• Aucun résultat trouvé

Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy

N/A
N/A
Protected

Academic year: 2021

Partager "Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy"

Copied!
9
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu

Handle ID: .http://hdl.handle.net/10985/9940

To cite this version :

Yessine AYED, Guénaël GERMAIN, Amine AMMAR, Benoit FURET - Tool wear analysis and

improvement of cutting conditions using the high-pressure water-jet assistance when machining

the Ti17 titanium alloy - Precision Engineering - Vol. 42, p.294-301 - 2015

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

(2)

ContentslistsavailableatScienceDirect

Precision

Engineering

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / p r e c i s i o n

Tool

wear

analysis

and

improvement

of

cutting

conditions

using

the

high-pressure

water-jet

assistance

when

machining

the

Ti17

titanium

alloy

Y.

Ayed

a,∗

,

G.

Germain

a

,

A.

Ammar

a

,

B.

Furet

b aArtsetMétiersParisTech,LAMPA,2bdduRonceray,49035AngersCedex,France bIUTNantes,IRCCyN,2av.duProfesseurJeanRouxel,44475Carqefou,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17January2015

Receivedinrevisedform7April2015 Accepted9June2015

Availableonline20June2015 Keywords: Toolwear Toollife Highpressure Cuttingforces Titaniumalloy

a

b

s

t

r

a

c

t

ThispaperpresentsexperimentalresultsconcerningthemachinabilityofthetitaniumalloyTi17with andwithouthigh-pressurewaterjetassistance(HPWJA)usinguncoatedWC/Cotools.Forthispurpose, theinfluenceofthecuttingspeedandthewaterjetpressureontheevolutionoftoolwearandcutting forceshavebeeninvestigated.Thecuttingspeedhasbeenvariedbetween50m/minand100m/min andthewaterjetpressurehasbeenvariedfrom50barto250bar.Theoptimumwaterjetpressurehas beendetermined,leadingtoanincreaseintoollifeofapproximately9times.Comparedtoconventional lubrication,anincreaseofabout30%inproductivitycanbeobtained.

©2015ElsevierInc.Allrightsreserved.

1. Introduction

Titaniumalloyshavebeenwidelystudiedduetotheir remark-ableproperties,notablytheirstrength/densityratiowhichpresents interestingadvantagesintheaviationandaerospacefields. How-ever, the machining of these alloys is particularly challenging, whichhasadirectimpactonproductivity,surfaceintegrity and toollife.

Thehighchemicalreactivityandthelowthermalconductivityof thesealloyspresentfavourableconditionsfortoolwear.Inaddition, thehightemperatureinthecuttingzoneandthehighcuttingforces accentuatetheevolutionofthewear.Accordingto[16],thereisa criticaltemperatureatwhichthedegradationofthecuttingtool isaccelerated.Thisisaround740◦C,760◦Cand900◦CforWC/Co, PCDandCBNrespectively. Thislimitsthechoiceofcuttingtool materialsandcoatings.Regardlessofthetypeofmachinedmaterial, thetoolmustfulfilanumberofcharacteristicstohavebetterwear resistance:

• Maintain good mechanical properties at high temperatures (hardness,rigidityandtenacity).

∗ Correspondingauthor.

E-mailaddress:yessine.ayed@ensam.eu(Y.Ayed).

• Haveahighchemicalinertiatoresistthehighchemicalaffinity ofsomealloys.

• Haveanadaptedcuttinggeometry.

Accordingto[11,19–21]theuncoatedtungstencarbideWC/Co seemstobeagoodchoiceforthemachiningoftitaniumalloys.

High-pressurewaterjetassistancepresentsanefficientsolution todeceleratetoolwearandtoenhancetoollife.Usingthis tech-nique,theincreaseintoollifefortitaniumalloysvariesbetween 185%[3]and460%anditcanreach780%whenmachiningInconel

718[8,15].Inaddition,HPWJAallows,amongotherthings,to

effec-tivelylubricatethecuttingzoneandthustoreducethetemperature inthetoolbymorethan40%[13].Furthermore,thefragmentation ofchipsisensured.Thestudyoforthogonalcuttingwithhigh pres-surecoolantassistance[12]showedthatchipbreakingiscontrolled bythenozzlediameterusedandthepressureofthewaterjet.

Theeffectofthelubricanttypehasbeentested by[17].The study is based on the comparison of the performance of the water-solubleoilandtheneatoilduringthehigh-pressure cool-ingassistedmachiningofTi–6Al–4V.Therespectivetoollifefor theconventional lubrication, neatoiland water-solubleoilare 4min,5minand14min(Vc=100m/min,f=0.2mm/rev,P=100bar,

dnozzle=0.8mm).Theinfluenceofthedirectionofthelubricantjet

andflowratehasbeentheobjectofthestudycarriedoutby[7]

fortheturningofAISI1045steel.Whenthefluidwasappliedon http://dx.doi.org/10.1016/j.precisioneng.2015.06.004

(3)

Table1

ChemicalcompositionandmechanicalpropertiesofTi17.

Chemicalcomposition(%) Mechanicalproperties

Ti Al Mo Cr Zr Sn UTS(MPa) p0.2%(MPa) A%

82.5 5.16 4.08 4.06 2.01 2.06 1110 1020 5

therakeandtheflankfacesofthetool,thebestresultshavebeen obtained.Ithasbeenmentionedthatthelubricantjetaccelerates craterwearbypulling-outtheadherentlayers.

The turning of Ti–6Al–4Vat high cutting speeds using PCD inserts has been tested by [5,10]. The study showed that an improvementofthetoollifeofupto9to21timescouldbeobtained. Different gradesof CBNtools have beenused whenmachining Ti–6Al–4V[9].Theyseemtobesensitivetocoolantpressure,the improvementoftoollifecanreach150%.

Theexplanationoftoolwearmechanismswhenmachining tita-niumalloys[1]andnickel-basedalloyshasbeenthesubjectofother studies[2,6,22].

Thepresentstudyprovidesacontributiontotheoptimization ofthisprocesswhenmachiningTi17titaniumalloy.Itisbasedona widerangeofexperimentaltestsandawell-informedstudyofthe toolwearmechanisms.

2. Materialandexperimentalsetup

2.1. Materialpresentation

The studied material is the Ti17 titanium alloy

(Ti–5Al–2Sn–4Mo–2Zr–4Cr); its chemical composition and its mechanicalpropertiesaresummarizedinTable1.

Atroomtemperature,theTi17alloyiscomposedofan˛phase andaˇphase.Thetransustemperatureislocatedat880◦C;above thistemperature,onlytheˇphase exists.The˛phaseexistsin differentmorphologies:˛grainboundary(˛GB),˛Widmanstätten

grainboundary(˛WGB)and˛WImorphology[18].The

microstruc-tureofthematerialispresentedinFig.1. 2.2. Experimentalsetup

InordertodeterminetheVCmin(minimumcuttingspeed),

pre-liminarytestsbasedonthe“PrE66-520-4”standardhavebeen done.Thecuttingspeedhasbeenvariedfrom5m/minto90m/min. At the end of these tests, the cutting speed of 50m/min was selected.Afterthisphase,toolwearexperimentswereundertaken atdifferentcuttingspeedsandwithdifferentlubricationpressures. ThetoolusedinalltestsistheSeccoJetStreamPCLNR2525M12.The purposeofthesetestswastoevaluatetheeffectivenessofHPWJA underthefollowingconditions:

Fig.1. MicrostructureofTi17.

Table2

Waterjetpressureandflowrate.

Pressure(bar) 50 100 150 200 250

Flowrate(l/min) 9 15 20 23 26

Table3

Geometricalparametersofthecuttingtoolandthecuttingparameters. Toolgeometry

Noseradiusr(mm) 1.2

Edgeradiusrˇ(m) 30

Rakeangle(◦) 7

Flankangle(◦) 6

Cuttingedgeangle(◦) 95

Cuttingparameters

CuttingspeedVC(m/min) 50;61;75;81;88;100

Depthofcutap(mm) 1.5

Feedratef(mm/rev) 0.1

-CuttingspeedVC(m/min):50;75;61;81;88and100.

-Waterjetpressureandflowrate(Table2).

Allmachiningoperationshavebeencarriedoutwitha “LEAD-WELLLTC25iL”CNClathe(Fig.2).Ahigh-pressurepumphasbeen usedtosupplythehigh-pressurejet(400bar,38l/min).Thepump tankisfilledwith200Loflubricantconsistingof95%waterand5% solubleoil.TheexperimentalsetupisillustratedbyFig.3

The depth of cut and the feed rate were maintained con-stant(1.5mmand0.1mm/revrespectively).Foreachtest,anew uncoatedtungstencarbide(H13A)toolinsertwasused.The mea-surementofthethreecuttingforcecomponentswasdoneusing aKistler9257Bdynamometer.Thegeometricalparametersofthe toolandthecuttingparametersaresummarizedinTable3.

(4)

Fig.3. Experimentalsetup.

Toolwearhasbeenfollowedandcontrolledbyusingastereo binocularmicroscopeandascanningelectronmicroscope,by mon-itoringthecuttingforces.Over270measurementsrelatedtothe20 testshavebeencarriedout.Atthebeginningoftheexperimental work,aseriesofrepeatabilitytestswereperformed.Thesametypes ofwearwasobservedandthemeasurementerroroftheflankwear isestimatedtobe0.02mm.Fig.4showsthemainweartypes.

3. ToolweartestsatVC=50m/min

Fortheinitialcuttingspeedof50m/min,threelubricationtypes wereselected:conventionallubrication(Conv-Lub),andtwo high-pressurelubricationconditions(P=100barandP=250bar).Fig.5

showstheevolutionofflankwear(VB)asafunctionofthe machin-ingtime.Forthetotaldurationofthetest(30min),flankweardoes notexceed0.26mm.ItcanalsobenotedthatwithHPWJA(250bar), theevolutionofflankwearisstableinthebeginningofthetest. However,towardstheendofthetest,itsevolutionbecomesvery rapid.Moreover,withapressureof100bar,theflankwearisstill lessthan0.2mm[1].Hence,itwouldbeinterestingtotestother lubricationpressurestoinvestigatetheireffectontoolwear.

Fig.5.Flankwearevolution,VC=50m/min.

Fig.6showstheSEMimagesofthetoolrakefaceattheendof thethreetrials.Fortheconventionallubricationcondition,layers ofdepositsandalargenotchhavebeennoticedonthecuttingedge (Fig.6(a)).

Bahattetal.[2]explainsthatthecombinationofthehigh con-tactpressurebetweenthetoolandthechip,coupledwiththehigh cuttingtemperature,causesweldingtooccurbetweenthesurface ofthechipandtherakeface.Devillezetal.[6]proposesthesame explanation.

Childs[4] showsthat thestickingbetweenthechipandthe carbidegrainsisduetodiffusionbetweenthechipandthetool. Thus,anincreaseinthecuttingtemperaturepromotesthe diffu-sionbetweenthetoolandthechip.Itistruethattheadherentlayers couldprotectthetool.However,whentheformationoftheselayers reachesasaturationstate,theyarepulled-out.Whenthishappens, theyaredetachedalongwithfragmentsofthetool,thuscausing adhesivewear[6,22].

However,withthehigh-pressurelubrication,acraterisvisible onthetoolrakeface(Fig.6(b)and(c)).Furthermore,the build-upoftheadherentlayershasbeenreducedduetotheactionof thelubricantjet.Infact,Thelubricantjetpullsouttheadherent layersleadingtotheaccelerationofthecraterwear[1,7].However, undertheseconditionstheevolutionoftheflankwearremainslow comparedtoconventionallubrication.Overtime,thiswillweaken

(5)

Fig.6.Craterwear,(a)conventionallubrication,(b)100bar,(c)250bar.

Fig.7.Flankwearevolution,VC=75m/min.

thetoolinsert.Thecuttingedgewilleventuallycollapseunderthe actionofthecuttingforces.

Increasingthepressureofthewaterjetcausesfastertearing awayofthedeposedlayersleadingtotheaccelerationofthecrater wear.Hence,theoptimalpressureshouldbedeterminedwhich, firstly,coolsthetoolandallowsaccesstothecuttingarea(a pres-sureof50barseemstobeinsufficientinthis case).Secondly,it reducestheflankwear(apressureof100bargivesthebestresults). Still,thisdoesnotaffecttheglobaltoollife.Infact,toolwearis moreseverewithconventionallubricationduetothehigher cut-tingtemperatureandthehigherfrictioncoefficientcomparedto HPWJA.Under theseconditions,thewearrateis higherthanin HPWJAduetotheactivationofmanywearmechanisms.Infactwith conventionallubricationthecombinationofhighcuttingforcesand hightemperaturecausestherapidcollapse ofthecuttingedge, especiallyforhighcuttingspeeds.

4. ToolweartestsatVC=75m/min

Fortheseteststhecuttingspeedwasincreasedby50%relativeto thereferencecuttingspeedof50m/min.Fig.7showstheevolution offlankwearforthefivelubricationconditions.Forthe conven-tionallubricationcondition,toolwearincreasesveryquicklyand thetoollifedoesnotexceed3min.However,withhigh-pressure lubrication,toollifehasbeengreatlyimproved.Indeed,thebest performancehasbeenrecordedat100bar.

Table4 summarizes theresults of thewear tests.It canbe

noticedthattoollifehasbeenmultipliedby8fortthepressure

Table4

ToollifeatVC=75m/min.

Conv-Lub 50bar 100bar 150bar 250bar

Toollife(min) 3 18 26 23 16

of100bar.However,increasingthepressurebeyond100bardoes notimprovetheresults.

Theformationandtheevolutionofnotchwearhavealsobeen noted.Whenthenotchwearexceeds0.21mm,burrsareformedon theworkpiece.Fig.8showstheevolutionofnotchwear(VBn).In fact,itgivesthemeanvaluesandprovidesaglobalestimationover themachiningtime.

Thevariationofthecuttingandtheaxialforces,fordifferent lubricationconditions,areplottedinFig.9.ItshowsthatFaand

FCincreaseasafunctionofmachiningtimeandconsequentlythe

toolwear.Furthermore,foranincreaseof0.3mmofflankwear,the variationoftheaxialforceFareaches350Nwhilethevariation

ofthecuttingforceFCexceeds100N.Itwasalsonotedthatthe

evolutionoftheaxialandthecuttingforcesfollowstheevolution offlankwear,thesametrendsarenoticed.Furthermore,whenthe axialforceexceeds600N,thecorrespondingflankwearisabout 0.3mmforalltests.So,theaxialforceismoresensitivetoflankwear thanthecuttingforce.Fig.10showstheevolutionoftheaxialforce asafunctionoftheflankwearfordifferentlubricationconditions. Globally, the use of high-pressure assistance significantly increasesthetool life.However,whenthejet pressureexceeds 100bar,thetoollifebeginstodecrease(comparedtoitsvalueat 100bar),andthesurfaceoftheworkpieceisaffectedbyscratches. Thesescratchesaremostlikelycausedbytheimpactoffragmented chips.Moreover,whenthepressureincreases,thechipsare bro-kenintosmallerpiecesandprojectedathigherspeeds.Thismay intensifythescratchesonthesurfaceoftheworkpiece.

Itisnecessarytonotethatthisphenomenonisobservedinthe contextofthisstudyontheTi17alloy.However,thismightnotbe thecaseforotheralloysandmaterials.

5. ToolweartestsatVC=88m/min

Forthisseriesoftests,thecuttingspeedisincreasedby75% rel-ativetothereferencecuttingspeed.Fig.11showstheevolutionof

(6)

Fig.9.Evolutionoftheaxialandthecuttingforces.

Table5

ToollifeatVC=88m/min.

Conv-Lub 50bar 100bar 150bar 250bar

Toollife(min) 1 6 9 8.5 9

flankwearforthedifferentconditions.Withconventional lubrica-tion,theTi17alloyisnotmachinableatthiscuttingspeedbecause thetoollifeisabout1min.Infact,theflankwearevolveslinearly reaching0.45mminonly90s.However,withhigh-pressure assis-tancethetoollifehasbeenincreasedsignificantlywithvaluesup to9minandwithalinearevolutionoftheflankwear.Indeed,the curvesdonotexhibitthecatastrophicevolutionofwear.

Fig.12showstherakeandflankfacesofthetoolattheendof theweartests.WithConventionallubrication,thecuttingedgehas completelycollapsed.Indeed,toolwearseemstobeverysevere.In contrast,withHPWJA,toolwearismoreregular.

Table5showstheeffectofthehigh-pressurewaterjetassistance

onincreasingthetoollife.Withapressureof50-bar,toollifeis multipliedby6andwiththepressureof100baritismultiplied by9.Accordingtotheflankwearcurves,increasingthepressure seemstohavenoeffectbeyond100bar.However,asforthecutting speedof75m/min,scratcheshavebeenobservedontheworkpiece. Theyaremoreintenseandaccompaniedbytheweldingofchip fragmentsontheworkpiece.

Asithasbeenpreviouslynoted,undertheactionofthewater jet,chipsarefragmentedintoverysmallfragmentswhichdonot exceed3mm,someofwhicharerecycledbypassingbetweenthe cuttingedgeand theworkpiece.Thesecouldbeweldedonthe workpiece,asshowninFig.13.

Fig.10.Evolutionoftheaxialforceasafunctionofflankwear(VC=75m/min).

Theanalysisofthecuttingforceevolutionduringthe machin-ingtimeshowstheexistenceofpeaks.Thesepeaksmaycorrespond tothephenomenonofchipsrecycling.Thechangeincuttingforce Fcanreach50N.Fig.14(a)and(b)respectivelyshowsthe evo-lutionofthecuttingforceafter5minand9minofhigh-pressure waterjetassistedmachining.Furthermore,fromthesecurves,it canbenotedthatthefrequencyofforcepeakshasbeenincreased. Hence,itcanbeconcludedthatthechiprecyclingfrequencyhas alsobeenincreased.Theapproximatenumberofthesepeakshas beenmultipliedbytwo.

Flankwearcouldbeacceleratedwiththephenomenonofchip recyclingwhichcouldalsoexplainthecurvesofFigs.5and7.

6. ToolweartestsatVC=100m/min

Forthisseriesofexperiments,thecuttingspeedhasbeen dou-bledcomparedtothereferencecuttingspeed.AccordingtoFig.15, toollifedoesnotexceed4.5minevenwithhigh-pressurewater jetassistance.Thus,itcanbededucedthattheeffectivenessofthe assistancehasbeengreatlyreduced.Infact,thelubricantjet can-notdissipatetheheatgeneratedinthecuttingzoneandthewear continuestoevolve.

However, compared withconventional lubrication, Table 16

shows that the tool life can be multiplied by 9 with a pres-sureof100bar.Withconventionallubrication,thetoollastsonly a few seconds before collapsing. As hasalready been noticed, forpressuresexceeding100bar,thesurfaceoftheworkpieceis affectedbyscratchesandweldedfragmentsofchips.

(7)

Fig.12.Flankandcraterwearattheendoftoollife,VC=88m/min.

Fig.13. Scratchesandweldedchipfragmentsonthesurfaceoftheworkpiece(150barand250bar).

7. Discussion

Fig.17summarizestheresultsobtainedforthecuttingspeeds of75m/min,88m/minand100m/min.Thefirstfindingisthattool lifedropsrapidlywhencuttingspeed increases.Thisisbecause theincreaseofthecuttingspeedcausesanincreaseofthecutting powerandsothedissipationofheatintheworkpieceaswellas thetool.Theadditionalgenerationofheatcausesatemperature riseinthecuttingzone.Thereafter,thewearmechanismswhich areactivatedathightemperaturesdominate,thusacceleratingtool wear.

Inthecaseofconventionallubrication,weartakesplacevery quicklyandcausesthecollapseofthecuttingedgeafterafew min-utes(VC=75m/min),orafterafewseconds(VC=100m/min).The

high-pressurewaterjetallowsthecontinuouscoolingofthecutting area.However,theeffectivenessoftheassistancedecreasesasthe cuttingspeedbecomesmoreimportant.Certainly,high-pressure waterjetassistancecanincreasethetoollifegreatlycomparedto theconventionallubrication,butitreachesitslimitsforhighcutting speeds.

In the range of cutting speeds in which assistance has cer-tainadvantagesandisstilleffective,anoptimumpressurecanbe

(8)

Fig.15.Flankwearevolution,VC=100m/min.

Fig.16.ToollifeatVC=100m/min.

Fig.17.Variationofthetoollifeinfunctionofthecuttingspeedandthelubricant jetpressure.

determined.Indeed,increasingthelubricantjetpressureallowsthe convectioncoefficienttoincreaseandsodecreasesthetemperature inthecuttingzone.Thiscouldpresentabarriertosomewear mech-anisms,thusincreasingtoollife.InthecaseofTi17,thebestresults havebeenobtainedat100bar.Moreover,theanalysisofthecutting forceandtheworkpiecesurfacehasallowedthedetectionofforce peaks,scratchesandweldedchipsforthehighestpressuresused

Fig.18.IdentificationoftheTaylorlaw.

inthisstudy.Alltheseelementshavemadeitpossibletoidentify thepressureof100barastheoptimumpressure.

8. Determinationofthemaximumcuttingspeedfor T=15min

Inthispartofthestudy,themaximumtoollifehasbeenfixedat 15min(i.e.thevaluecommonlyusedinindustry).Themain objec-tiveistodeterminethemaximumcuttingspeedthatcanensurethe 15minofmachiningusingconventionalandhigh-pressure lubri-cation.Forthispurpose,theTaylorlawcoefficients(Eq.(1))have beenidentified.Fig.18showstheobtainedresults.

T=CvVcn (1)

FortheconventionalandHP(100bar)conditions,theanalytical calculationofthecuttingspeedsgives respectively61.06m/min and81.40m/min.

Followingthis calculation,twotests atVC=61m/minand at

VC=81m/minhavebeencarriedout.Fig.19(a)showsthetoolwear

evolutionforthesetests.Itcanbeseenthattheresultsofanalytical calculationsareconfirmed.

Forconventionallubricationconditionafterrun-inand stabi-lizationphases,thewearincreasessignificantly;indeed,itgoes from0.16to0.3between12minand16min(VB=0.14mm).

How-ever,inthecaseofwaterjetassistance(100bar),wearincreases linearlyfromthesixthminute.Itgoesfrom0.23to0.31between 11minand15min(VB=0.08mm).Moreover,itcanbenoticed

thattheevolution ofwearinthecase ofHP assistanceismore controlledandpresentsalinearevolution.Bycontrast,forthe con-ventionalmachining,wearisrapidlyacceleratedfrom10minof

(9)

machining,whichresultsinacatastrophictoolwear.So,evenifthe twoconfigurationshavethesametoollife,HPassistanceprovides betterwearcontrol.

Fig.19(b)showstheevolutionofthecuttingandtheaxialforces. Forthecuttingforce,itsevolutionisthesameforbothlubrication conditions.Theevolutionoftheaxialforceseemstofollowthe evo-lutionofwear.Theseobservationsconfirmthattheaxialforceof 600Nisasignofflankwearof0.3mm.

For a tool life of 15min, the transition from VC=61m/min

(conventionallubrication)toVC=81m/min(100bar)signifiesan

increaseinproductivityofabout32%.Toolliferemainsbetween 9minand15minforthecuttingspeedsofupto88m/min.Inthis range,Ti17isnotmachinablewithconventionallubrication.

9. Conclusion

Thisstudyisfocusedontheinfluenceofpressureandcutting speedontheeffectivenessofthehigh-pressurewaterjetassistance. Thelubricantpressurehasbeenvariedfrom50barto250barand thecuttingspeedfrom50m/minto100m/min.

TheeffectofHPassistanceisclearlydiscernible.Infact, exper-imentaltestshaveshownthattoollifecanbeincreasedupto9 timeswithapressureof100bar.Moreover,beyondacertain cut-tingspeedthematerialisnolongermachinablewithconventional lubrication.However,usingHPassistance,itispossibletocontinue machiningandeventoincreasethecuttingspeed.Forthesame toollifeof15min,thecuttingspeedcanbeincreasedby30%using HPassistance.Theefficiencyofwaterjetassistancedecreaseswith increasingcuttingspeed.

Theinfluenceofwearontheevolutionofthecuttingforceshas beenstudied.Ithasbeennotedthatacertainvalueoftheaxialforce presentsasignofflankwear(0.3mm).

It has been remarked that, for pressures beyond 100bar, scratches on the surface of the workpiece have been noticed. Moreover,weldedfragmentsofchipshavebeenobservedonthe machinedsurface,whichcanbetheresultofchipsrecycling phe-nomenon.

Acknowledgement

TheauthorswouldliketothanktheFrenchregion“Paysdela loire”forfundingtheproject.

References

[1]AyedY,GermainG,AmmarA,FuretB.Degradationmodesandtoolwear mecha-nismsinfinishandroughmachiningofTi17titaniumalloyunderhigh-pressure waterjetassistance.Wear2013;305(1–2):228–37.

[2]Bhatt A, Attia H, Vargas R, Thomson V. Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol Int 2010;43(5–6):1113–21.

[3]BouchnakTB(Thèsededoctorat)Etudeducomportementensollicitations extrêmesetdel’usinabilitèd’unnouvelalliagedetitaneaeronautique:le Ti555-3.ArtsetMétiersParistech;2010.

[4]ChildsTK,MaekawaTO,YamaneY.Metalmachiningtheoryandapplications. Arnold;2000.

[5]daSilvaRB,Machado AR,EzugwuEO, BonneyJ, SalesWF.Toollifeand wearmechanismsinhigh speedmachiningofTi–6Al–4Valloywith PCD toolsundervariouscoolantpressures.JMaterProcessTechnol2013;213(8): 1459–64.

[6]DevillezA,SchneiderF,DominiakS,DudzinskiD,LarrouquereD.Cuttingforces andwearindrymachiningofInconel718withcoatedcarbidetools.Wear 2007;262(7–8):931–42.

[7]DinizAE,MicaroniR.Influenceofthedirectionandflowrateofthecutting fluidontoollifeinturningprocessofAISI1045steel.IntJMachToolsManuf 2007;47(2):247–54.

[8]EzugwuE,BonneyJ.Effectofhigh-pressurecoolantsupplywhen machin-ingnickel-baseInconel718,alloywithcoatedcarbidetools.JMaterProcess Technol2004:1045–50.

[9]EzugwuE,SilvaRD,BonneyJ,MachadoÃ.Evaluationoftheperformanceof CBNtoolswhenturningTi-6Al-4Valloywithhighpressurecoolantsupplies. IntJMachToolsManuf2005;45(9):1009–14.

[10]EzugwuEO,BonneyJ,SilvaRBD,CakirO.Surfaceintegrityoffinishedturned Ti-6Al-4ValloywithPCDtoolsusingconventionalandhighpressurecoolant supplies.IntJMachToolsManuf2007;47(6):884–91.

[11]HartungP,KramerB,vonTurkovichB.Toolwearintitaniummachining.CIRP Ann–ManufTechnol1982;31(1):75–80.

[12]KaminskiJ,LjungkronaO,CrafoordR,LagerbergS.Controlofchipflowdirection inhigh-pressurewaterjet-assistedorthogonaltubeturning.ProcInstMechEng B:JEngManuf2000;214(7):529–34.

[13]KramarD,KrajnikP,KopacJ.Capabilityofhighpressurecoolinginthe tur-ningofsurfacehardenedpistonrods.JMaterProcessTechnol2010;210(2): 212–8.

[14]Li B. A review of tool wear estimation using theoretical analysis and numericalsimulationtechnologies.IntJRefractMetHardMater2012;35: 143–51.

[15]MachadoA,WallbankJ,PashbyI,EzugwuE.Toolperformanceandchipcontrol whenmachiningti6al4vandinconel901usinghighpressurecoolantsupply. MachiningScienceandTechnology1998:1–12.

[16]NabhaniF.Wearmechanismsofultra-hardcuttingtoolsmaterials.Journalof MaterialsProcessingTechnology2001;115(3):402–12.

[17]NandyA, GowrishankarM,PaulS.Some studies onhigh-pressure cool-ing in turning of Ti–6Al–4V. Int J Mach Tools Manuf 2009;49(2):182– 98.

[18]TeixeiraJ(Thèsededoctorat)Etudeexpérimentaleetmodélisationdes évo-lutionsmicrostructuralesaucoursdestraitementsthermiquespostforgeage dansl’alliage detitaneTi17. InstitutNationalPolytechniquede Lorraine; 2005.

[19]Venugopal K, Paul S, Chattopadhyay A. Growth of tool wear in tur-ning ofTi–6Al–4V alloy under cryogenic cooling.Wear 2007;262(9–10): 1071–8.

[20]VenugopalK,PaulS,ChattopadhyayA.Toolwearincryogenic turningof Ti–6Al–4Valloy.Cryogenics2007;47(1):12–8.

[21]WanigarathneP,KardekarA,DillonO,PoulachonG,JawahirI.Progressive tool-wearinmachiningwithcoatedgroovedtoolsanditscorrelationwithcutting temperature.Wear2005;259(7–12):1215–24.

[22]XueC,ChenW.Adheringlayerformationanditseffectonthewearofcoated carbidetoolsduringturningofanickel-basedalloy.Wear2011;270(11–12): 895–902.

Figure

Fig. 2. (a) High-pressure pump, (b) CNC lathe.
Fig. 6 shows the SEM images of the tool rake face at the end of the three trials. For the conventional lubrication condition, layers of deposits and a large notch have been noticed on the cutting edge (Fig
Fig. 6. Crater wear, (a) conventional lubrication, (b) 100 bar, (c) 250 bar.
Fig. 9. Evolution of the axial and the cutting forces.
+3

Références

Documents relatifs

Pour répondre à cette hypothèse nous pouvons donc dire que : Les élèves développent une attention plus soutenue au cours de la séquence mais n’arrivent pas à

La formule ci-haut ne peut être utilisée aux fins de sélection de modèle et il faut se rabattre sur (les méthode liées à la validation croisée que nous abordons à la

Pour présenter cette architecture de terre, parfois majestueuse, souvent qualifiée d’architecture de pauvres, mais toujours tombant en ruines par manque d’entretien et abandon,

Le café des parents est mis en place dans l’école pour les parents afin qu’ils entrent dans l’école, partagent entre eux, discutent avec la directrice et également pour parler

C’est dans l’une d’elles, la sépulture 1, qu’est découverte, associée aux restes d’un squelette sans crâne, une pièce exceptionnelle : un crâne humain dont toute

En efecto, la Agenda Nacional, resultante de un proceso de consulta, ha contribuido con la implementación de ese marco en varios de sus ejes estratégicos: Apoyo a la

Cette nouvelle manière de ‘modéliser’ l’organisation des problèmes de santé en intégrant l’environnement socioculturel permet de comprendre la relation préexistante entre

Aline Melchuna, Ana Cameirão, Jean-Michel Herri, Yamina Ouabbas, Philippe Glenat.. To cite