• Aucun résultat trouvé

A simplified framework to assess the feasibility of zero-energy at the neighbourhood / community scale

N/A
N/A
Protected

Academic year: 2021

Partager "A simplified framework to assess the feasibility of zero-energy at the neighbourhood / community scale"

Copied!
9
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Energy

and

Buildings

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

A

simplified

framework

to

assess

the

feasibility

of

zero-energy

at

the

neighbourhood/community

scale

Anne-Franc¸

oise

Marique

,

Sigrid

Reiter

UniversityofLiege,LEMA(LocalEnvironment:Management&Analysis),ChemindesChevreuils,1B52/3,4000Liege,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7March2014

Receivedinrevisedform13June2014 Accepted1July2014

Availableonline9July2014 Keywords:

Zero-energybuilding Zero-energycommunity Zero-energyneighbourhood Dailymobility

On-siterenewableenergy Urbanform

Buildingstock Retrofitting Energymutualisation

a

b

s

t

r

a

c

t

Zero-energybuildings(ZEBs)areattractingincreasinginterestinternationallyinpoliciesaimingatamore sustainablybuiltenvironment,thescientificliteratureandpracticalapplications.Although“zeroenergy” canbeconsideredatdifferentscales(e.g.,community,city),themostcommonapproachadoptsonlythe perspectiveoftheindividualbuilding.Moreover,thefeasibilityofthisobjectiveisnotreallyaddressed, especiallyasfarastheretrofittingoftheexistingbuildingstockisconcerned.Therefore,thispaperaims firsttoinvestigatetheopportunitytoextendthe“zero-energybuilding”concepttotheneighbourhood scalebytakingintoaccounttwomainchallenges:(1)theimpactofurbanformonenergyneedsand theon-siteproductionofrenewableenergyand(2)theimpactoflocationontransportationenergy consumption.Itproposesasimplifiedframeworkandacalculationmethodthatisthenappliedtotwo representativecasestudies(oneurbanneighbourhoodandoneruralneighbourhood)toinvestigatethe feasibilityofzero-energyinexistingneighbourhoods.Themainparametersthatactupontheenergy balanceareidentified.Thepotentialof“energymutualisation”attheneighbourhoodscaleishighlighted. Thispapertherebyshowsthepotentialitiesofanintegratedapproachlinkingtransportationandbuilding energyconsumptions.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

1.1. Zero-energyatthebuildingscale

Thebuildingsectorisamajorconsumerofenergyworldwide [1–3].Forexample,itrepresentsover40%oftheoverallenergy consumedintheEuropeanUnion[1–3].Inthecurrentcontextof growinginterest in environmentalissues, reducing energy con-sumption in the buildingsector is an important policy target. Politicians,stakeholdersandevencitizensarenowawareofthe issueofenergy consumptionin buildings,especially asa result ofthepassageoftheEuropeanEnergyPerformanceofBuildings DirectiveanditsadaptationtotheMemberStates.Itsmainaim wastoestablishminimumstandardsfortheenergyperformance ofnewbuildingsandexistingbuildingslargerthan1000m2subject tomajorrenovation[4].Anothermajortrendcommonlyproposed toreducetheenergyconsumptionoftheexistingbuildingstockis theimprovementofthethermalperformanceoftheenvelopeof existingbuildings(sometimesincombinationwithmoreefficient heating/ventilationsystems)[1,3].Asaresult,newconstruction

∗ Correspondingauthor.Tel.:+3243669367;fax:+3243662909. E-mailaddress:afmarique@ulg.ac.be(A.-F.Marique).

and renovationstandards ((very)low-energystandards,passive housestandards)[5–7]havebeendevelopedtodrastically min-imisetheenergyconsumptionofnewandretrofittedbuildingsand theassociatedgreenhousegasemissions.Duringthelastfewyears, “zero-energybuildings”havearousedincreasinginterest interna-tionallyinthescientificliterature(e.g.,[8–14]),policiesaimingat amoresustainablebuiltenvironmentandevenconcrete applica-tions.

Intheliterature,the“zero-energy”objectiveismostoften con-sidered onthebuilding scale.Although existing definitions are commonlyarticulatedaroundanannualenergybalanceequalto zero(theenergy demandofthebuildingiscompensatedbyits renewable production) [10,11],numerous differences exist and severaldefinitionscoexist[8,12]dependingonsuchelementsas specificlocalconditions,politicaltargets,connection(ornot)tothe gridandmeasurestoaddressenergyefficiencybeforeusing renew-ableenergysources.The“zero-energybuilding”(ZEB)ispresented asageneralconceptthatalsoincludesautonomousbuildingsnot connectedtoenergygrids. Theterm“netzero-energybuilding” (nZEB)“underlinesthefactthat thereisabalancebetweenenergy takenfromandsuppliedbacktotheenergygridsoveraperiodoftime, nominallyayear”[8,p.220].Theconceptofa“nearlyzero-energy building”ispresentedbytheEuropeanDirectiveontheenergy per-formanceofbuildings[15]asa“buildingthathasaverygoodenergy http://dx.doi.org/10.1016/j.enbuild.2014.07.006

(2)

performance.Thenearlyzeroenergyorverylowamountofenergy requiredshouldbesuppliedtoaverysignificantextentbyenergyfrom renewablesources,includingenergyfromrenewablesourcesproduced on-siteornearby”.

Otherderivedconceptsarealsofoundintheliteraturebasedon variousbalancemetrics[9].Forexample,TorcelliniandCrawley [9]definedfournetzero-energybuildingbalances(netzero pri-maryenergy,netzerositeenergy,netzeroenergycostandnet zeroemissions)andMohamedetal.[16]investigatedthemfora single-familyhousewithdifferentheatingalternatives.ForVoss etal.[10,17],acleardefinition,standardisedbalancingmethodand internationalagreementsonthemeaningof“zero-energybuilding” (ZEB)arelacking.

To address this issue,Marszal et al. [12] recently proposed a reviewof theexisting ZEBdefinitions andvarious calculation methodologies.Theyhighlightedsevenmainissuestobeaddressed in furtherdefinitions: the metric of the balance,the balancing period,thetypeofenergyuseincludedinthebalance,thetypeof energybalance,theacceptablerenewableenergysupplyoptions, theconnectiontotheenergyinfrastructureandfinallythe require-mentsfortheenergyefficiency,theindoorclimateand,inthecase ofgrid-connectedZEB,thebuilding-gridinteraction.Amongstthe morecompleteexistingapproaches,Sartorietal.[8]developeda systematic,comprehensiveand consistentdefinitionframework for“netzero-energybuildings”.Theyconsidered“alltherelevant aspectscharacteringnetZEBandaimsatallowingeachcountryto defineaconsistent(andcomparablewithothers)netZEBdefinition inaccordancewiththecountry’spoliticaltargetsandspecific condi-tions”[8,p.221].Thisframeworkisarticulatedaroundtwotypes ofannualbalances:theimport/exportbalance(balancebetween deliveredand exporterenergy)andtheload/generationbalance (balancebetweenloadandgeneration).Themonthlynetbalance canalsobedeterminedaccordingtothesamephilosophy[8].Voss etal.also[10]proposedaharmonisedterminologyandbalancing procedurethattakesintoaccounttheenergybalanceaswellas theenergyefficiencyandloadmatchingandhighlightedthat“itis theoptimisationandnotthemaximisationofelectricityexportedto thegridthatisanessentialplanninggoalfornetzero-energy build-ings,inadditiontothereductionofenergyconsumption”[10,p.55]. Theseauthorsproposedanewlabel(ZEBx)allowingthe distinc-tionbetweentheneedforseasonalcompensation(thelowerthe “x”value,thelowerthisneedforcompensation).Inthesamevein, Srinivasanetal.[18]introduceda“renewableemergybalance”asa tooltoensurethatbuildingsareoptimisedforthereduced con-sumptionofresources andthat theuseof renewableresources andmaterialsisoptimisedovertheentirelifecycleofthe build-ing.PlessandTorcellini[11]rankedtherenewableenergysources usedinabuildingtoproposeaclassificationgradingsystemforZEB, basedonrenewableenergysupplyoptions.Thegoalofthiswork istoencourage,first,theutilisationofallpossibleenergy-efficient strategiesand,then,theuseofrenewableenergysourcesand tech-nologieslocatedonthebuilding[19].Attiaetal.[20]developed oneoftheonlydecisionsupportbuildingsimulationtoolsthatcan beusedasaproactiveguideintheearlydesignstagesof residen-tialnetzero-energybuildingdesign.Thistoolisdesignedforahot climate(Egypt)andallowsforthesensitivityanalysisofpossible variationsofnZEBdesignparametersandelementstoinformthe decision-makingprocessbyillustratinghowthesevariationscan affectcomfortandenergyperformance.

Asfaraspoliciesareconcerned,theZEBiscurrentlyreceiving anincreasingamountof attentioninseveralcountries[12–14]. In Europe,therecasting of theEuropeanPerformance of Build-ingsDirective(EPBD)requiresallnewbuildings,builtinMember States, to be “nearly zero-energy” buildings (nZEB) by 2020. As a consequence, Member States are currently implementing thisobjectiveintotheirownnationalregulations[14].Thezero

objectivewillthenbeextendedtoexistingbuildingsundergoing majorretrofittingworks[15].IntheUnitedStatesofAmerica,the EnergyIndependenceandSecurityAct(2007)[21],whichconcerns theenergypolicyoftheentirecountry,aimstocreateanationwide netzero-energyinitiativeforhousesbuiltafter2020and commer-cialbuildingsbuiltafter2025.TheAsia-PacificPartnershiponClean DevelopmentandClimate,apublic-privatepartnershipofseven countries(Australia,Canada,China,India,Japan,SouthKoreaand theUnitedStatesofAmerica),aimsalsoatpromotingthe develop-mentofnetzeroenergyhomes[13].

Inpractice,severalbuildingshaverecentlybeenbuiltthatprove that“zeroenergy”,atthebuildingscale,isfeasible.Mostofthese existingzero-energybuildingsare(smallorlarge)residential build-ingsandofficebuildings[17,22].FongandLee[23]showedthatthe netzero-energytargetseemsnottobepossibleforhigh-rise build-ingsinHongKong.However,theynotethatitisfeasibleforlow-rise residentialbuildingsinthissubtropicalclimate.

1.2. Zeroenergyattheneighbourhood/communityscale

Generallyspeaking,mostpapersinvestigatingenergyissuesat theneighbourhood/communityscalefocusoneithertheimpactof urbanformonenergyconsumptioninbuildings[e.g.,24–26]or thepotentialofsolarenergyutilisationforactiveandpassivesolar heatingaswellasphotovoltaicelectricityproduction,lightingand relatedenergysupplyanddemand[e.g.,27–30].Hachemetal.[31] studiedandcomparedtheelectricitygenerationpotentialof neigh-bourhoodsandtheirenergyperformanceintermsofheatingand coolingandfoundoutthatasignificantincreaseintotalelectricity generationcanbeachievedbythebuildingintegratedphotovoltaic systemsofhousingunitsofcertainshape-siteconfigurations,as comparedtotheirreferencecase.Theyalsohighlightedthatthe energyloadofabuildingisaffectedbyitsorientationandshape. Theimpactofurbanformontransportationenergyconsumption hasalsobewidelyhighlightedintheliterature,butitisconsidered eitheralone[e.g.,32–36]or,inafewstudies,incomparisonwith buildingenergyconsumption[e.g.,37–39].

Studies and reports dealing with zero energy at the neigh-bourhood/communityscalesarefewinnumber.Theframework proposedbySartorietal.[8]canalsobeappliedtoaclusterof build-ings.KennedyandSgouridis[40]addressedthequestionofhowto defineazero-carbon,low-carbonorcarbon-neutralurban devel-opmentbyproposinghierarchicalemissionscategories.Todorovic [41]investigatedtheroleofsimulationtoolsintheframeworkof zero-energyurbanplanning.TheNationalRenewableEnergy Lab-oratory[19,p.4]defined,inatechnicalreport,a“zeronetenergy” community (ZEC) as“one that hasgreatly reduced energyneeds throughefficiencygainsuchthatthebalanceofenergyforvehicles, thermal,andelectricalenergywithinthecommunityismetby renew-ableenergy”.Theyhighlighted[19,p.1]that“communityscenarios couldlinktransportation,homeandtheelectricgridaswellasenable largequantitiesofrenewablepowerontothegrid”.Theyalsoapplied theZEBhierarchicalrenewableclassificationproposedbyPlessand Torcellini[11]totheconceptofcommunitytofocusonthemode andlocationofproductionofrenewables.Acommunitythatmet thezeroenergydefinitionthankstorenewableenergiesproduced withinitsbuiltenvironment(orinbrownfields)isatthetopofthe classification(rankA)whereasacommunitythatmetthedefinition throughthepurchaseofrenewableenergycertificatesisrankedC. Althoughnotspecificallydedicatedtothe“Zero-energy” objec-tives,severalneighbourhoodsustainabilityassessmenttoolshave recentlybeendeveloped [42].Examples oftheseNSAtoolsare, amongst others,theSTAR CommunityRatingSystem (Sustaina-bilityToolsforAssessingandRatingCommunities)[43] andthe USGreenBuildingCouncil’sLEED-ND(LeadershipinEnergyand EnvironmentalDesign—NeighbourhoodDevelopment)[44]inthe

(3)

UnitedStates,BREEAMCommunities(BREEnvironmental Assess-mentMethod)intheUnitedKingdom[45],HQE2R(HauteQualité EnvironnementaleetÉconomiquedanslaRéhabilitationdes bâti-ments et le Renouvellement des quartiers) in France [46] and CASBEE-UD(ComprehensiveAssessmentSystemforBuilt Environ-mentEfficiency–Urbanenvironment)inJapan[47].Thesetoolsaim toassessandratecommunitiesandneighbourhoodsagainstaset ofdefinedcriteriaandthemes.Theyproposeachecklistofcriteria (mainlyoptional)andarangeofvariousguidelinestohelplocal stakeholders,designersandcitizensmovetowardsmore sustaina-bility.Althoughtheyallincludealargethemededicatedtoenergy, theyneitherallowaquantitativeassessmentofenergy consump-tionorGHGemissionsnortheevaluationoftheenergyefficiency ofretrofittingscenarios.

Asfar as concrete projects are concerned,the West Village isa netzero-energycommunity, including662apartmentsand 343single-familyhomes,underconstructioninDavis,California [48,49].Anotherinteresting developmentattheneighbourhood scaleistheBeddingtonZero(fossil)EnergyDevelopment(BedZED) sustainableneighbourhood,which wasintendedtobethe UK’s largest mixed-use zero-carbon community. However, the zero objectivewasnotachieved.Othersexamplesofverylowenergy neighbourhoods include Hammarby Sjosjad, Augustenborg and BO01inSweden,VaubanandKronsberginGermany,Eva-Lanxmeer intheNetherlandsandVesterbroinDenmark[50].Finally,IEA-EBC (International Energy Agency’s Energy in Buildings and Com-munitiesProgramme) hascurrently a few Annexes/projects on zero-energycommunities[22].

1.3. Aimofthepaper

Thispaperaimstocompletetheexistingapproaches relating to“zeroenergy”bydevelopingandinvestigatingtheopportunities linkedtoanewsimplifiedframeworkdedicatedto“zero-energy neighbourhoods”andarticulatedaroundthefollowingthreemain challenges:

(1)Themajorchallengeoftheadaptationandretrofittingofthe existingbuildingstock(especiallyinthelargepartofEuropein whichtherenewalrateoftheexistingbuildingstockisquite low),incomplementaritywiththenumerousstudiesdealing withtheproductionofnewoptimisedbuildingsand commu-nities,andtheconcretefeasibilityofzero-energyinretrofitting. (2)Theimpacts ofparameters linkedtotheurbanformonthe energyefficiencyofsinglebuildingsaswellasonthechoice andefficiencyof on-siterenewableenergysources (e.g.,the possiblemutualisationofenergysupplyanddemandbetween individualbuildings).

(3)The impact of the location of residences, work places and servicesondailymobility patternsand theirrelated energy consumption, which are considered together with building energyconsumptionbecausebuildingorretrofittingvery effi-cientbuildingscouldbecounterproductiveifitslocationdoes notallowalternativestoprivatecarsfordailymobility(travel towork,school,shops,etc.)andimposeslongtraveldistances. Asarchitectsandurbanplanners,weareparticularlyinterested ininvestigatingthepossibilitiestoadapttheexistingbuildingstock inordertoreachanannualzero-energybalance,atthe neighbour-hoodscale,andinhighlightingthemainurbanandarchitectural parametersthatactupontheenergybalanceofaneighbourhood. Thus,inthefollowing,wewilltakeintoaccountthreemainthemes directlyrelated tothe urbanform of existing neighbourhoods: buildingenergyconsumption,theon-siteproductionofrenewable energiesandtransportationenergyconsumptionofinhabitants(in

ordertotakeintoaccountthelocationofactivitiesontheterritory inthebalance).

1.4. Contentofthepaper

Tothisextent,Section2proposesasimplifiedframeworkand acalculationmethodtoassesszero-energyneighbourhoods.An applicationoftheproposedframeworkisthendevelopedinSection 3totestitsapplicability,investigatethefeasibilityofzero-energy in retrofitting neighbourhoods and highlightkey parameters in theannualenergybalanceoftworepresentativeneighbourhoods (inBelgium).Section4discusseskeychallengestobeaddressed andperspectivestobeinvestigatedinfutureresearch.Finally,the researchfindingsandstrengthsandweaknessesoftheproposed frameworkaresummarisedinSection5.

2. Asimplifiednet“zero-energyneighbourhood” framework:methodandassumptions

Thenet“zero-energyneighbourhood”framework(nZEN) pro-posedinthescopeofthispaperaimstoarticulatethethreemain energyuses(buildingenergyconsumption,theproductionof on-siterenewableenergyandtransportationenergyconsumptionfor dailymobility),attheneighbourhoodscale.Aneighbourhoodis understoodhereasan“urbanblock”(thatistosaythesmallestarea ofacitythatissurroundedbystreets)oragroupofseveral“urban blocks”.Weonlyconsiderresidentialneighbourhoodsalthoughthe generalmethodologycouldbeextendedtoindustries,shops,etc. Alsonotethatpublicservicesenergyusesinaneighbourhood(e.g., streetlighting,trafficlights)arenotassessed.Apreviousresearch [38]namelyshowedthat streetlighting energyconsumption is minimalincomparisonwithbuildingandtransportationenergy consumptions.

ThenZENisheredescribedasaneighbourhoodinwhichthe annual energyconsumption for buildings and transportationof inhabitantsis balanced bythe production ofon-site renewable energy.Themainbalanceisannual,butmonthly,dailyorhourly balances could also be studied according to the same defini-tions tobetter capture the gaps between energy consumption andproductionbyrenewablesources.Asfarasthemetricofthe systemisconcerned,thebalancesareproposedintermsof pri-maryenergy.Theconversionfactorsusedtoconvertgrossenergy into primary energy are 1 for natural gas and petrol and 2.5 forelectricity,asstatedintheWalloonregulationontheenergy performanceofbuildings[51].Onlytheusephase ofthe neigh-bourhoodistakenintoaccountinthesebalances(constructionand deconstructionphasesarenotassessed).Notealsothatanet zero-energyneighbourhoodimpliesinteractionsamongthebuildingsin theneighbourhoodandbetweenthebuildingandtransportation energyconsumptions.Thezero-energybalanceisthusconsidered asawhole,andeachbuildingisnotnecessarilyazero-energy build-ing.Finally,weassumethattheneighbourhoodhasanelectricgrid thatcanprovideenergytotheneighbourhoodwhenon-site gener-ationfromrenewablesislowerthantheload.Ifgreater,theon-site productioncanbesenttothegrid.

2.1. Energyconsumptioninbuildings

Themethodologyusedtoassessbuildingenergyconsumption takesintoaccounttheannualenergyconsumptionforspace heat-ing (ESH), space cooling (ECO), ventilation (EV), appliances(EA), cooking(EC)anddomestichotwater(EHW).Theneighbourhood’s annualenergyconsumptionforbuildings(EB)iscalculatedusing Eq.(1).

(4)

2.1.1. Energyconsumptionforspaceheating,coolingand ventilation

Themethoddevelopedtoassessenergyconsumptionforspace heating,coolingandventilationwasextensivelypresentedina pre-viouspaper[38].Thismethodcombinesatypologicalclassification of buildingsand neighbourhoods and thermal dynamic simula-tions.Thistypologicalapproachclassifiedtheresidentialbuilding stockofBelgiumandwasbasedonthefollowingfactors:common ownership (detached,semi-detached orterraced houses, apart-ments),theheatedareaofthedwellinginsquaremeters(m2),the heatingandventilationsystems,thedateofconstructionandthe levelofinsulation,includingretrofittingworksperformedbythe owners(e.g.,insulationoftheroofand/orreplacementofthe glaz-ing,changeoftheheatingand/orventilation systems).Thermal simulationswereperformedforallofthedwellingtypesofthis typologicalclassificationofbuildings.Theresultsoftheseenergy simulations(ESH and EV)are storedin a databasecomprised of theenergyconsumption ofapproximately250,000buildings.In thesethermalsimulations,Brusselsmeteorologicaldata (temper-ateclimate)areused.Theminimumtemperatureinthedwellings is18◦C,andinternalgainsaredefinedaccordingtothesurfacearea ofthedwelling.A correctionfactor isappliedtoavailablesolar gain accordingtotheneighbourhood type totakeintoaccount thereductionofsolargainswithincreasedbuiltdensity.Thenet andgrossenergyconsumptionandprimaryenergyconsumption forspaceheating,coolingandventilationat theneighbourhood scalearefinallycalculatedbyaddingtheresultsfromtheenergy consumption analysisforeach type ofhouseaccording totheir distributionintheneighbourhoodandtheneighbourhoodtype. Cooling(ECO)isnottakenintoaccountinthecasestudiespresented inSection3,inaccordancewithregionalyearbooks[52].Moreover, theoverheatingindicatordefinedintheEuropeanEnergy Perfor-manceofBuildingDirective[4]astheratiobetweenthesolarand internalgainsofabuildingtotransmissionandventilationlosses wascalculatedby[38]forWalloonresidentialbuildings.Itremains underthethresholdvalueproposedintheDirective(29.8%under thethresholdvaluefortheworstcases),whichindicatethatthe overheatingisnotunacceptableanddoesnotrequirethe installa-tionofcoolingsystem[4].

2.1.2. Energyconsumptionforappliances,cookinganddomestic hotwater

The annualenergy consumptionsrelated to appliances(EA), cooking(EC)anddomestichotwater(EHW)areassumedtodepend onthe number of inhabitantsin thebuilding. In the following application,regionalmeanvalues,gatheredbyaregionalinstitute incharge ofenvironment (the “CelluleEtatde l’Environnement Wallon”[53]), areused; however,in situsurveys couldalsobe implementedinthemodel.Theenergyconsumptionsrelatedto appliancesand cooking are1048kWh per person peryear and 170kWhperpersonperyear,respectively[53].Theenergy con-sumptionforheatingwaterisobtainedbymultiplyingthevolume ofhotwaterneededannuallyattheneighbourhoodscale(m3)by thedifferenceintemperaturebetweencoldandhotwateranda conversionfactor,usedtoconvertkilocalorieintowatt-hour.This factorisworth1.163kWh/m3◦C[54].Weconsidereachinhabitant toneed100lofcoldwater(10◦C)and40lofhotwater(60◦C)per day,inaccordancewiththeregionaltrends[53].

2.2. Energyconsumptionfordailymobility

The annual energy consumption for daily mobility (EDM) is assessedusingaperformanceindexintroducedbyBoussauwand Witlox[55]andadaptedbyMariqueand Reiter[56].Thisindex isexpressedinkWh/travelperpersonand represents,fora ter-ritorialunit,themeanenergyconsumptionfortravellingforone

personlivingwithinaparticularneighbourhood.Thisindextakes intoaccountthedistancestravelled,themeansoftransportation usedandtheirrelativeconsumptionrates,asexpressedbyEq.(2).In theequation,irepresentstheterritorialunit;mthemeansof trans-portationused(dieselcar,gasolinecar,train,bus,bike,walking); Dmithetotaldistancetravelledbythemeansoftransportationmin territorialuniti;fmtheconsumptionfactorattributedtothemeans oftransportationm;andTithenumberofpersonsintheterritorial uniti.Theconsumptionfactorsdependupontheconsumptionof thevehicles(litresoffuelperkilometre)andtheiroccupationrate. IntheBelgiancontext[56],thesevaluesare0.56kWh/personper kmforadieselcar,0.61kWh/personperkmforanon-dieselcar, 0.45kWh/personperkmforabus,0.15kWh/personperkmfora trainand0fornon-motorisedmeansoftransportation,asthelatter donotconsumeanyenergy[56].

Energy performance index (i)=



m

Dmifm Ti

(2) Theenergyconsumptionfor dailymobility(EDM)isobtained usingEq.(3)bymultiplyingtheenergyperformanceindexbythe numberofpeople(N)andthenumberoftrips(T)inthe neighbour-hood.

EDM=Energy performance index×NT (3)

InournZENframework,weattribute alltravelstoand from workandtoandfromschooltotheneighbourhood(ratherthanthe portionthatisreallyconsumedwithintheneighborhood)tofocus ontheimpactofresidentiallocationsontransportationenergy con-sumption.

Datausedinthefollowingcasestudiescomefromanational censuscarriedoutinBelgium(theGeneralSocio-EconomicSurvey 2001[57]).Notethatthesedataonlyconcernhome-to-workand home-to-schooltravel;however,wecouldusethesame methodol-ogywithdatafromaninsitusurveyaccountforalltravelpurpose. 2.3. On-siteenergyproductionbyrenewablesources

On-siteenergyproductionviaphotovoltaicpanels(EPV), ther-malpanels (ETH)andsmall windturbines(EWT)are considered whenaccountingforrenewableenergysources.Theannual renew-able energy produced in the neighbourhood(ERP)is calculated usingequation4.

ERP=EPV+ETH+EWT (4)

2.3.1. Photovoltaicpanels(electricity)

Thepotentialofneighbourhoodsforactivesolarheatingand photovoltaic electricity production is obtainedusing numerical simulationsperformedwithTownscopesoftware[58].Only pho-tovoltaicpanelsonroofsareconsideredbecausethoseonfacades arelesseffectiveinBelgium[59].Townscopeallowsthe calcula-tionofthedirect,diffuseandreflectingsolarradiationreachinga pointandtheradiationdistributiononasurface.Ascalculations areperformedunderclear-skyconditions,thesoftwareisusedto determineafirstcorrectionfactorM(thedifferencebetweenthe values calculatedfortheassessedneighbourhoodandtheclean site)toapplytothemeansolarradiationMSRfortheconsidered lat-itude(MSR=1000kWh/m2·yearforBelgium[60]).Asecondfactor Fisappliedtotakeintoaccounttherooforientationandinclination (Table1)[61].

Thesolarenergyreceivedbytheconsideredsurfaceisobtained usingEq.(5).Thepotentialofroofsforphotovoltaicelectricity pro-duction(EPV,inkWhperyear)isobtainedbyEq.(6).InEq.(6),S representsthesurfaceareaoftheconsideredroofs,Cthepercentage oftheroofscoveredbypanels(maximum0.80),ŋpvtheefficiency ofthephotovoltaicpanels,ŋinvtheefficiencyoftheinverterand

(5)

Table1

ValuesofthecorrectionfactorF,whichaccountsforrooforientationandinclination [61]. Inclination 0◦ 15◦ 25◦ 35◦ 50◦ Orientation East 0.88 0.87 0.85 0.83 0.77 Southeast 0.88 0.93 0.95 0.95 0.92 South 0.88 0.96 0.99 1 0.98 Southwest 0.88 0.93 0.95 0.95 0.92 West 0.88 0.87 0.85 0.82 0.76

acorrectionfactortakingintoaccountelectricitylosses.Inthe followingcasestudies,theefficiencyofthephotovoltaicpanelsis fixedat0.145,theefficiencyoftheinverterat0.96andthe elec-tricitylosscorrectionfactorat0.2;inaccordancetothetechnical characteristicsofthemostusedtypeofpanelsinWallonia[62].

Esol=MSR×FM(in kWh/m2year) (5)

EPV=EsolSCpv(1−) (6)

2.3.2. Thermalpanels(hotwater)

Thesolarenergyreceivedannuallybytheroofisobtainedusing Eq.(5),wherecorrectionfactorMiscalculatedwithTownscope and correctionfactor F is defined according toTable 1. Eq. (7) allowsthedeterminationofwhethertheroofsofthehousesof theneighbourhoodsareadaptedtotheproductionofhotwater. InEq.(7),Esol representsthesolarenergyreceivedbytheroofs, Sthesurfaceareaofthepanelandŋththeefficiencyofthe ther-malpanels.Weconsiderthat55%oftheproductionofhotwaterof eachhouseholdmustbecoveredthroughthermalpanels(froma technical-economicviewpoint,theoptimumisoftenconsideredto bebetween50%and60%).Undertheseconditions,theefficiencyof thesystemis0.35.

ETH=EsolSth (7)

2.3.3. Windturbines

Theapproximationusedtoevaluatetheannualelectricity pro-ductionofwindturbines(EWT)consistsofmultiplyingtherated powerofthewindturbinebythenumberofoperatinghoursatthis ratedpower,asinEq.(8),inwhichPistheratedpowerofthewind turbineandOHthenumberofoperatinghours.Thisvalueisfixed at1000hforasmallwindturbine[63].

EWT=P·OH (8)

2.4. Annualbalanceattheneighbourhoodscale

Theannualenergyconsumptionoftheneighbourhood(EN)is calculatedbyadding thebuildingenergy consumption(EB)and transportationenergyconsumption(EDM)andsubtractingthe on-siterenewableenergyproduction(ERP),asshowninEq.(9).

EN=EB+EDM−ERP (9)

Themonthlybalancescanalsobestudiedaccordingtothesame typeofequationbyreplacingtheannualenergyconsumptionand productionbythecorrespondingmonthlyvalues.

3. Results

3.1. Presentationofthecasestudies

Thecasestudieschosenaretwocommonarchetypesof neigh-bourhoods(understoodasurbanblocks,thatistosaythesmallest areaofacitythatissurroundedbystreets)andare representa-tiveofthebuildingstockinBelgium[64].Thetwoneighbourhoods

Table2

Maincharacteristicsofthetwocasestudies.

Case1 Case2

Type Urban Suburban

Surfacearea 0.97ha 12.02ha

Population 180inhabitants 150inhabitants

Buildings 57 55

Detachedhouses 7% 75%

Semi-detachedhouses 17.5% 19.6%

Terracedhouses 75.5% 3.6%

Apartments 0% 1.8%

Density 60dw/ha 5dw/ha

%ofthesurfacearea

occupiedbybuildings

29% 5%

containessentiallythesamenumberofbuildingsbutinavery dif-ferenturbanform.Eachurbanformpresentsitsownspecificities andcharacteristics,especiallyasfarasthebuiltdensityandthe typesofbuildingsareconcerned,ashighlightedonTable2,and requirespersonalisedsolutionsregardingtheenergyefficiencyin thebuildingandtransportationsectorsandtheon-siteproduction ofrenewableenergy.

The first case study (Fig. 1) is a dense neighbourhood (60 dwellingsperhectare) representativeof anold compact indus-trialurban fabric. This neighbourhood is located closeto good transportationnetworks(trainsandbuses),workplaces,schools, shopsandservices.Buildingsareverypoorlyinsulated,becausethe neighbourhoodwasbuiltinthe19thcentury.

Thesecondcasestudy(Fig.2)isalow-densitysuburban neigh-bourhood(5dwellingsperhectare)locatedinthesuburbs(18km) of thecitycentre. It is representativeof theurban sprawlthat beganinBelgiuminthe1960s.Publictransportationisminimal, andcardependencyishigh.Theneighbourhoodiscomprisedof detachedhousesbuiltbetween1930and2010.Someretrofitting works(changingoftheglazing,roofinsulation)hasbeenperformed bytheowners.

3.2. Annualenergybalance

Inthecurrentsituation,theenergyconsumptionforspace heat-ingisquitelargeinbothneighbourhoods(184kWh/m2 peryear in case 1and 235kWh/m2 peryear in case 2),and theannual zero-energybalancecannotbeachieved(Table3).Aclear differ-enceisobservedbetweentheheatingenergyrequirementsofthe twoneighbourhoodsbecausethefirstismadeupterracedhouses, whichconsumeapproximately25%lessenergyforheatingthan thelesscompacturbanform.Similarly tothebuildingscale,to

(6)

Table3

Resultsoftheapplicationofthe“zero-energyneighbourhood”frameworktothetwocasestudies.

Casestudy1 Casestudy2

Consumption(kWh) Spaceheatingandventilation:ESH+Ev 1,421,694 2,754,341

(ESH+Ev—low-energyretrofitting) (463,595) (703,235)

(ESH+Ev—passiveretrofitting) (143,156) (214,074)

Appliances:EA 161,139 155,485

Cooking:EC 26,277 25,355

Hotwater:EHW 152,950 127,458

Dailymobility:EDM 339,696 441,072

Production(kWh) Photovoltaicelec.:EPV 139,945 314,669

Hotwaterheating:ETH 80,417 67,170

Windturbine:EWT 0 50,000

Fig. 2. Case study 2—a representative suburban residential neighbourhood

(Belgium).

achieveanetzero-energybalanceattheneighbourhoodscale,the energy demand(heating in thesecase studiesherein) mustbe reducedusingenergyefficiencymeasures(amajorretrofittingof theenvelopeofthebuilding).Theresultmustsatisfythe(very)low, passiveornetzero-energystandards.Moreover,theresultsshow thatthezero-energyneighbourhoodobjectivealsoneedsto min-imisetheenergyneedsforappliances,cookingandhotwater.It isimportanttoemphasisetheinfluenceoflessenergy-consuming devicesaswellasadapteduserbehavioursandlifestyles, param-etersthathavealreadybeenstudiedindetailinotherreferences (e.g.,[65–67]).

Energyconsumptionfordailymobilityisalsohigher (approx-imately 30%) in the suburban neighbourhood, which is highly dependentonprivatecarsandforwhichtravelforworkandschool is acrosslargedistances. Taking intoaccount energy consump-tionfromdailymobility, ashighlightedin ourassumptions,the impactofthelocationoftheneighbourhoodcanbeincludedinthe annualbalance.Thisiscrucialtoavoidsimplyproposingbuilding orretrofittingzero-energybuildingsandneighbourhoods asthe optimalsolutiontocreateamoresustainablebuiltenvironment, regardlessoftheirlocationandtheimpactofthislocationon trans-portationenergyconsumption.Moreover,theresultsshowthatthe zero-energyneighbourhoodobjectivealsorequiresthe minimisa-tionoftheenergyneedsfordailymobility,eveninurbanareas.

Incontrast,asfarason-site renewableenergyproduction is concerned,the photovoltaicproduction is higher in the subur-banneighbourhood(case2)becausesimulationsperformedwith

Townscopetocalculatesolarradiationonroofs(seeSection2.3.1, above)haveshownthat theshadowingeffectismuch lowerin thisareathaninthedenseneighbourhood(case1).Quite inter-estingly,parametricvariationsshowthatifphotovoltaicpanelsare onlylocatedonroofsthatreceiveover90%ofthemaximumsolar energyandiftheelectricityproductionismutualisedatthe neigh-bourhoodscale,theefficiency(kWhproduced perm2 ofpanel) increasessignificantly(+10.7%incase1and+5.0%incase2).The sameamountofphotovoltaicelectricitycanthusbeproducedby installingfewerpanelsthanreportedinTable3,wherephotovoltaic panelswereinstalledoneachbuilding.Thermalenergyproduction ishigherincase1thankstothesurfaceareasoftheroofsbut sim-ulationsperformedtoassesssolarradiationonroofs(seeSection 2.3.1,above)haveshownthattheshadowingeffectismuchlower inthesuburbanarea.

Theuseofwindturbinesinthefirstcasestudywasnotassessed becauseofthedensecontextinwhichitislocated.Inthe subur-bancase,asmallwindturbineproducesapproximately50,000kWh annually.Thiswindturbinecouldbelocatedinthecentreofthe neighbourhoodbecausethislocationissufficientlyfarfrom exist-inghouses(basedonthenoiseproducedbytheturbineandthe existing regulations);however,this solutionwouldprohibit the futuredensificationoftheneighbourhood,whichisapossible solu-tiontoincreasingthesustainabilityofexistingsuburbanblocks.

In comparisonwithbuildingand transportationenergy con-sumption,andfortheconsideredclimateandcontext,theon-site generationofrenewableenergyisoftenlimited,especiallyinthe densecase study.The zero-energy balancecannotbe achieved, evenifbuildingsareretrofittedtothepassivestandard.Therein, intermediatelevelsofperformance(the[very]low,passiveornet zero-energyneighbourhoods)couldalsobepromoted,especially asfarasinterventionsinexistingneighbourhoodsareconcerned. Ratherthantherespectofazero-energyannualbalance,itseems important to promote, above all, the minimisation of building andtransportationenergyconsumptionsandthemaximisationof renewableenergyproduction.

3.3. Monthlyenergybalances

Anannualbalancewasusedfirstinthispaper.Yearlybalances accountforthesuccessionofthefourseasonsandtheir particular-ities.However,itisalsointerestingtoinvestigateshorterperiods oftime.Monthlyproductionandconsumptioncurveshighlightthe shiftbetweentheproductionandconsumptionpeaksandbetween supplyanddemand,particularlyforsolarenergy(highestin sum-mer)andheatingconsumption(highestinwinter),ashighlighted inFig.3.

4. Discussionandperspectivesforfurtherresearch

Achievinganetzero-energybalanceinthetwoexisting neigh-bourhoods is very difficult, namely because the buildingstock

(7)

Fig.3.Monthlyproductionandconsumptioncurvesforthetwocasestudies(casestudy1ontheleftandcasestudy2ontheright).

ispoorlyinsulated.Intermediatemilestoneandtargetscouldbe proposedtohelplocalcommunitiestomovetowardsmore sus-tainability:

1.Improve the energy efficiency of the building stock (e.g., retrofittingtothepassivehousestandard).

2.Minimizeenergydemandforbuildingsandfortransportation throughoccupantbehaviour(e.g.,adaptingtheinner tempera-tureofthedwellings,promotingcarsharing).

3.Maximiseon-siterenewableenergyproduction(e.g.,installing PVpanels).

4.Useoff-site renewable energyproduction (e.g., usingdistrict heatingandimportedrenewableenergy).

Aswehighlighted significantdifferencesbetweentheurban and the suburban case studies, these milestones should be differentiated,accordingtothelocalopportunitiesineach neigh-bourhood.

In this course to reachsustainability in existing neighbour-hoods,oneofthemainadvantagesoftheneighbourhoodscaleis thepotentialforan“energymutualisation”forbothenergy pro-ductionand energy consumption. We have namelyhighlighted theinterest of producing photovoltaic electricity at the neigh-bourhood,ratherthan attheindividual scale.Anotherexample wasthepoolingofthebuiltenvelopeindenseurban neighbour-hoodsthatallowstoreduceenergyneedsofterracedhouses,in comparisonwithdetachedhouses.Thisconceptof“pooling”,at theneighbourhoodscale,providesnumerousavenuestoincrease energyefficiencyin ourbuiltenvironment.In thesamevein, it shouldbenotedthatthis“energymutualisation”or“pooling”at theneighbourhood scale offersinteresting perspectivesfor the compensation of the monthly peaks (aswell as hourlypeaks) betweensupplyanddemandbetweenindividualbuildings, espe-ciallyin neighbourhoodspresenting awide varietyoffunctions withdifferentandshiftedenergyneeds(offices,schools,etc.,versus residences).

Asfarasperspectivesforfurtherresearchareconcerned,the connectionto thegrid, theuse of smart gridsand the storage ofenergyshouldbeinvestigatedinthefuture.Costoptimisation shouldalsobeconsideredbasedoncurrentdiscussionsrelatedto theEuropeanDirectiveontheEnergyPerformanceofBuildings. Finally,werecommendextendingthebalancetotheentirelifecycle ofaneighbourhoodbyincludingtheenergyandCO2 embodied

inmaterialsandtechnicalinstallations(includingtransportation infrastructure).

5. Conclusions

Thegoalofthispaperwastocontributetotheexistingliterature onthe“zero-energy”objectiveinthebuildingsectorby investigat-ingthefeasibilityofthisobjectiveattheneighbourhoodscale.The paperpresentedasimplifiedframeworkandacalculationmethod relatedtothe“netzero-energyneighbourhood”,whichincluded buildingenergyconsumptionandtheon-siterenewableenergyat theneighbourhoodscaleaswellastheimpactofurbanformandthe locationoftheneighbourhoodontransportationenergy consump-tionfordailymobility.Thesedevelopmentswereappliedtotwo casestudies(oneurbanneighbourhoodandonesuburban neigh-bourhoodinBelgium)tohighlightthemainparametersthatact upontheannualenergybalanceofaneighbourhoodandtopropose concretestepstoimprovethesustainabilityofexisting neighbour-hoods.Thisworkhighlightedtheopportunitiesforand interest inextendingtheboundariesoftheexistingframeworksfromthe buildingtotheneighbourhood,whichmainlyconcerntheimpact ofurbanformanddailymobility.TheproposednZENframework allowstoconsiderbuildingenergyconsumption,renewable pro-ductionandtransportationenergyconsumptionasanintegrated system,ratherthanseparatedtopics.

Inamoregeneralperspective,thisworkscallsforabetter inte-grationoftheindividualbuildingintoitscontextinpoliciesdealing withenergyefficiency.Promotingthebuildingandretrofittingof energy-efficientbuildingsisagoodsteptowardsincreasedenergy efficiencyinourbuiltenvironment(i.e.,byimposingmandatory minimumrequirementsontheenergyefficiencyofbuildingsthat arecrucialtoreachanetzeroenergybalance);however,itisnot sufficient.Itisalsocrucialtoconsiderparametersandinteractions linkedtoalargerscale,theurbanplanningscale,tomore effec-tivelyachievetheaimsofthesepolicies.Tothisend,thelocationof newbuildingsanddevelopmentsappearstobecrucialinthetotal balance,whichincludesbothbuildingandtransportationenergy consumption.

Acknowledgements

Thisresearchwasfunded bytheWalloon regionof Belgium underthe SOLEN(“Solutions forLow EnergyNeighbourhoods”) project,Grantnumber1151037.

(8)

References

[1]EC,Technicalguidance,FinancingtheEnergyRenovationofBuildingswith Cohesion Policy Funding, European Commission, Directorate-General for Energy,2014.

[2]UNEP,BuildingsandClimateChange,Summaryfordecision-makers,United NationEnvironmentProgramme,2009.

[3]IEA,ModernisingBuildingEnergyCodestoSecureourGlobalEnergyFuture, InternationalEnergyAgency,2013.

[4]EPBD,Directive2001/91/ECoftheEuropeanParliamentandofthe Coun-cilof16December2002ontheEnergyPerformanceofBuildings,Brussels, 2002.

[5]L.Müller,T.Berker,Passivehouseatthecrossroads:thepastandthepresentof avoluntarystandardthatmanagedtobridgetheenergyefficiencygap,Energy Policy60(2013)586–593.

[6]W.Feist,J.Schnieders,V.Dorer,A.Haas,Re-inventingairheating:convenient andcomfortablewithintheframeofthepassivehouseconcept,Energyand Buildings37(2005)1186–1203.

[7]J.Schnieders,A.Hermelink,CEPHEUSresults:measurementsandoccupants’ satisfactionsprovideevidenceforPassiveHousesbeinganoptionfor sustain-ablebuilding,EnergyPolicy34(2006)151–171.

[8]I.Sartori,A.Napolitano,K.Voss,Netzeroenergybuildings:aconsistent defi-nitionframework,EnergyandBuildings48(2012)220–232.

[9]P.A.Torcellini,D.B.Crawley,Understandingzero-energybuildings,ASHRAE Journal48(9)(2006)62–69.

[10]K. Voss, E. Musall, M. Lichtmeb, From low energy to net zero-energy buildings:statusandperspectives,JournalofGreenbuilding6(1)(2011) 46–57.

[11]S.Pless,P.Torcellini,ZeroEnergyBuildings:AClassificationSystemBasedon RenewableEnergySupplyOptions,NationalRenewableEnergyLaboratory, Golden,CO,2010,ReportNREL/TP-550-44586.

[12]A.J. Marszal, P.Heiselberg, J.S.Bourrelle,E.Musall, K.Voss, I. Sartori,A. Napolitano,Zeroenergybuildings—areviewofdefinitionsandcalculations methodologies,EnergyandBuildings43(2011)971–979.

[13]M.Panagiotidou,R.J.Fuller,ProgressinZEBs—areviewofdefinitions,policies andconstructionactivity,EnergyPolicy62(2013)196–206.

[14]M.Pacheco,R.Lamberts,Assessmentoftechnicalandeconomicalviabilityfor large-scaleconversionofsinglefamilyresidentialbuildingsintozeroenergy buildings inBrazil:climaticandculturalconsiderations, EnergyPolicy 63 (2013)716–725.

[15]EPBD,Directive2010/31/EUoftheEuropeanParliamentandoftheCouncil of 19 May 2010 on the energy performance of buildings, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do? uri=OJ:L: 2010:153:0013:0035: EN:PDF(accessedDecember2013).

[16]A.Mohamed,A.Hasan,K.Sirén,Fulfillmentofnet-zeroenergybuilding(NZEB) withfourmetricsinasinglefamilyhousewithdifferentheatingalternatives, AppliedEnergy114(2014)385–399.

[17]K.Voss,E.Musall,NetZeroEnergyBuildings.InternationalProjectsofCarbon NeutralityinBuildings,InstitutfürinternationalArchitecktur-Dokumentation, GmbH&CO.KG,Munich,2011.

[18]R.S.Srinivasan,W.W.Braham,D.E.Campbell,C.D.Curcija,Re(De)finingnetzero energy:renewableemergybalanceinenvironmentalbuildingdesign,Building andEnvironment47(2011)300–315.

[19]N.Carlisle,O.VanGeet,S.Pless,Definitionofa“ZeroNetEnergy” Commu-nity,NationalRenewableEnergyLaboratory,Golden,Colorado,2009,Technical ReportNREL/TP-7A2-46065.

[20]S.Attia,E.Gratia,A.DeHerde,J.L.M.Hensen,Simulation-baseddecisionsupport toolforearlystagesofzero-energybuildingdesign,EnergyandBuildings49 (2012)2–15.

[21]EnergyIndependenceandSecurityActof2007,Availablefrom:http://www. gpo.gov/fdsys/pkg/PLAW-110publ140/html/PLAW-110publ140.htm (accessedOctober2013).

[22]Net Zero EnergyBuildings Database,2012. Available from: http://iea40. buildinggreen.com/(accessedOctober2013).

[23]K.F. Fong, C.K. Lee, Towards net zero energy design for low-rise res-idential buildings in subtropical Hong Kong, Applied Energy 93 (2012) 686–694.

[24]N.Baker,K.Steemers,EnergyandEnvironmentinArchitecture,E&FNSpon, London,2000.

[25]C.Ratti,N.Baker,K.Steemers,Energyconsumptionandurbantexture,Energy andBuildings37(2005)762–776.

[26]K.Steemers,Energyandthecity:density,buildingsandtransport,Energyand Buildings35(2003)3–14.

[27]R.Compagnon,Solaranddaylightavailabilityintheurbanfabric,Energyand Buildings36(2004)321–328.

[28]C.Hachem,A.Athienitis,P.Fazio,Evaluationofenergysupplyanddemandin solarneighborhood,EnergyandBuildings49(2012)335–347.

[29]J.H. Kampf, M.Montavon, J. Bunyesc,R. Bolliger,D.D. Robinson, Optimi-sation of buildings’ solar irradiationavailability, Solar Energy84 (2010) 596–603.

[30]J.Burch,J.Woods,E.Kozubal,A.Boranian,Zeroenergycommunitieswith cen-tralsolarplantsusingliquiddesiccantsandlocalstorage,EnergyProcedia30 (2012)55–64.

[31]C.Hachem,A.Athienitis,P.Fazio,Evaluationofenergysupplyanddemandin solarneighbourhood,EnergyandBuildings49(2012)335–347.

[32]P.Newman,K.Kenworthy,Gasolineconsumptionandcities—acomparisonof UKcitieswithaglobalsurvey,JournaloftheAmericanPlanningAssociation55 (1989)24–37.

[33]D.Banister,Energyusetransportandsettlementpatterns,in:M.Breheny (Ed.),SustainableDevelopmentandUrbanForm,PionLtd.,London,1992,pp. 160–181.

[34]P.Naess,S.Sandberg,P.G.Roe,Energyusefortransportationin22nordictowns, ScandinavianHousingandPlanningResearch13(1996)79–97.

[35]M.Boarnet,R.Crane,TravelbyDesign.TheInfluenceofUrbanformonTravel, OxfordUniversityPress,New-York,2001.

[36]A.F.Marique,S.Dujardin,J.Teller,S.Reiter,Schoolcommuting:therelationship betweenenergyconsumptionandurbanform,JournalofTransportGeography 26(2013)1–11.

[37]N.Codoban,C.A.Kennedy,Metabolismofneighbourhoods,JournalofUrban PlanningDevelopment134(2008)21–31.

[38]A.F.Marique,S.Reiter,AMethodtoEvaluatetheEnergyConsumptionof Sub-urbanNeighbourhoods,HVAC&RResearch18(1–2)(2012)88–99.

[39]S.Reiter,A.F.Marique,Towardlowenergycities:acasestudyoftheurbanarea ofLiège,JournalofIndustrialEcology16(6)(2012)829–838.

[40]S. Kennedy, S. Sgouridis, Rigorous classification and carbon account-ing principles for low and zero carbon cities, Energy Policy 39 (2011) 5259–5268.

[41]M.Todorovic,BPS,energyefficiencyandrenewableenergysourcesfor build-ingsgreeningandzeroenergycitiesplanning,EnergyandBuildings48(2012) 180–189.

[42]A.Sharifi,A.Murayama,Acriticalreviewofsevenselectedneighbourhood sustainabilityassessmenttools,EnvironmentalImpactAssessmentReview38 (2013)73–87.

[43]STAR Community Rating System, version 1.0 (2012), Available from: https://www.starcommunities.org/uploads/rating-system.pdf (accessed February2014).

[44]http://www.usgbc.org/neighborhoods,2014(accessedFebruary2014). [45]BREEAM,http://www.breeam.org/page.jsp?id=372,2014(accessedFebruary

2014).

[46]HQE2R,http://www.suden.org/fr/projets-europeens/hqe2r/,2014(accessed February2014).

[47]CASBEEforUrbanDevelopment,TechnicalManual2007edition,Institutefor BuildingEnvironmentandEnergyConservation,2007.

[48]K.Glaiser,P.Stroeve,Theimpactofschedulingappliancesandratestructureon billsavingsfornet-zeroenergycommunities:applicationtotheWestVillage, AppliedEnergy113(2014)1586–1595.

[49]S.M.Wheeler,R.B.Segar,Chapter12—zeronetenergyatacommunityscale: UCDavisWestvillage,Energyefficiency,Towardstheendofdemandgrowth, 2013,pp.305–324.

[50]A.F. Marique, S. Reiter, Towards more sustainable neighbourhoods: are goodpracticesreproducibleandextensible?in:M.Bodard,A.Evrard(Eds.), ProceedingsofInternationalConferencePLEA2011,PressesUniversitairesde Louvain,Louvain,2011,pp.27–32.

[51]GW,ArrêtéduGouvernementwallondéterminantlaméethodedecalculetles exigences,lesaggrémentsetlessanctionsapplicablesenmatièrede perfor-manceénergétiqueetdeclimatintérieurdesbâtiments,17avril2008,publié auMoniteurbelgele30juillet2008.

[52]ICEDD,Bilanénergétiquewallon2009,Consommationsdusecteurdu loge-ment2009.MRW,Directiongénéraledestechnologies,delarechercheetde l’énergie—ConceptionetréalisationICEDDasbl,Namur,Belgium,2011. [53]CelluleEtat del’EnvironnementWallon, Rapportanalytique sur l’étatde

l’environnementwallon2006–2007.MRW—Directiongénéraledesressources naturellesetdel’environnement.RapportD/2007/5322/45,2007.

[54]S.-I.Takagi,AideMémoire,Génieclimatique,3èmeédition,Dunod,Paris,2012. [55]K.Boussauw,F.Witlox,Introducingacommute-energyperformanceindexfor

FlandersTransportationResearchPartA43(5)(2009)580–591.

[56]A.F.Marique,S.Reiter,Amethodforevaluatingtransportenergy consump-tioninsuburbanareas,EnvironmentalImpactAssessmentReview33(2012) 1–6.

[57]Merenne-Schoumaker(Eds.),M.Beelen,J.M.Halleux,J.M.Lambotte,G. Rix-hon,LemouvementpendulaireenBelgique:lesdéplacementsdomicile-travail, lesdéplacementsdomicile-école.EnquêteSocio-économique2001. Monogra-phies(n10)(Traduitennéerlandais),Belgique:SPFEconomie,PME,Classes moyennesetEnergie,Bruxelles,2009.

[58]J.Teller,S.Azar,TownscopeII—acomputersystemtosupportsolaraccess decision-making,SolarEnergy70(2001)187–200.

[59]A.F.Marique,T.deMeester,S.Reiter,Energyrequirementsandsolar availabil-ityinsuburbanareas:theinfluenceofbuiltdensityinanexistingdistrict,in: ProceedingsoftheInternationalConferenceCleanTechforsustainable build-ings,Fromnanotourbanscale,Lausanne,2011,pp.925–930.

[60]http://re.jrc.ec.europa.eu/pvgis/countries/countries-europe.htm (accessed December2013).

[61] http://www.ef4.be/fr/photovoltaique/aspects-techniques/orientation-structure.html(accessedDecember2013).

[62]M.Pétel,LeprojetderechercheSAFE:StageEtudeetRecherche:efficacité énergétiquedesbâtimentsetproductionsolairephotovoltaïque.ULgreport, Liege,2011.

[63]LesCompagnonsd’Eole,APERe,Ventsd’Houyet,E.R.B.E.,VadeMecumpour l’implantationdeséoliennesdefaiblepuissanceenWallonie.SPW-DGO4, Jambes,2012.

(9)

[64]A.-F.Marique,Méthodologied’évaluationénergétiquedesquartiers périur-bains.Perspectivespourlerenouvellementpériurbainwallon,Universityof Liege,Liege,2013,Unpublisheddoctoralthesis.

[65]P.Hoes, J.L.M.Hensen,M.G.L.C.Loomans, B.de Vries,D. Bourgeois,User behavior in whole building simulation, Energy and Buildings 41 (2009) 295–302.

[66]R.Haas,H.Auer,P.Biermayr,Theimpactofconsumerbehavioronresidential energydemandforspaceheating,EnergyandBuildings27(2)(1998)195–205. [67]T. deMeester,A.F.Marique,A. DeHerde, S.Reiter,Impacts ofoccupant behavioursonresidentialheatingconsumptionfordetachedhousesina tem-perateclimateofthenorthernpartofEurope,EnergyandBuildings57(2013) 313–323.

Figure

Fig. 1. Case study 1—a representative urban residential neighbourhood (Belgium).
Fig. 2. Case study 2—a representative suburban residential neighbourhood (Belgium).
Fig. 3. Monthly production and consumption curves for the two case studies (case study 1 on the left and case study 2 on the right).

Références

Documents relatifs

In 2017, a complete and integrated view of the ecosystem of two future OWF sites of the eastern English Channel (Courseulles-sur-Mer and Dieppe-Le Tréport) were developed to

The approach to create an energy product model that gives an overall view on the intra-company and corporate information flows concerning energy efficiency is the first step

Thus, by using a few architectural innovations such as interior blinds, wall lights, using air fans, improved management and intelligent dimensioning of the building systems, it is

An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit,

Symmetric and symplectic integrators, geometric numerical integration, modified differential equation, energy conservation, H´ enon-Heiles problem, N -body problem in molecular

It is a Plug&Play solution with data ac- cess in iDom® Live web platform that enables to monitor energy consumption in real-time, to know in detail energy usage,

While it is clear that the socially aware aspect had a posi- tive impact on people’s energy consumption, the exact form of Neighbourhood Wattch requires additional research. One

the following topics were discussed and are of a common inter- est between chile and Belgium: Adaptive thermal comfort, timber construction, passive house standard, heating