• Aucun résultat trouvé

Comparison of aboveground biomass production efficiency for a grassland and a forest with similar edaphic and climatic conditions

N/A
N/A
Protected

Academic year: 2021

Partager "Comparison of aboveground biomass production efficiency for a grassland and a forest with similar edaphic and climatic conditions"

Copied!
18
0
0

Texte intégral

(1)

Heid L., Darsonville O., Conil S., Klumpp K., Longdoz B.

ICOS Belgium Science Conference, 20 octobre 2017

Comparison of aboveground biomass

production efficiency for a grassland

and a forest with similar edaphic

and climatic conditions

(2)

CONTEXT

&

OBJECTIVES

(3)

Evolution in ecosystem management

- Intensification, soil changes (structure, fertility,…)

Climate change (Temperature, Pluviometry)

- Drift & extreme events (drought, heat wave, flood,…)

Need of better understanding of ecosystem C balance

- Strategies in C allocation, sequestration & emission

(Trumbore, 2006)

- Uncertainties around the spatio-temporal variability of

theses strategies (Campioli et al., 2013)

3 cultures 30% espaces hétérogènes 13% prairies 16% forêt 26% milieux semi-naturels, zones humides et aquatiques 10% bâti 5% +0.5% /an -0.7%/an -0.7%/an +0.1%/an +0.5%/an Building 5% Crops 30% Forests 26% Grasslands 16% Mixed 13% Humid zones 10%

(4)

GPP Rautoaerial Rautosoil

NEE=

GPP

+

Reco

GPP = Rauto + BP + exudates + COV BPE = BP/GPP Vicca et al., 2012

aBPE (leaves, wood) bBPE (roots)

Compounds of Interest Forest : aerial Structural C

Grassland: Digestible C CIPE= CIBP/GPP 4 CIP + (réserves, SS ,…) Rhetsoil Biomass Production Efficiency Compound of Interest Production Efficiency

(5)

5

Only annual BPE/aBPE

Large variability in annual BPE/aBPE

-Ecosystem type, Nutriments availability, Mean

annual temperature, Specie, Age, Management,

[CO2]

⇛ Seasonal variability of aBPE ? Which drivers ? ⇛ Comparing aBPE evolutions of Forest vs Grassland

(6)

MATERIAL ET METHOD

(7)

29/06/2016 7

Sites

Grassland

Forest

• Beech (88%) stand ~55 ans

• Soil type: calcisol (7.1 <pH<8)

• Stem density: 800 stems/ha

• Height: 20-25m

• LAI = 8

• Type of soil: calcisol (7.1 <pH<8)

• Vegetation: Bromus hordaceus (53.8%), Bellis

perennis (16.8%) Dates Event 30/03/2014 Fertilization (NPK) 13/04/2014 Grazing (Part 1) 05/06/2014 Mowing (Part 2) 12/07/2014 Grazing (Part 1 +2)

(8)

29/06/2016 8

CO2 Flux and weather measurements

• « Traditional » equipment with LI-7200 enclosed

• Data processing : Frequency correction (Fratini); Flux quality

selection (Mauder, u*threshold), Gapfilling & Partitioning (Reinschtein)

(9)

9 Biomass measurements 80 cm 80 cm = 0.64 m² x 10 dispatched randomly on the 5.1ha Dates Sampling 23/02/2014 Cleaning 1 16/04/2014 Growth 1 (Cleaning 2) 23/05/2014 Growth 2 (Cleaning 3) 05/06/2014 Cleaning 4 24/07/2014 Growth 3 (Cleaning 5) 11/09/2014 Growth 4 (Cleaning 6) 06/11/2014 Growth 5

Cages excluding grazing Dendrometers Litter traps

Allometric equations fitted on the site (diameter, age, height)

Lab analyses of cleaning biomass for C content

Lab analyses of wood micro-cores for wood density and C content

Lab analyses of collected

litter for C content

Lab Biochemical analyses for (non-) structural C

(10)

RESULTS

(11)

GPP Rautoaerial Rautosoil

NEE=

GPP

+

Reco

GPP = Rauto + BP + exudates + COV 11 CIP + (réserves, SS ,…) Rhetsoil -549gC m-2 -1639 gC m-2 1089 gC m-2 aBP aBPE 652 gC m-2 0.39

(12)

GPP -484 gC m-2 -1538 gC m-2 1054 gC m-2 aBP aBPE 400 gC m-2 0.25 12 -549gC m-2 -1639 gC m-2 1089 gC m-2 652 gC m-2 0.39

NEE=

GPP

+

Reco

Reco GPP = Rauto + BP + exudates + COV

1. Forest : more assimilated C dedicated to aboveground biomass

2. Grassland : Belowground or Rauto ? (soil ingrowth cores)

(13)

13

Intra-annual variability (Forest)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 10.04-05.05 06.05-02.06 03.06-30.06 01.07-28.07 29.07-25.08 26.08-22.09 22.09-23.11 Abo v eg ro und w BP (gC.m -2 .d -1 ) aBP aBP - d fixed 1. Density correction up to 22%

2. Can’t be neglected for studies on C allocation seasonal variability

(14)

0 50 100 150 200 250 300 350 400 C co n ten t (gC /m²) GPP aBP bois aBP feuille

Avril- Mai Juin Juillet Août Septembre Octobre

1 0.31 0.46 0.55 0.32 0.07 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1 2 3 4 5 6 aBPE

1. Large intra-annual variability

2. No apparent influence of meteo or soil conditions

3. Seasonal bell-shaped phenology similar to the photoperiod

(15)

15

Management: Fertilization Grazing Mowing

Intra-annual variability (Grassland)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 22/02-16/04 17/04-23/05 05/06-24/07 25/07-11/09 12/09-06/11 aBPE

1. Larger variability ⇔ forest 2. Impact of mowing ?

(16)

16 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Pr odu cti on eff ic ie ncy NSC C_Cel+L C_Hem

April Mai June July August Sept

(17)

TAKE HOME MESSAGE

(18)

18

• Forest allocated larger % of GPP to

aboveground

• Large aBPE seasonal variability (larger on

grassland)

• Forest : continuous curve ⇔ Grassland :

impact of mowing

• Temporal evolution of the reserve/wood

formation strategy

Références

Documents relatifs

Comparative results obtained by Sà and Séguy on DMC systems in Brazil and Malagasy are pu- tting in evidence an ability for C sequestration depending of two main factors : i)

Given the lack of aboveground biomass estimates for most Ethiopian species (see the review of Henry et al. 2011 ), the main objective of this study was to develop biomass and car-

There- fore, it may be speculated that neck muscles are differently recruited during whole body postural tasks and that the im- proved cervical joint position sense and reduction

ك و يف انيلع امازل نا يناثلا ثحبملا ىلع فرعتلا لصفلا نم هناونع تلالاد ثيح نم باتكلا ح و هفيلأت ثعاوب و ظ هجوأ اضيأ انسمل امك ،ىرخلأا ةيبرعلا ةيثارتلا بتكلا

TABLE 5 | Segmentations of series of mean temperatures during the HA period using piecewise constant models (2 or 1 segment when the 2-segment model was irrelevant): recording

First, forest management inventory data were transformed so as to mimic the format of scientific inventory data, which implied to (i) simulate the abundance of small trees

The second challenge to improve biomass esti- mates in managed tropical forests are the possible problems associated with long-term monitoring, for example inventory

The excellent properties of the Base 88 sprayed foam system (design 25-year thermal resistivity better than most unfaced polyurethane boards, dimensional stability better