• Aucun résultat trouvé

Contribution of an Agro-Hydrological Model

N/A
N/A
Protected

Academic year: 2021

Partager "Contribution of an Agro-Hydrological Model"

Copied!
22
0
0

Texte intégral

(1)

Contribution of a Distributed Agro-Hydrological Model

in the Meuse Catchment

Aurore Degré & Catherine Sohier Ulg Gembloux Agro-Bio Tech

(2)

Journal of Hydrology 2009 http://hdl.handle.net/2268/16572

(3)

Rainfall Snow Deep percolation Evaporation Transpiration Direct runoff Infiltration

Surf

ace

w

at

er

Groundwater

Interflows Percolation + Crop Growth

(water and nutrients uptake)

1 km²

Journal of Hydrology 2009 http://hdl.handle.net/2268/16572

(4)

Agro-Hydrology The EPICgrid Model

Climate change Water Quality Hydrology and society Climate change Land use change Agricultural practices

(5)

AMICE project : hydrology of the Lesse

and Vesdre catchments

CCI-Hydr perturbation tool

high (blue) and low (green) scenarios 2020-2050 and 2070-2100

(6)

• Seasonal contrasts in river discharge could be strongly

accentuated due to climate change in the Vesdre and Lesse

catchments.

(consistent with Wit et al. (2007) in the Meuse and other studies in surrounding

catchments).

• For both high and low-flows even if far less studies have focused on low-flows

(7)

• Seasonal contrasts in river discharge could be strongly

accentuated due to climate change in the Vesdre and Lesse

catchments.

(consistent with Wit et al. (2007) in the Meuse and other studies in surrounding

catchments).

• For both high and low-flows even if far less studies have focused on low-flows 100 50 25 10 5 2 0 100 200 300 400 500 600 700 800 fl o w r a te ( /s )

Daily flood discharges for the Vesdre at Chaudfontaine Observed Simulated 2020-2050 high 2070-2100 high T observations 100 50 25 10 5 2 0 100 200 300 400 500 600 700 800 fl o w ra te ( m ³/ s)

Daily flood discharges for the Lesse at Gendron

T Observed Simulated 2020-2050 high 2070-2100 high observations

(8)

Focus on the soil-water-plant

continuum

Maize Wheat Barley

2070-2100 High Maize Wheat Barley

2070-2100 Low 1 0 0,2 0,4 0,6 0,8 1 R D (m /m ) max RD moy+ectyp moy-ectyp min RD moy RD RD pref 0 0,2 0,4 0,6 0,8 1 R D (m /m ) max RD moy+ectyp moy-ectyp min RD moy RD RD pref 0 0,2 0,4 0,6 0,8 1 R D (m /m ) max RD moy+ectyp moy-ectyp min RD moy RD RD pref 0 0,2 0,4 0,6 0,8 1 R D (m /m ) max RD moy+ectyp moy-ectyp min RD moy RD RD pref 0 0,2 0,4 0,6 0,8 1 R D (m / m ) max RD moy+ectyp moy-ectyp min RD moy RD RD pref 0 0,2 0,4 0,6 0,8 1 R D (m / m ) max RD moy+ectyp moy-ectyp min RD moy RD RD pref Actual evapotranspiration Root depth

Leaf area index (crop development)

(9)

Actual ET – CC scenarios

0 1 2 3 4 5 6 7 8 9 m m /d ay

Evolution of actual evopotranspiration for the Vesdre Basin throughout the year pref+/-standard deviation pref-standard deviation reference period 2020-2050 high 2070-2100 high 2020-2050 low 2070-2100 low

minimum ET for the reference period maximum ET for the reference period

HESS 2011

(10)

Agro-Hydrology The EPICgrid Model Climate change Water Quality Hydrology and society Climate change Land use change Agricultural practices

(11)

Land use

Frequency of muddy floods over a 10-year period in all municipalities of the study area; data for Wallonia (1991–2000) taken from Bielders et al. (2003), data for Flanders (1995–2004) derived from a questionnaire sent to all municipalities in 2005.

O. Evrard, C. Bielders, K. Vandaele, B. van Wesemael, Spatial and temporal variation of muddy floods in central Belgium, off-site impacts and potential control measures, CATENA, Volume 70, Issue 3, 1 August 2007, Pages 443-454, ISSN 0341-8162, 10.1016/j.catena.2006.11.011.

Land use : Mehaigne head catchment (17 km²)

Crops Grassland Natural lands Forest Water Inhabited zones Orp-2011 Bastiansen ©

(12)

Land use change

• Current situation

– 10% settlements

– 84% agriculture

• 71% crops • 13% grasslands

• Scenarios

– 10% settlements

– 84% agriculture

• From 100 to 0% crops • From 0 to 100 % grasslands

(13)

Land use change

EPICgrid – sediment yield under current climate and CCI-Hydr high and low scenarios – The Mehaigne in Upigny (17 km²)

(14)

Agro-Hydrology The EPICgrid Model Climate change Water Quality Hydrology and society Climate change Land use change Agricultural practices

(15)

Water quality

Bare field during winter catchcrops Row crops cereals grasslands

(16)

Sugar beet – Wheat - Barley

Nitrogen content in the root zone (kg/ha)

Leaf Area Index

Sugar beet – Wheat - Potato

Grassland

Sugar beet – Wheat - Barley Sugar beet – Wheat –

potato

Grassland

(17)

Nitrogen loss to groundwater (kg N/ha)

Leaf area index

Sugar beet – Wheat - Barley Sugar beet – Wheat - Potato

Grassland

Sugar beet – Wheat - Barley Sugar beet – Wheat –

potato

Grassland

(18)

Sugar beet –> Wheat -> Barley

Nitrogen loss under the root zone (kg N/ha) Leaf area index

Without catchcrop With catchcrop

Effect of a catch crop

Without catchcrop With catchcrop

(19)

Impact of all the mitigation measures put into practice in the frame of the nitrate Directive

Results presented at the groundwater bodies level

Environmental Science and Policy (2010) http://hdl.handle.net/2268/70276

Regional modeling

Nitrate concentration decrease under the root zone due to mitigation measures – high

Nitrate concentration decrease under the root zone due to mitigation measures – low

Temporal effect of the mitigation measures

(20)

Scénario climatique « High » Scénario climatique « Low » Reference

Scénario climatique « High » Scénario climatique « Low »

Scénario climatique « High » Scénario climatique « Low » Scénario climatique « High » Scénario climatique « Low »

Scenario « 2/3 cereals »

Scenario « -30 kg Nmin » Scenario « grassland »

Combination of different scenarios

around an abstraction zone

(21)

Take home messages

Agronomy and hydrology are closely interconnected,

Agro-Hydrological model put the light on water-soil-plant continuum

It shows some open ends about (evapotranspiration, water quality, sediment yield)

© nitrawal.be

Agro-Hydrology The EPICgrid Model Climate change Water Quality Hydrlogy and society Climate change Land use change Agricultural practices Hydrology and society

(22)

Aurore Degré et Catherine Sohier

Systèmes Sol – Eau

Ulg - Gembloux Agro-Bio Tech

Aurore.degre@ulg.ac.be catherine.sohier@ulg.ac.be http://www.gembloux.ulg.ac.be/ha

Publications et rapports http://www.orbi.ulg.ac.be

Thank You

Références

Documents relatifs

p Department of Land, Air and Water Resources, University of California, Davis, California, USA; q Department of Hydrology, Institute of Geography, Russian Academy of Sciences,

The atmosphere, oceans, and land surface {in- cluding vegetation) are coupled dynamically at widely different time and space scales, forming a complex global

Cette méthode est applicable aux problèmes d’optimisation globale, le principe de cette méthode est de partir d’un minimiseur local de f , puis on construit une fonction auxiliaire

In order to qualify the results obtained on the Nam Khan watershed and test the hypothesis of a hydrologic impact of land-use change in North Laos we applied the same methodology

These complementary satellite-based prod- ucts are combined to estimate the variation of surface water storage (SWS), which is then subtracted from the terrestrial water storage

expressed appreciation to the Parliament of the Republic of Fiji, with support from the Ministry of Health and Medical Services, for hosting the Fifth Meeting

The WHO Regional Office for Europe works to identify policy options to help to prevent, prepare for and respond to the health effects of climate change, and supports its Member

Warning: commands of the newly installed packages hide commands with same name already in memory until the new package is uninstalled (“detached”).. These commands are indicated