• Aucun résultat trouvé

Patterned ferrimagnetic thin films of spinel ferrites obtained directly by laser irradiation

N/A
N/A
Protected

Academic year: 2021

Partager "Patterned ferrimagnetic thin films of spinel ferrites obtained directly by laser irradiation"

Copied!
8
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 9364

To link to this article :

DOI:10.1016/j.apsusc.2013.05.160

URL :

http://dx.doi.org/10.1016/j.apsusc.2013.05.160

To cite this version :

Pasquet, Isabelle and Presmanes, Lionel and Bonningue, Corine and

Tailhades, Philippe Patterned ferrimagnetic thin films of spinel

ferrites obtained directly by laser irradiation. (2013) Applied

Surface Science, vol. 283 . pp. 283-289. ISSN 0169-4332

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Patterned

ferrimagnetic

thin

films

of

spinel

ferrites

obtained

directly

by

laser

irradiation

I.

Pasquet

a,b

,

L.

Presmanes

a,b

,

C.

Bonningue

a,b

,

Ph.

Tailhades

a,b,∗

aUniversitédeToulouse,UPS,INPT,InstitutCarnotCIRIMAT,118,routedeNarbonne,F-31062ToulouseCedex9,France bCNRS,InstitutCarnotCirimat,F-31062Toulouse,France

Keywords: Laserpatterning Laserirradiation Spinelferrite Ironoxide Magnoniccrystals Magneto-photoniccrystals

a

b

s

t

r

a

c

t

Somespinelferritescanbeoxidizedortransformedatmoderatetemperatures.Suchmodificationswere carriedoutonthinfilmsofmixedcobaltcopperferritesandmaghemite,byheatingsmallregionswitha low-powerlaserspotappliedforabout100ns.Theverysimplelaserheatingprocess,whichcanbedone directlywithaconventionalphotolithographicmachine,madeitpossibletogeneratetwo-dimensional magnetizationheterogeneitiesinferrimagneticfilms.Suchperiodicstructurescoulddisplaythespecific propertiesofmagneto-photonicormagnoniccrystals.

1. Introduction

FromthepioneeringworksofYablonovitchh[1]andJohn[2]

opticalperiodicstructures,calledphotoniccrystals,haveattracted muchattention,notonlybecauseoftheir fundamentalinterest, butalsobecauseoftheirpotentialtechnologicalapplicationsdue totheir original collective properties[3]. Makingsuch periodic structureswithferroorferrimagneticmaterials,isalsovery attrac-tiveforseveralreasons.Firstly,opticalindicescanbetailoredby anexternal magnetic field in such structures, due tothe mag-neticbirefringenceand dichroicpropertiesofthecorematerial. Tunableopticaldevices,whichcanbecalled“magneto-photonic crystals”,canthusbeimagined[4,5].Thesecondreason isthat two-dimensionalmagnetizationheterogeneitiesinaferroor ferri-magneticmaterial,canleadtoastructureabletomanagespinwave propagation.Thesemagneticcounterpartsofphotoniccrystalsare generallycalled“magnoniccrystals”[6–8].Thetwo-dimensional magnetizationheterogeneitiescanbeholesorasecondmaterial, havingdifferentmagneticpropertiesthanthematrixinsidewhich

Correspondingauthorat:UniversitédeToulouse,UPS,INPT,InstitutCarnot CIR-IMAT,118,routedeNarbonne,F-31062ToulouseCedex9,France.

Tel.:+330561556174;fax:+330561556163.

E-mailaddress:tailhade@chimie.ups-tlse.fr(Ph.Tailhades).

itisinserted.Suchmagnonicdevicescouldfindtechnological appli-cationsinnarrow-bandopticalormicrowavefiltersorhighspeed switches[9].

2Dperiodicstructurationofmagneticfilms,hasalreadybeen performed to make magnonic crystals.However, the materials usedweresinglegarnetfilmsormagneticalloysandthemethod carriedout resortedtoquiteheavyopticalor electron lithogra-phyprocessing[9–12].Thispaper proposesa very simplelaser processingofspinelferritefilms,withtheaimtofabricatenew mag-neticdevices,forinstancemagneto-photonicormagnoniccrystals. Laserbeamsorspotshavealreadybeenusedtoanneal[13–16], sinter[17]orpattern[18–24]alotofoxides,notablyspineloxides

[25,26].Ofcourse,spinelferriteswerechosenforthiswork,because oftheirferrimagneticproperties,whichcanbeeasilyadjustedby propercationicsubstitutions.Buttheotherreason,whichisthe keytosuccessfulpatterning withlow-powerlaserspots,isthat spinelferritethinfilmscanoftendisplayareal“thermalreactivity” atmoderatetemperatures.“Thermalreactivity”meansreactivity towardsoxygen for spinel containingcations capableofhigher valencestates[27],ormetastabilityforstronglynon-stoichiometric ferrites [28,29]or quitelow sinteringtemperatures, mainlyfor coppersubstitutedferrites[30,31].Suchthermalsensitivitiesare alreadyusedforopticaldatastorage[32–34].

Thispaperwillmainlyfocusonthinfilmsofmixedcobaltcopper ferrites,becauseoftheirhighsensitivitytolaserirradiation.Itwill alsogiveanotherexamplewithlaserpatternedg-Fe2O3thinfilms.

(3)

2. Experimental

2.1. Samplepreparation

Thinfilmsofspinelferriteswerepreparedbyradio-frequency sputteringof10cmdiameteroxidetargets.Formixedcobaltcopper ferrites,anoxidetargethavingCo:Cu:Fecationsintheproportions 0.15:0.85:2wasused.Thesecondtargetwasmadeofmagnetite Fe3O4. The sputtering machine was an Alcatel A450 equipped

witharadio-frequency-generator(13.56MHz)deviceaswellasa pumpingsystem(amechanicalpumpcoupledwithaturbo molec-ularpump)whichreachesresidualpressuresdownto10−5Pa,agas

flowcontroller,awatercooledtargetholderandtwowatercooled sampleholders.Thefilmsweredepositedonglasssubstrateswith anaveragearithmeticroughnesslowerthan0.5nm.

Conventionally,aresidualvacuumof5×10−5Pawasreached in the sputtering chamber before introducing the argon depo-sition gas. In order to obtain various microstructures for Co0.15Cu0.85Fe2O4, target-substratedistances of 5 and8cm and

argonpressuresof0.5 and 2Pa, wereused.Moreover,for each experimental condition, the targets were sputtered for 20min beforestartingfilmdepositionontheglasssubstrate.The sput-teringpowerwasmaintainedatabout3Wcm−2 foreach ofthe

sputteringconditionsused.

Below, the mixed cobalt copper ferrite samples are named “Pxdy”withxthevalueofargonpressureinPascal,andythesample targetdistanceincentimetres.

Magnetitefilmswereobtainedbymagnetitetargetsputtering P0.5d5conditions.Thesesampleswereoxidizedat300◦Cfor2hin

ordertoformg-Fe2O3metastablephase. 2.2. Laserpatterning

MostofthepatterningexperimentsweredoneusingaDWL200 machinefromHeidelbergInstrumentsMikroTechnik.Thismachine isgenerallydedicatedtomask manufactureforoptical lithogra-phy.Itisahighprecisiontoolusingpixelgenerationtechnology byHe–Cdlaser scanning(=442nm,maximalpower125mW). Thewritingspeedwasabout1mm2/sor10Mpixels/s.The

aver-agedurationoflaserinsolationforeachpixel,iscloseto100nsand themaximallightenergyis7.8J/cm2.Theopticalsystemismadeof

anAutofocus,whichhasapneumaticservo-controltocorrectthe flatnessdefects.ThetuningrangeoftheAutofocusis70mmandits

zresolutionis100nm.Theworkingdistancebetweenthesample andtheobjectivelenswas100mm.

Otherexperimentswerecarriedoutwithamachinedesigned fortheproductionofmastersforopticaldiscmanufacturing.The 476nmwavelengthofanArlaserwasfocusedbyanobjectivelens withanumericalapertureof0.8,flyingoverthesampleata dis-tancecloseto1mm.Thewritingtimeforeachpixelwascloseto 100nsand themaximallight poweratthesamplesurfacewas about20mW.

2.3. Characterizationtechniques 2.3.1. X-raydiffraction

Structuralcharacterizationsoffilmswereperformedbygrazing angle X-ray diffraction (˛=1◦) on a Siemens D 5000

diffrac-tometer equipped with a Brucker sol-X detector. The X-ray wavelengthwasthatofthecopperKaray(Ka1=0.15405nmand

Ka2=0.15443nm). 2.3.2. Ramanspectroscopy

Ramanspectrawerecollectedunderambientconditionsusinga HoribaScientificRamanmicroscopefittedwithalaserwavelength of532nmanda100×objectivelens.Duringthemeasurement,the

resultinglaserpoweratthesurfaceofthesamplewasadjustedto 1.1mW.Thefinalspectrumistheaverageofthree300s accumula-tions.Examinationofmultiplespotsshowedthatthesampleswere homogeneous.

2.3.3. Magneticmeasurement

Themagnetic propertiesweremeasured in theplaneof the films, witha SQUID magnetometerMPMSXL 7 from Quantum design. The maximal applied field for the measurements was 70kOe.Themagnetizationsofthesampleswerecorrectedfor sub-stratecontribution.

2.3.4. Thicknessmeasurementandmicroscopy

FilmthicknessesweremeasuredusingaDektak3030ST pro-filometer.Atomicforcemicroscopy(AFM)wascarriedoutwitha VeecoDimension3000atomicforcemicroscope,equippedwith a super sharp TESP-SS AppNano© tip (nominal resonance fre-quency320kHz,nominalradiusofcurvature2nm).MagneticForce Microscopy (MFM)observations were also performedwith the sameapparatususingmagnetizedtips(Co/Crcoating,nominal res-onancefrequency70kHz).AFMwasusedtorevealtheheatedareas ofthefilms,wherechangesinvolumeoccurredduetostress relax-ation,oxidationorcrystallization.MFMisnotreallyappropriatedto studysuchstrongtopographicdeformationsinferrimagneticfilms. Indeed,themagneticcontrastisgenerallylowandthetopographic signalduetoahighbumporadeephollow,isdifficulttoremove totallyfromthemagneticsignal.However,MFMisverypowerfulto revealchangesinlocalmagneticpropertieswhenthereisno topo-graphicalmodification.MFM wasthenusedonlytoreveallocal maghemite–hematitetransformations,whichcanoccur without topographicalchangeandwhichinvolvetheformationof antifer-romagneticzonesinferrimagneticferritefilms.

The microstructureof thesamples wasalso investigatedby scanning electron microscopy with a JEOL JSM 6700F appara-tus.TheproportionofcationswasdeterminedbyEDX(Princeton GammaTech).SomepatternswerealsoobservedwithaKeyence VHX-600digitalopticalmicroscopeusingaVH-Z100RorVH-Z500R objectivesystem,havingbothahighresolutionandalargedepth offield.

3. Resultsanddiscussion

3.1. Mixedcobaltcopperspinelferrites

Theferritethinfilmspreparedwerepoorlycrystallizedbutthey displayed themain X-ray diffraction(Fig.1)and Raman peaks (Fig.2)ofthespinelstructure.Moreovertheywereferromagnetic atroomtemperatureasrevealedbytheirM=f(H)hysteresiscurves (Fig.3).EDXanalysesalsoshowedthatthemetalchemical compo-sitionwas0.15Co:0.85Cu:2Fe,thesameasthatofthetarget.The thinfilmswerethenmadeofaCo0.15Cu0.85Fe2O4spinelferrite.The

samplespreparedat0.5Paargonpressureand5cmfromthetarget (samplesP0.5d5),hadX-raydiffractionpeaksshiftedtowardsthe smallanglescomparedtothepeakpositionsforapowderhaving thesamecomposition.Anin-planecompressivestress,makingthe reticulardistanceslargerinadirectionclosetotheperpendicular ofthefilmsurface,wasassumedtoberesponsibleforthisshift. Bycontrast,theP2d8samplesweresubmittedtoaslighttensile stress(Fig.1andTable1).Atomicforcemicroscopyclearlyshows thepolycrystallinestructureofthefilms(Fig.4),whichweremade ofsmallcrystallitesofabout25nmand40nmfor100nmand1mm thicksamplesrespectively.Thesamplespreparedatahighargon pressure(P2d8)displayedcrystallitesaggregatedinlargergrains separated byporosity. This porosity clearly appeared for P2d8, mainlyfor1mmthickfilms(Fig.4).

(4)

0 1000 2000 3000 4000 5000 6000 25 35 45 55 In te n s it y 2 theta (degree) (2 2 0 ) (3 1 1 ) (4 0 0 ) (4 2 2 ) (511 ) P05D5 P2D8

Fig.1.X-raydiffractionpatternsofas-depositedCuCothinfilms(1mmthick)for twoexperimentalconditions:argonpressure2Paandtarget-substratedistance 8cm(P2d8);argonpressure0.5Paandtarget-substratedistance5cm(P05d5).

Fig.2.Ramanspectraofas-depositedCuCothinfilms(thickness:1mm)for exper-imentalconditionsP2d8andP05d5.

Fig.3.M=f(H)hysteresiscurve atroomtemperature for1mmthicksamples ofmixedcobaltcopperferritefilms,preparedindifferentconditions:(a)argon pressure:2Pa,target-substratedistance:8cm,(b)argonpressure:0.5Pa, target-substratedistance:5cm.

Preliminaryexperimentsoflaserirradiationwerecarriedouton as-depositedfilms,havingathicknessof70nm.Thelaserspotofthe masteringmachine(=476nm)wasusedfortheseexperiments. Twodifferentbehaviourswereobserved.Forthefilmspreparedat lowargonpressure,thelaserirradiationcreatedbumps,whereas crater-likeshapedholesappearedforfilmsobtainedathigh pres-sure(Fig.5).Thepatternswrittenwereveryregularinsizeand shapeforallsamples.Theirsize,however,increasedalittlebitwith thelaserpowerduetotheGaussianprofileoftheenergyofthe spot.Forinstance,thebumpsdisplayedanoveralldiameterclose to0.3mmandaheightof10nmfor5mW,butthesevaluesbecame 0.6mmand30nm,forapowerof15mW.

Someexperimentswerecarriedouttotrytounderstandthe phenomenarelatedtopatternformation.Atfirst,thinfilmswere heatedat450◦Cinair(AAsamples)orinpurenitrogen(NA

sam-ples).ItwasobservedthatforAAferritelayers,itwasnotpossible togetapatternwithamoderatelaserpower(5–15mW).ForNA samples,filmscanbewrittenon,usingaslightlyhigherlaserpower than for as-deposited ferrites. Pattern formation couldthen be relatedtoanoxidationphenomenoninducedbylaserheating.

Table1

Modificationsoftheout-of-planereticulardistancesduetointernalstressinferrite films.

Sample (311)Reticulardistance(nm)

Co0.15Cu0.85Fe2O4powder 0.25274

P0.5d5thinfilm 0.25539

(5)

Fig.4.AFMimage(1 × 1micrometers)ofthesurfaceof100nmand1mmthickfilms, preparedindifferentconditions:(a)argonpressure:2Pa,target-substratedistance: 8cm,(b)argonpressure:0.5Pa,target-substratedistance:5cm.

Somespineloxides,mainlyferritescontainingcopper,havea lowexcessof cations(i.e.metalliccations/oxygenanions>3/4). Theycanbedescribedbyageneralformulasuchas:MxFe3−xO4−ı

(ı>0, M:metallic cations). For such ferrites,non-stoichiometry occursduetoexcessoflowvalencestatecations,whicharelocated inoxygeninterstices,normallyfreeofcationsinthespinel struc-ture.“Interstitial”cuprousionswerealreadyrevealedin copper

[35,36]ormixedcobaltcopperferrites[37].Thefilmsstudied prob-ablydisplaysuchnon-stoichiometry,makingcuprouscationsthe onlyoxidizableions,duetothehighstabilityoftheotherCu2+,Co2+

andFe3+cationicspecies.Theoxidationcouldthenbewritten:

Co0,15Cu0,85Fe2O4−ı+ı/2O2→Co0.15Cu0,85Fe2O4 (1) Reaction(1),whichisinducedbytheheatingeffectofthelaser irradiation,canoccurmoreorlessreadilyaccordingtothefilm crys-tallitesize.Foras-depositedfilms,reactivitytowardsoxygenwas highbecauseoflowvalencestatecopperionsandsmall crystal-litesize.Patternscouldthenbeformedatlowlaserpower.When annealedat450◦C ininertgas,cuprousionsremainedbuttheir

oxidationwasmoredifficultbecauseoflargercrystallitesize,i.e. becauseofthelowerareaofmaterialincontactwiththeair. Pat-ternsformation requiredhigherlaser power.Ofcourse, sample

Fig.6.AFMimage(phasemode)showingtheincreaseincrystallitesizeinthe laserheatedzones(cobaltcopperferritefilm,thickness70nm,P0.5d5).Imagesize 600nm × 600nm.

annealinginairat450◦C,wasresponsibleforcuprousions

oxi-dation,makingitimpossibletowritepatternswithmoderatelaser power.

Althoughoxidationseemstoplayafundamentalroleinthe for-mationofthepatterns,itcannotexplainwhyferritefilmsreact to thelaser irradiation,to give either bumps or holes. Maybe, however,theheatbroughtbythelaser,addedtoasmallheating effectduetotheexothermicoxidation,bringsenoughenergyto modifythelocalmicrostructureleadingtothegrowthandthe sin-teringofthecrystallites.Thiseffectcanbeespeciallypronounced forcopperferrites,whichcanbesinteredatquitelow tempera-tures[30,31].ThechangeincrystallitesizewasrevealedbyAFM imaging, forthe bumpsformedin P0.5d5samples(Fig.6). The microstructuralchangegoesalsowithtopographicalmodification duetothemechanicalstressdevelopedduringthegrowthofthe films.ForfilmsP0.5d5submittedtoacompressivestressintheir plane,themicrostructuralchangegoeswiththeformationof a bump.Bycontrast,tensilestressleadsto“holes”withcrater-like shapesinP2d8layers.

Fig.5.Patterningoffilmspreparedindifferentconditions:(a)argonpressure:0.5Pa,target-substratedistance:5cm(AFMImage10mm × 10mm);(b)argonpressure:2Pa, target-substratedistance:8cm(AFMImage7mm× 7mm).

(6)

Fig.7.AFMimagesshowingtheraised(bright)andhollow(dark)zonesforP0.5d5(a)andP2d8,respectively.Thethicknessofthefilmsis1mm.Theimagesizeis 10mm × 10mm.

Fig.8.(a)SEMimageoflaserpatternedP2d8film(thickness:1mm);(b–d)detailsofas-depositedandpatternedzones.

Verysimilarresultswereobtainedforthickersamples irradi-atedbythe442nmlaserspotoftheconventionalphotolithography machine.For1mmthicksamples,hollowzonescanbeobservedfor P2d8filmsandraisedzonesforP0.5d5films(Fig.7).Aspreviously shown,thelaserspotinvolvescrystallitegrowthandsintering.In theP2d8hollowzones,thecrystalliteswerealittlebitlargerthan thoseintheas-depositedregions(Fig.8).Moreover,the rough-nesswasdecreasedandtheporositydeletedintheselasertreated zones.IntheP0.5d5raisedzones,thecrystallitesizeswerealso increased. Unlike the P2d8 samples, which were submitted to differentinternal stresses,laser heatingdidleadhowever toan increaseinroughness.Theroughnesswasmainlyduetogrooves resultingfromthescanofthelaserspot,asclearlyrevealedbyAFM images(Fig.7a).

Spinelferriteswithperiodicpatternsengravedinside,canthen beobtainedbydirectlaserprocessing.Becauseoftheversatility ofthisprocess,periodicstructuresverysimilartothoseusedfor magnoniccrystalsmadeofgarnets[9],canbedirectlypatterned inP2d8spinelferrites.Itwillbeinterestingtostudythepotential magneto-photonicormagnoniceffectsofsuchstructured ferrimag-neticspineloxidesinthenearfuture.

Itisalsoimportanttoshowthatwiththeconventional pho-tolithography machine used, it is possible to write very small

Fig. 9.Submicronic patterns in P2d8 film (thickness of the film: 1mm) (10mm × 10mmAFMimage).

(7)

Fig.10.AFMimage(a)andthecorrespondingMFMimage(b)ofag-Fe2O3filmlocallytransformedintoa-Fe2O3bylaserheating(sizeoftheimages:8mm × 8mm).

patternsinfilmsofcobaltcopperspinelferrites.Forinstance, sub-micronicpatternswereobtainedinP2d8films(Fig.9).Thatmakes thepreparationofminiaturizedstructurespossible.

3.2. Maghemitefilms

Themaghemite(g-Fe2O3)isametastablespinelphaseobtained

byoxidationofmagnetite(Fe3O4).Itcanbetransformedintothe

thermodynamicallystablea-Fe2O3,whichhasthecorundum

struc-ture.Thistransformation,whichoccursatamoderatetemperature (#300–600◦C)varyingmainlywithcrystallitesizeandmechanical

stress[29],canbeachievednotonlyforfinepowdersbutalsofor thinfilmsofmaghemite.

Somewritingexperimentsweredone withthe476nmlaser spoton25nm thickmaghemite films obtained byoxidation at 300◦Cofmagnetitesamples.Forlaserpowerinbetween7.5and

10mW, no topographical modifications were revealed. Careful MFMobservations showed,however, magneticcontrasts repro-ducingthepatternsprogrammedonthelasermachine(Fig.10). Themagneticcontrastscamefromthelocaltransformationsofthe ferrimagneticg-Fe2O3film,whichinteractedwiththemagnetized

tipofthemicroscope,intoantiferromagnetica-Fe2O3 zones,for

whichthemagneticinteractionswiththetipwerelower.

Themetastabilityofsomespinelferritethinfilms,thusoffers anotherpossibilityto createperiodic structuresby avery sim-pleand directlaser irradiationprocess. Theperiodic “magnetic heterogeneities” created inside the ferromagnetic film could, alsogenerate the specificproperties of a magneto-photonic or magnoniccrystal.

4. Conclusion

Thinfilmsofmixedcobaltcopperspinelferritesandmaghemite displayedthermal reactivity,whichmakestheirpatterning pos-siblebya low-power laser spot.By controllingthe elaboration parameters or the ferrite composition, holes, bumps or local phase changes can be created inside spinel ferrite films, by this very simple laser-based process. Ferrimagnetic films with two-dimensionalperiodicheterogeneitiesofmagnetization, can then be prepared. Such films meet the basic requirements of magnonic or magneto-photonic crystals. Moreover,due to the hugepossibilitiesofcompositionandnon-stoichiometry,offered bythespinelferritefamily, patternedperiodicstructurescould bemadeusingasimpleprocess,withferriteshavingtherelevant propertiestomakeeffectivemagneto-photonicormagnonic crys-tals.

Acknowledgements

ThisworkwassupportedbytheRENATECHtechnological plat-formfromInstitutCarnotLAAS-CNRS,memberoftheRTBnetwork. TheauthorsparticularlythankDr.PierreFranc¸oisCalmon.

References

[1]E.Yablonovitch,Inhibitedspontaneousemissioninsolid-statephysicsand

electronics,PhysicalReviewLetters58(1987)2059–2062.

[2]S.John,Stronglocalizationofphotonsincertaindisordereddielectric

super-lattices,PhysicalReviewLetters58(1987)2486–2489.

[3]J.D.Joannopoulos,R.D.Meade,J.N.Winn,PhotonicCrystals:MoldingtheFlow

ofLight,PrincetonUniversityPress,Princeton,1995.

[4]S.A.Nikitov,Ph.Tailhades,Opticalmodesconversioninmagneto-photonic

crystalwaveguides,OpticsCommunications199(2001)389–397.

[5]I.L.Lyubchanskii,N.N.Dadoenkova,M.I.Lyubchanskii,E.A.Shapovalov,Th.

Ras-ing,Magneticphotoniccrystals,JournalofPhysicsD:AppliedPhysics36(18)

(2003)R277.

[6]S.A.Nikitov,Ph.Tailhades,C.S.Tsai,Spinwavesinperiodicmagneticstructures

–magnoniccrystals,JournalofMagnetismandMagneticMaterials236(3)

(2001)320–330.

[7]H.Puszkarski,M.Krawczyk,Magnoniccrystals—themagneticcounterpartof

photoniccrystals,SolidStatePhenomena94(2003)125–134.

[8]V.V.Kruglyak,S.O.Demokritov,D.Grundler,Magnonics,JournalofPhysicsD:

AppliedPhysics43(2010)264001.

[9]Yu.V.Gulyaev,S.A.Nikitov,L.V.Zhivotovskii,A.A.Klimov,Ph.Tailhades,L.

Pres-manes,C.Bonningue,C.S.Tsai,S.L.Vysotskii,Yu.A.Filimonov,Ferromagnetic

filmswithmagnonbandgapperiodicstructures:magnoncrystals,JETPLetters

77(10)(2003)567–570.

[10]S.Schnittger,S.Dreyer,Ch.Jooss,S.Sievers,U.Siegner,Magnetostatic

interac-tionsinpatternedCoPtfilmsembeddedinapermalloymatrix,AppliedPhysics

Letters90(2007)042506.

[11]S.Neusser,D.Grundler,Magnonics,Spinwavesonthenanoscale,Advanced

Materials21(2009)2927–2932.

[12]A.O.Adeyeye,S.Jain,Coupledperiodicmagneticnanostructures,Journalof

AppliedPhysics109(2011)07B903.

[13]M.E.Koleva,R.I.Tomov,P.A.Atanasov,Ch.G.Ghelev,O.I.Vankov,N.I.Mihailov,

J.Lancok,M.Jelinek,Simultaneouslaser-magneticfieldtreatmentofSrFe12O19

thinfilmsgrownbypulsedlaserdeposition,AppliedSurfaceScience186(2002)

463–468.

[14]D.E.Diaz-Droguett,R.ElFar,V.M.Fuenzalida,A.L.Cabrera,Insitu-Raman

stud-iesonthermallyinducedstructuralchangesofporousMoO3preparedinvapor

phaseunderHeandH2,MaterialsChemistryandPhysics134(2012)631–638.

[15]D.Lee,H.Pan,S.H.Ko,H.K.Park,E.Kim,C.P.Grigoropoulos,Non-vacuum,

single-stepconductivetransparentZnOpatteringbyultra-shortpulsedlaser

annealingofsolution-depositednanoparticles,AppliedPhysicsA107(1)(2012)

161–171.

[16]S.Dhobale,N.M.Kulkarni,R.J.Choudhary,D.M.Phase,S.N.Kale,Engineering

roomtemperatureSO2gassensingvialaser-annealednanostructuredSnO2

thinfilms,ScienceofAdvancedMaterials4(3–4)(2012)475–479.

[17]M.H.Willemann,M.O.Thomson,Twostagelaserprocessingofnanoparticle

inksonflexiblesubstratesforhighperformanceelectronics,MaterialsResearch

SocietySymposiumProceedings1340(2011)31–36.

[18]A.J. Pedraza, D.H. Lowndes, Surface engineering using eximer lasers,

ProceedingsoftheSPIE–TheInternationalSocietyforOpticalEngineering

(8)

[19]O.Yavas,M.Takai,High-speedmasklesslaserpatterningofthinfilmsforgiant

microelectronics,JapaneseJournalofAppliedPhysics12B(Part1(38))(1999)

7131–7134.

[20]R.Nagai,T.Honma,T.Komatsu,LaserpatterningofZnOcrystalsonthesurface

ofborosilicateglass,JournaloftheAmericanCeramicSociety93(3)(2010)

658–661.

[21]W.T.Hsiao,S.F.Tseng,C.H.Kuo,K.C.Huang,D.Chiang,P.C.Yao,M.F.Chen,

Fabricationofelectrodesonthealuminumdopedzincoxidethinfilmsusing

anultravioletlaserdirect-patterningtechnology,PhysicsProcedia19(2011)

456–465.

[22]V.Oliveira,N.I.Polushkin,O.Conde,R.Vilar,Lasersurfacepatterningusinga

Michelsoninterferometerandfemtosecondlaserradiation,OpticsandLaser

Technology44(2012)2072–2075.

[23]R.Sbiaa,S.N.Piramanayagam,Patternedmediatowardstano-bitmagnetic

recording:fabricationandchallenges,RecentPatentsonNanotechnology1

(2007)29–40.

[24]S.N.Piramanayagam,J.P.Wang,Methodofproducingamagneticrecording medium,USPatent6,699,332B1(2004).

[25]J.Pröll,R.Kohler,M.Torge,S.Ulrich,C.Ziebert,M.Bruns,H.J.Seifert,W.Pfleging,

Lasermicrostructuringandannealingprocessesforlithiummanganeseoxide

cathodes,AppliedSurfaceScience257(23)(2011)9968–9976.

[26]J.Pröll,R.Kohler,A.Mangang,S.Ulrich,M.Bruns,H.J.Seifert,W.Pfleging,Diode

laserheattreatmentoflithiummanganeseoxidefilms,AppliedSurfaceScience

258(12)(2012)5146–5152.

[27]Ph.Tailhades,B.Gillot,A.Rousset,Mixed-valencedefectferrites:anewfamily

offinepowdersandthinfilmsofspinelferrites,JournaldePhysiqueIVFrance

7(C1)(1997)249–252.

[28]W.Feitknecht,U.Mannweiler,ÜberdieoxidationvonFe3O4zug-unda-Fe2O3,

HelveticaChimicaActa45(1962)2042–2057.

[29]K.J.Gallagher,W.Feitknecht,U.Mannweiler,Mechanismofoxidationof

mag-netitetog-Fe2O3,Nature217(1968)1118–1121.

[30]J.H.Nam,N.H.Jung,J.Y.Shin,J.H.Oh,Theeffectofcusubstitutiononthe

elec-tricalandmagnetic-propertiesofNiZnferrites,IEEETransactionsonMagnetics

31(6)(1995)3985–3987.

[31]J.Mürbe,J.Töpfer,Ni–Cu–Znferritesforlowtemperaturefiring:I.Ferrite

compositionanditseffectonsinteringbehaviorandpermeability,Journalof

Electroceramics15(2005)215–221.

[32]L.Bouet, Ph.Tailhades,I. Pasquet, C. Bonningue,S.Le Brun,A. Rousset,

Cation-deficientspinelferrites:applicationforhigh-densitywrite-onceoptical

recording,JapaneseJournalofAppliedPhysics38(Part1)(1999)1826–1828.

[33]Ph.Tailhades,L.Presmanes,I.Pasquet,C.Bonningue,F.Laporte,Spineloxides

thinfilmsforwrite-onceopticalrecordingwithbluelasersources,Transactions

oftheMagneticsSocietyofJapan2(4)(2002)198–201.

[34]Ph.Tailhades,C.Bonningue,I.Pasquet,L.Presmanes,Utilisationd’oxydes spinellesoxydablespourenregistrementoptique,PatentPCTWO03042991 (2003).

[35]M.Rosenberg, P.Nicolau,I. Bunget,On theelectricalpropertiesofsome

iron–copperandcopper–manganeseferrites,PhysicaStatusSolidiB15(1966)

521–530.

[36]C.Gleitzer,J.B.Goodenough,StructureandBonding,SpringerVerlag,1985,pp.

44–46.

[37]C.Villette,Ph.Tailhades,A.Rousset,Thermalbehaviourandmagnetic

proper-tiesofacicularcopper–cobaltferriteparticles,JournalofSolidStateChemistry

Figure

Fig. 2. Raman spectra of as-deposited CuCo thin films (thickness: 1 mm) for exper- exper-imental conditions P2d8 and P05d5.
Fig. 4. AFM image (1 × 1 micrometers) of the surface of 100 nm and 1 mm thick films, prepared in different conditions: (a) argon pressure: 2 Pa, target-substrate distance:
Fig. 7. AFM images showing the raised (bright) and hollow (dark) zones for P0.5d5 (a) and P2d8, respectively
Fig. 10. AFM image (a) and the corresponding MFM image (b) of a g-Fe 2 O 3 film locally transformed into a-Fe 2 O 3 by laser heating (size of the images: 8 mm × 8 mm).

Références

Documents relatifs