardmanufacturing(Kimetal.,2009).

Some studies demonstrated that PPMS can be incorporated

(partlyortotally)intheproductionofmediumdensityfiberboards

(MDF)andparticleboards(Table6).PrimaryandsecondaryPPMS

havenaturaladhesivepropertiesenabledbytheirfiberandprotein

contents,whichcanbeusedasafibersourceandparticlebinders

inMDFandparticleboardproductions(Migneaultetal.,2011a,

2011b; Pervaizand Sain,2011,2012;Xing etal.,2012a, 2012b,

2013).SecondaryPPMSwastestedasaco-adhesiveinMDFresin

(Migneaultetal.,2011b;Xingetal.,2012a,2012b,2013),itsuse

reducedtheformaldehydeemissionsbyupto68%comparedwith

controlpanelsanddidnotaffecttheinternalbondstrengthofthe

MDFproduct(Migneaultetal.,2011b).However,theshortfibers

lengthandthehighnon-fibrouscontentofthesecondaryPPMS

negativelyaffectedthemechanicalpropertiesoftheMDF,although

itstillmetthehigheststandardsoftheAmericanNationalStandard

Figure

Fig. 1. Overview of the actual and emerging management practices for pulp and paper mill sludge regarding the unknown effects on the greenhouse gas emissions.

Références

Documents relatifs

particles of calcite by means of aqueous carbonation of pure portlandite at high pressure of CO

Deviations from international standards of TB care were observed in the following areas: surveillance (no information available on patient outcomes); infection control (lack

Luiz Domeignoz Horta, Aymé Spor, David Bru, Marie-Christine Breuil, Florian Bizouard, Laurent Philippot. To cite

With recognition that overweight and obesity are major risk factors for cancer, cardiovascular disease, diabetes, and many other health conditions, the difference between

1) The use of process mapping and task analysis to improve an SME risk assessment in the food processing industry and as a cornerstone for participatory risk assessment

According to their typical rainwater management practices (combined sewer system, rainwater network, agricultural drainage,.. combination of different techniques, no

Interdisciplinary challenges, which are perhaps the most im- portant from a societal point of view, include f) the inter- play between hardcore data management techniques/tools

According to their typical rainwater management practices (combined sewer system, rainwater network, agricultural drainage,.. combination of different techniques, no