• Aucun résultat trouvé

Extraction of humic acid by coacervate: Investigation of direct and back processes

N/A
N/A
Protected

Academic year: 2021

Partager "Extraction of humic acid by coacervate: Investigation of direct and back processes"

Copied!
9
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 9983

To link to this article :

DOI:10.1016/j.jhazmat.2011.12.057

URL :

http://dx.doi.org/10.1016/j.jhazmat.2011.12.057

To cite this version :

Ghouas, H. and Haddou, Boumediene and Kameche, Mohamed and

Derriche, Zoubir and Gourdon, Christophe Extraction of humic acid

by coacervate: Investigation of direct and back processes. (2012)

Journal of Hazardous Materials, vol. 205-206 . pp. 171-178. ISSN

0304-3894

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Extraction

of

humic

acid

by

coacervate:

Investigation

of

direct

and

back

processes

H.

Ghouas

a

, B.

Haddou

a,∗

, M.

Kameche

a

, Z.

Derriche

a

,

C.

Gourdon

b

aU.S.T.Oran,FacultédesSciences,DépartementdeChimieBP1505,M’Nouar,Oran,Algeria

bLaboratoiredeGénieChimique,UMR5503,BP84234,CampusINP-ENSIACET,N4AlléeEmileMonso,ToulouseCedex4,France

Keywords: Extraction Humicacid Surfactant Coacervate Cloudpoint

a

b

s

t

r

a

c

t

Thetwoaqueousphasesextractionprocessiswidelyusedinenvironmentalcleanupofindustrial effluents andfinechemical productsfortheir reuse.This processcanbe madebycloud point of polyethoxylatedalcoholsandmicellarsolubilizationphenomenon.Itiscommonlycalled“coacervate extraction”andisused,inourcase,forhumicacidextractionfromaqueoussolutionat100mg/L.The surfactantsusedarealcoholpolyethoxylateandalkylphenolpolyethoxylate.Phasediagramsofbinary water/surfactantandpseudo-binaryareplotted.Theextractionresultsareexpressedbythefollowing responses:percentageofsoluteextracted,E(%),residualconcentrationsofsoluteandsurfactantindilute phase(Xs,w,andXt,wrespectively)andvolumefractionofcoacervateatequilibrium().Foreach

parame-ter,theexperimentalresultsarefittedtoempiricalequationsinthreedimensions.Theaimofthisstudyis tofindoutthebestcompromisebetweenEandC.Thecomparisonbetweenexperimentalandcalculated

valuesallowsmodelsvalidation.Sodiumsulfate,cetyltrimethylammoniumbromide(CTAB)additionand pHeffectarealsostudied.Finally,thepossibilityofrecyclingthesurfactanthasbeenproved.

1. Introduction

Humicsubstancesarepolyelectrolyticmacromoleculeshaving highmolecularweights[1–4].Theyaresignificantinaquatic sys-temsforseveralreasons.Theygiveyellowbrowncolortowater

[5]andcancomplexmetals[6,7]andorganicpollutantssuchas pesticides[8].Theyareprecursorstotheformationofmutagenic halogenatedcompoundsinwaterafterchlorination[9].Especially humicacidrepresentsthemajoradvantageofthenaturalorganic matterinsoilandsurfacewater[1].However,itspresenceinraw watercansignificantlyaffectthequalityduringthepurification process [10]. It is widely agreed that trihalomethanes (THMs), one of disinfection byproducts, can begenerated by step chlo-rinationinwatertreatmentwhentheycontainhumicacid[11]. Severalresearcheshavebeencarriedoutasanalternativeforthe degradationofaquatichumicsubstances[12–15].Besides, differ-enttechniquesfortreatmentofcontaminatedreleasewithhumic acid,havebeenproposedsuchas:biologicaltreatment[16], filtra-tion[17,18],adsorption[7,9],ozoneoxidation[19],heterogeneous photocatalysis[20,21],coagulationandionexchange[22], electro-chemistry[23],photocatalytictreatment[24,25].

∗ Correspondingauthor.Tel.:+213041425763;fax:+213041425763. E-mailaddress:Boumediene74@yahoo.fr(B.Haddou).

Thepresentworkconcernsthestudyofcloudpointextraction (CPE)asamethodofrecoveryandvalorizationofhumicacidof aqueoussolutionusingthepowerfulsolubilizingcharacteristicof nonionicsurfactantaqueoussolutions. Ineffect,above alineof lowcriticaldemixingpointofsuchsystemsdefinedascloudpoint (tc),aqueoussolutionsofmostnonionicpolyethoxylated(orinthe

presenceofpolyethyleneglycolelectrolyte)formtwophases:the coacervate,richinsurfactant,andthedilutephase.Inthelatter,the surfactantconcentrationisclosetoitscriticalmicelle concentra-tion(cmc).Therefore,duetothemicellarsolubilizationpropertyof thesurfactant,hydrophobic,amphiphilicorevenionicsoluteshave beenextractedinthecoacervateafterincreasingthetemperature aboveitscriticalvalueTc.Theextractionprocesswithtwoaqueous

phases, initially applied tothe case of metal ionsin the pres-enceofchelatingagent[26],waslaterappliedtomanychemical species:variousmetalions,smallorganicmoleculesand biologi-calmolecules[27,28].ThistechniqueallowsmovingtowardGreen Chemistry.Thesmallvolumeofthebiodegradablesurfactant-rich phaseobtainedbyusingthecloudpointmethodology,permitsto setupanexperimentalprocessoflowercost,betterextraction effi-ciencyandlowertoxicitythanthoseusingorganicsolvents.This factisparticularlyattractive,becausethe“GreenChemistry” con-ceptcanbeemployed here.CPEisconsideredtobeconvenient and environmentallysafealternativetoextraction withorganic solvents[28,29].ManyadvantageswereclaimedtoCPEcompared toconventionalliquid–liquidextraction,includinghighextraction

(3)

efficiency,easeofwastedisposalandtheuseofnon-toxicandless dangerousreagents[29].

2. Materialsandmethods 2.1. Reagents

Thesurfactantsusedinthisworkarebiodegradablenonionic surfactants:

1) Apolyethoxylatedoctylphenolknownas“Dowfax20B102”, sup-pliedbyDowChemicalcompany.Ithasthechemicalformula C16–18H33–37-8-(OCH2 CH2)9 OHandbelongstothefamilyof

ethoxylatedalkylphenols(EPA).

2)Analcohol polyethoxylate (AE) experienced by Lutensol ON 30andequivalenttoC10H21(OCH2 CH2)3OH.Itisprovidedby

BASF.

Thesesurfactantswarrantedgreatdealofresearch,both theo-retically[30]andexperimentally[25].Theyarenotsoexpensive andhaveexcellentextractionperformances.Humicacidwas sup-pliedbySigma–Aldrich.

2.2. Methods 2.2.1. Cloudpoint

Aqueous solutions of ethoxylated alcohols and ethoxy-lated alkylphenols are sensitive to temperature, because their hydrophilicgroupstodésolvategraduallyduringheating[31–33]. Thedeterminationofcloudpointwasmadebyusingtheapparatus MettlerFP900whichconsistsoftheoperatingFP900,acontrolunit, andseveralmeasuringcells.Thecelltemperaturemeasurement isperformedwithahighly accuratesensor Pt100(probe), inte-gratedinthebodyofafurnace.Inthelowerpartofthecloudpoint measuringcell,PF81Cisalightsourceandanopticalfiberwhich illuminatesthethree specimens. The light passing throughthe specimensisconvertedbythreephotoelectriccellsintoelectrical signalsproportionaltotheintensityremains.Thelight transmis-sionismeasuredcontinuouslywhilethecelltemperatureincreases linearlywiththeheatingratechosen.Thecloudpointdesignates thetemperatureatwhichthesinglelimpidphaseistroubled,asa resultoftheappearanceofasecondphase.

Fortheextractiontests,10mLofsolutioncontainingthe sur-factantconcentrations(1–12wt.%)andthesolute(humicacidat 100mg/L)indeionizedwater,wereheatedinaprecisionovenfor 2htoreachequilibrium.Theheatingtemperaturerangewas cho-senfromthecloudpointtemperaturetoabout20◦C.Ineffect,for

thesurfactantLutensolON30,thetemperaturerangeis(27–47◦C)

whilethatforDowfax20B102is(33–53◦C).Thevolumesofboth

phaseswereregistered.Asmallamountofthedilutephasewas takenusingasyringeandanalyzed.

2.2.2. Analysis

TheconcentrationofDowfax20B102inthedilutephasewas achieved by high performance liquid chromatography reverse phase,underthefollowingconditions:RP18column(ODS),95bar pressure,eluentH2O/CH3CN/CH3OH,7.5/60/32.5(vol.%),flowrate

1mL/minand260nmwavelengthdetector(UV).

ForLutensolON30,thelightscatteringdetectorLS31(EUROSEP instruments)wasused.Thethreeparameterstooptimizethe sen-sitivityofthedetectorweretheflowofairintothenebulizer,the temperatureoftheevaporatorandthegainofthephotomultiplier. Duringtheanalysis,theairpressurewassetto1bar,the evapora-tortemperaturefixedat55◦Candthegainofphotomultiplierwas

equalto400mV.Humicacidconcentrationwasdeterminedusing thespectrophotometer(SAFAStypeMC2)at400nm.

3. Resultsanddiscussion

3.1. Binaryandpseudo-binaryphasediagrams

Organic solubilizates can interact with the surfactant polar head group or with its hydrophobic lengthafter solubilization in micelles. According to their chemical nature, organic com-pounds can vary the surfactants cloud point [31,34].The cloud pointincreasingofLutensolON30andDowfax20B102surfactants by humic acid addition, this phenomenon is especially notice-ableforlowsurfactantconcentrations.Thisindicatesasignificant interactionbetweenhumicacidandthesurfactant.Indeed,the sur-factantssolubilityinwaterwasincreasedbyinducingthecloud pointincrease[34,35].Furthermore,evenatverylow concentra-tion(0.1wt.%), thepresence ofCTAB significantlyenhancesthe cloudpointofLutensolON30.Toexplainthisphenomenon,various mechanismshavebeensuggestedincludingformationofmicelles, solubilizationandcomplexformation.Theincorporationofionic surfactantintothenonionic micellescauses electrostatic repul-sionbetweenthemicelles,thus hinderingthecoacervatephase formationandraisingupthecloudpoint[36,37].

4. Modelingofextraction

Theextractionresultsofhumicacidfromitsaqueoussolutions at100mg/Lbydifferentsurfactants,accordingtotwovariables: wt.%surfactant(Xt),andtemperature(T),wereexpressedbythree

responses(Y):percentageofextractedsolute(E),residual concen-trationsof solute(Xs,w)in thedilute phase and the coacervate

volumefractionatequilibrium(C)[34,38].Foreachparameter

determinedand by consideringcentral composite designs [39], theresultswereanalyzedbyanempiricalfitting.Inthismethod, theexperimentalvalues can beused todeterminethe polyno-mial model constants which were adjusted. The models were checkedbyplottingcomputingdataagainstexperimentalresults. Thequadratic correlationwaschosen togivetheslope andthe regressioncoefficient(R2)closertounity.

Y=a0+a1Xt+a2T+a12XtT+a11Xt2+a22T2 (1)

Suchcorrelationallowsbuildingtheresponsesurface.However, onecannotallowphysicalsignificancetotheportionofhorizontal planescorrespondingtothemaximumvalueoftheresponse.

Thequadraticequationsfortheproperties(E,Xs,w,Xt.wandC),

whosereliabilitywaschecked,areasfollows: E(Dowfax)=26.993+11.314Xt+1.21T−0.103XtT −0.395Xt2−8.788 10−3T2 (2) E(Lutensol)=14.687+5.592Xt+2.607T−0.033XtT −0.216Xt2−0.027T2 (3) Xs.w(Dowfax) =106.276+0.063Xt−2.92T−0.125XtT +0.344Xt2+0.03T2 (4) Xs.w(Lutensol)=83.753−2.485Xt−2.543T−0.051XtT +0.225Xt2+0.027T2 (5)

(4)

Xt.w(Dowfax)=106.276+0.063Xt−2.92T−0.125XtT +0.344X2t +0.03T2 (6) Xt.w(Lutensol)=0.506+0.035Xt−0.023T−1.046 10−3XtT −1.159 10−3X2t +3.11 10−4T2 (7) C(Dowfax)=0.403+0.479Xt−0.027T−0.009XtT −0.001Xt2+4 10−4T2 (8) C(Lutensol) =0.2939+0.0009Xt−0.0136T −0.002XtT−0.0054X2−0.0006T2 (9) 4.1. Extractionefficiency

Fig.2representsthethree-dimensionalisoresponsecurvesof thestudiedpropertiessmoothedbythequadraticmodel(Eqs.(2) and(3)).Fig.3ashowsthattheextentofhumicacidextraction(E) increaseswithXt.Inthiswork,Ereaches98%for10%LutensolON

30.However,thetemperatureincreasehasslighteffectofhumic acidextraction.Thistrendwasalsoobservedbyotherresearchers in otherextractionsystems [34,35,38].Indeed,thetemperature raiseinducessimultaneousandoppositeeffects:itincreasesthe concentrationofsoluteinthemicellaraggregatesasaresultofthe decreaseof(C)[38].Besides,onecannoticethattheextraction

extentobtainedwithLutensolON30,ishigherthanobservedusing Dowfax20B102.Thepresenceofabenzeneringinthehydrophobic chainofDowfax20B102,seemstohaveanegativeeffectonhumic acidsolubilization.

4.2. Concentrationofresidualhumicacid(Xs.w)

Fig.3representsthethree-dimensionalisoresponsecurvesof thestudiedproperty(Xs.w),smoothedbythequadraticmodel(Eqs.

(4)and(5)).Inthisfigure, itisshownthattheconcentrationof humicacidinthedilutephaseXs.wdecreasesasXtantTincrease.

Hence,thefirstcontactbetweenthesurfactantandtheeffluent solutions,allowssoluteconcentrationreductiontoabout10and

60timesusingDowfax20B102andLutensolON30,respectively (Table1).

4.3. Concentrationofresidualsurfactant(Xt.w)

Theconcentrationofresidualsurfactant(Xt.w)isavery

impor-tantparameter.Thehighlossofsurfactantinthedilutephasecan compromisetheprocessreliability.Indeed,thepresenceofanother contaminant inthe dilute phase, issufficient tomake the pro-cessuseless.Althoughthesesurfactantsareknownbytheirgood biodegradabilityproprieties,itwouldbedetrimentaltosquander theminthedilutephase.

Thebehaviorof(Xt.w)accordingtoXtandTisshowninFig.4

(smoothedbythequadraticmodelEqs.(6) and(7)).Thisfigure showsthattheresidualconcentrationofsurfactantislowathigh temperatureandlowsurfactantconcentration.Theseresultsare ingood agreementwithpreviousstudiesusingpolyethoxylated alkylphenols[37]aswellasotherpolyethoxylatedalcohols[38]. Indeed,theheatingdesolvatesgraduallythesurfactanthydrophilic groupsandthusitreducesitshydrophiliccharacter.Ingeneral,the desolvationenergyofthesurfactantmolecule canbeassociated withitsenergytransferfromthehydrophilic(aqueoussolution) tothehydrophobicmedium(micellarsystem).Onecannoticein

Fig.4thattheremainingconcentrationofLutensolON30inthe dilutephaseaftertheextraction,ishigherthanthatobtainedusing Dowfax20B102.Suchresultcanbeexplainedbythefactthatthe cmcofLutensolON30(cmc=0.2g/L)ishigherthanthatofDowfax 20B102(cmc=0.08g/L).Hence,LutensolON30ismoresolublein waterthanDowfax20B102.

4.4. Volumefractionofcoacervate

Inordertoincreasetheconcentrationfactorofsolute,a mini-malvolumefractionofcoacervate(C)shouldbeobtainedwhen

temperatureincreases.Ineffect,accordingtoFig.5,thesmoothed valueofCusingEqs.(8)and(9)islowathightemperatureandlow

surfactantconcentration.However,highsurfactantconcentrations inducemoresurfactantlossinthedilutephase(Fig.4).Although thesurfactantisbiodegradable,thislossisnoteconomical.Sothe optimizationoftheprocessneedstocompromisebetweenthefour studiedparametersE,Xs,w,Xt.wandC.Itshouldbepointedout

thatthisobservationhadalsobeendoneeitherbyusandothers

[34,37,38,40].Indeed,lesssurfactantconcentrationshouldbeused tohaveasmallervolumefractionofcoacervate.Onthebasisofthis finding,optimalvaluesofC(i.e.0.1and0.3)wereobtainedusing

4wt.%Dowfax20B10and4wt.%LutensolON30at50◦Cand40C,

respectively.

Table1

Someexperimentalresultsoftheextractionparameters(E,Xs,w,C,R2andXs,0/Xs,w).

[XT(wt.%),T(◦C)] E(%) Xs,w(mg/L) Xt,w(wt.%) C Xs,0/Xs,wa LutensolON30 R2=0.994 R2=0.990 R2=0.968 R2=0.957 [2,30] 76.681 23.319 0.102 0.060 4.288 [2,36] 79.864 20.136 0.090 0.050 4.966 [2,42] 81.080 18.920 0.078 0.050 5.285 [6,36] 92.201 7.799 0.087 0.200 12.822 [6,42] 94.027 5.973 0.072 0.070 16.742 [10,42] 98.340 1.660 0.115 0.050 60.240 Dowfax20B102 R2=0.989 R2=0.995 R2=0.959 R2=0.962 [1,36] 67.026 32.974 0.024 0.075 3.032 [1,42] 70.012 29.988 0.021 0.050 3.334 [1,48] 71.089 28.911 0.012 0.030 3.458 [5,42] 88.102 11.898 0.041 0.300 8.404 [5,48] 89.017 10.983 0.023 0.100 9.104 [9,48] 92.287 7.713 0.051 0.150 12.965 aX

(5)

Fig.1.EffectofhumicacidandCTABonthecloudpointofLutensolON30andDowfax20B102.

5. Parametersaffectingextractionefficiency 5.1. Effectofsodiumsulfate

OnecanseeclearlyinFig.6thattheelectrolyteincreasesthe extraction extent(E%)of humicacid. The presenceof the elec-trolyteinducesadecreaseinthesolubilityofhumicacidinwaterby salting-outphenomenon.AccordingtoSaitoandShinoda[41],the additionofelectrolytetonon-ionicsurfactantsolutionsincreases theirhydrocarbonsolubilizationcapacity, byloweringcmc.This behaviormaybetheresultofanincreaseinmicellarnumberin

thepresenceofelectrolyte.So,theadditionofelectrolyteto non-ionicsurfactants solutionsincreasestheirsolubilizationcapacity towardorganicsoluteandconsequentlyimprovestheefficiencyof itscoacervateextraction(Fig.6).

5.2. Effectofcetyltrimethylammoniumbromide(CTAB): extractionbymixedmicelles

When nonionic and ionic surfactant co-exist together, they interactandprovideadditionalbeneficialpropertiestothesystem. Thisinteractionresultsinmostcasesbyaspecificassociationand

(6)

Fig.3.Three-dimensionalisoresponsecurvessmoothedbyaquadraticmodel,Xs.w=f(Xt.T),calculatedbythequadraticmodel(Eqs.(4)and(5)).

Fig.4.Three-dimensionalisoresponsecurvessmoothedbyaquadraticmodel,Xt.w=f(Xt.T),calculatedbythequadraticmodel(Eqs.(6)and(7)).

(7)

Fig.6. EffectoftheNa2SO4ontheextractionextentofhumicacid(E%).

theformationofnewandoriginalstructuresthatcanleadto syn-ergisticeffects.Thesemicellesareknownas“mixedmicelles”.The cloudtemperatureanalysis(Fig.1)allowsustoconfirmthe forma-tionofmixedmicelles.Onecanseeclearlythatthecloudpointof 1wt.%LutensolON30risesdramaticallyinthepresenceofCTAB.

Mixedmicelleshavepositiveeffectsontheextractionratioof humicacid(E%).OnecanseeinFig.7thatEincreasessignificantly withincreasingCTABconcentration.ThepositivechargeofCTAB moleculesincreasestheaffinityofthenegativelychargedhumic acidtowardthemicellaraggregates[42],suchresultswasobtained inothersystemsusingmixedmicelles[37].

5.3. EffectofpHonextractionrateofhumicacid:recyclingof surfactant

Humicsubstancesaremixturesofweakacidpolyelectrolytes, widelyspreadoutinsoilandnaturalaquaticenvironments[37,43]. Followingthecomplexityoftheirchemicalnature,alarge num-berof modelshave beendeveloped todescribe theiracid-base properties[44,45].Models knownascontinuous distributionof acidityconstantsvalues(expressedintermsofpKi=−logKi),have beendeveloped.Inthis model,theaciditydistributionofhumic

Fig.7. EffectofCTABontheextractionextentofhumicacid(E%).

Fig.8. EffectofpHontheextractionextentofhumicacid(E%).

substances molecules may be expressed by several functions

[46–48].Posner [48] showed that thedissociation constants of humicacidcanbedescribedbyamodelofpKivaluesdistribution

ofitsacidsites(4.0≤pK≤9.0),whereastherelativeconcentration ofeachsiteisnormallydistributedaccordingtothepKivalues.

HAi+H2O⇆Ai−+H3O+ (10)

Itisalsowellknownthatthesolute–micelleinteractionsare stronglyinfluencedbysoluteionization[38].Afterthe deproto-nationofa weakacidortheprotonationofa weakbase,slight interactionsmayoccurwiththesurfactant.In theseconditions, a small amountof those species maysolubilize, unlike neutral molecules.Consequently,asmallamountofionizedsolutecanbe extracted.

InFig.8,theresultsshowthatthedistributionofhumicacid betweenaqueousandsurfactant-richphase,depends greatlyon thesolutionacidity.Theextractionratio(E%)increaseswhenthe pHdecreases(Fig.8).Thisbehaviorcanbeexplainedbythe trans-formationofhumicacidtotheneutralmolecularformatacidpH. Theneutralformofhumicacidinteractsstronglywiththe micel-laraggregatesofnonionicsurfactant.Thisphenomenonwasalso observedwithfulvicacid(pKa=4.15)[49].Hence,separation of

humicacidisfavoredbyacidpH.

Indeed,pHis thekey-parameterforsurfactant regeneration. Severalworks havebeendoneontherecyclingandrecoveryof surfactantsolutionaftertheextractionsteps,byasimplepH con-trol[38,50,51].Thisrequirestwosteps:thefirstoneconcernsthe back-extractionofsolutesfromcoacervatewhilethesecondone relatestotheregenerationofthesurfactant.

Afterafirstextractionprocessofhumicacid(asweakacid)at 4wt.%ofLutensolON30and40◦C,thecoacervatepHwasincreased

beyonditspKaequalto9.0,usingCa(OH)2togiveacomplete

disso-ciationofthesolute(Table2)[38,48].Hence,87.15%ofhumicacid extractedat40◦Ccanbereleasedfromthecoacervatetoanew

dilutephase(at75◦CandpH12.4).ItisthemaximumpHwhich

canbereachedusingCa(OH)2withasolubilitylimitof1.53g/L[52].

Moreover,thepreviouscoacervatewasseparatedintotwonew phasesat75◦C:asmallquantityoftheaqueousphasecontaining

theconcentratedsolute,andanewcoacervatephasecontaining mostofthesurfactant.Inordertousethesurfactantagain,itis necessarytodecreaseitspHandtoprecipitatethebase(Ca(OH)2).

Therefore,itisbettertochooseanacidforminganinsolublesalt withthebasecation,suchasH2C2O4).

(8)

Table2

Conditionsforregenerationofcoacervate. [Ca(OH)2](g/L) inthe coacervate pHof coacervate Concentration(mg/L) ofhumicacidrelease fromthecoacervate

0 7.62 13.60 0.05 8.24 26.15 0.12 9.56 31.14 0.24 10.08 38.89 0.36 11.12 46.72 0.65 11.56 57.06 0.75 11.89 72.62 1.25 12.21 75.24 1.53 12.40 77.91 Table3

ResultsofthreecycleregenerationofLutensolON30coacervate. Settings Surfactantfrom

thefirstback extraction

Surfactantfrom thesecond backextraction

Surfactantfrom thethirdback extraction

Es(%) 96.587 81.298 69.758

XTs(%) 11.23 10.13 8.97

Et(%) 93.58 84.41 74.75

Table3summariestheresultsofsurfactantreuseforthree suc-cessivecyclesafterback-extractionofhumicacid,solubilizedin LutensolON30micelles.Thefirststageextractionwasperformed at40◦Cusing10wt.%ofsurfactantwhereasthebackextractionwas

achievedat75◦C.Onecannoticethattheextractionextent(Es%)

recoveredafterhumicacidreleaseatpH12.4usingfresh surfac-tant,ishigherthanthatobtainedwithrecycledsurfactant.Asthe backextractionofhumicacidisaround87%atpH12.4,micelles keep13%ofthehumicacidconcentrationateach extraction/back-extractionstage.Therefore,Esdecreasesusingrecycledsurfactant.

Table3showsalsothatthesurfactantconcentrationobtainedafter humicacidreleasefromcoacervate(XTs%),decreasesafterthe

sur-factantrecycling.Indeed,ateachextraction/back-extractionstage, asmallamountofsurfactantislostinthedilutephase,inducinga lowersurfactantrecoverypercentage.

6. Conclusion

Coacervateextractionwasusedtoseparatehumicacidfrom water.Thebestcompromise betweentheparametersgoverning the extraction effectiveness (surfactant concentrationand tem-perature) was foundusing a suitable experimentaldesign and three-dimensionalempiricalcurvefitting.Thestudyshowedthat cloudpointextractiontechniquewasabletoremovesoluble pollu-tantsfromeffluent.Extractionsattemperaturesrangingbetween 40◦Cand50C,allowedtoobtaintheextractionextents94%and

97%using4wt.%ofDowfax20B102andLutensolON30 respec-tively.Whereaslowsurfactantconcentration(<5wt.%)shouldbe usedtohavesmallervolumefractionofcoacervate.Na2SO4 and

CTABincreasedtheextractionextentofhumicacid.Theextraction ofthesolutewashighatacidpHrange.Moreover,extractionextent obtainedwithLutensolON30washigherthanthatusingDowfax 20B102.However,humicacidwaslessextractibleatpHaboveits pKa.Indeed,thepHcanbeakey-parameterforsurfactant

regenera-tionincloudpointextractionprocessofhumicacid.Thesurfactant recyclinginacloudpointextractionprocessseemstobepossible atpH>pKaofthesolute.

References

[1]C.S.Uyguner,M.Bekbolet,Evaluationofhumicacidphotocatalyticdegradation byUV–visandfluorescencespectroscopy,Catal.Today101(2005)267–274.

[2]A.Soumia,J.Abdelmajid,M.Abdelilah,G.Mohamed,W.Peter,H.Mohamed, Structuralstudyofhumicacidsduringcompostingofactivatedsludge-green waste:elementalanalysis,FTIRand13CNMR,J.Hazard.Mater.177(2010)

524–529.

[3]S.Riccardo,P.Alessandro,Molecularcharacteristicsofhumicacidsextracted fromcompostatincreasingmaturitystages,SoilBiol.Biochem.41(2009) 1164–1172.

[4] H.Katsumata,M.Sada,S.Kaneco,T.Suzuki,K.Ohta,Y.Yobiko,Humicacid degradationinaqueoussolutionbythephoto-Fentonprocess,Chem.Eng.J. 137(2008)225–230.

[5]W.Jaroslaw,R.Didier,S.Joanna,M.Korneliusz,M.Sixto,V.Jean,G.Didier,J. Surmacz,Solarphotocatalyticdegradationofhumicacidsasamodeloforganic compoundsoflandfillleachateinpilot-plantexperiments:influenceof inor-ganicsalts,Appl.Catal.B:Environ.53(2004)127–137.

[6]M.D.Paciolla,S.Kolla,S.A.Jansen,Thereductionofdissolvedironspeciesby humicacidsandsubsequentproductionofreactiveoxygenspecies,Adv. Envi-ron.Res.7(2002)169–178.

[7] T.Achour,A.R.T.Chafia,H.Didier,D.Safia,Evaluationofadsorption capaci-tiesofhumiccidsextractedfromAlgeriansoilonpolyanilineforapplication toremovepollutantssuchasd(II),Zn(II)andNi(II)andcharacterizationwith cavitymicroelectrode,J.Environ.Sci.23(2011)1095–1103.

[8]J.F.McCarthy,Bioavailabilityandtoxicityofmetalsandhydrophobicorganic contaminants,in:I.H.Suffet,P.McCarthy(Eds.),AquaticHumicSubstances: InfluenceonFateandTreatmentofPollutants,Am.Chem.Soc.,Washington, DC,1989,pp.263–279.

[9]J.Polak,M.Bartoszek,M. ˙Z ˛adło,A.Kos,W.W.Sułkowski,Acomparativestudy oftheadsorptionofhumicacids,fulvicacidandphenolontoBacillussubtilis andactivatedsludge,Chemosphere84(2011)1548–1555.

[10]F.Jianfeng,Y.Zhao,Q.Wu,Optimisingphotoelectrocatalyticoxidationof ful-vicacidusingresponsesurfacemethodology,J.Hazard.Mater.144(2006) 499–505.

[11] A.A.Stevene,C.J.Slocum,Chlorinationoforganicsindrinkingwater,J.Am. WaterWorksAssoc.68(1976)615–623.

[12]T.Takeshi,Muneaki,Y.Kazuhiko,Adsorbabilityandphotocatalytic degradabil-ityofhumicsubstancesinwateronTi-modifiedsilica,J.ColloidInterfaceSci. 297(2006)678–686.

[13]W.S.WanNgah, M.A.K.M.Hanafiah, S.S.Yong,Adsorptionofhumicacids from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: kinetics and isotherm studies, Colloids Surf. B: Biointerface 65 (2008) 18–24.

[14]A. Badis, F.Z. Ferradji, A. Boucherit, D. Fodil, H. Boutoumi, Removal of naturalhumicacidsbydecolorizingactinomycetesisolatedfromdifferent soils(Algeria)forapplicationinwaterpurification,Desalination259(2010) 216–222.

[15] R.SAl-Rasheed,D.J.Cardin,Photocatalyticdegradationofhumicacidinsaline waters.Part2.Effectsofvariousphotocatalyticmaterials,Appl.Catal.A246 (2003)39–48.

[16] S.Silvia,P.Gabriella,A.Fabrizio,Perspectiveontheuseofhumicacidsfrom biomassasnaturalsurfactantsforindustrialapplications,Biotechnol.Adv.29 (6)(2011)913–922.

[17]K.Katsoufidou,S.G.Yiantsios,A.J.Karabelas,Astudyofultrafiltration mem-branefoulingbyhumicacidsandfluxrecoverybybackwashing:experiments andmodeling,J.Membr.Sci.266(2005)40–50.

[18]K.Katsoufidou,S.G.Yiantsios,A.J.Karabelas,AnexperimentalstudyofUF membraneoulingbyhumicacidsandsodiumalginatesolutions:theeffect ofbackwashingonfluxrecovery,Desalination220(2008)214–227. [19]P.C.Singer,Assessingozonationresearchneedsinwatertreatment,J.Am.

WaterWorksAssoc.82(1990)78–88.

[20]J.Wwiszniowski,D.Robert,J.Surmacz-Gorska,K.Miksch,J.V.Weber, Photo-catalyticdecompositionofhumicacidsonTiO2.PartI:discussionofadsorption

andmechanism,J.Photochem.Photobiol.152(2002)267–273.

[21]R.AL-Rasheed,D.J.Cardin,Photocatalyticdegradationofhumicacidinsaline waters.Part2.Effectsofvariousphotocatalyticmaterials,Appl.Catal.A246 (2003)39–48.

[22]D.Ghernaout,B.Ghernaout,A.Saiba,A.Boucherit,A.Kellil,Removalofhumic acidsbycontinuouselectromagnetictreatmentfollowedbyelectrocoagulation inbatchusingaluminiumelectrodes,Desalination239(1–3)(2009)295–308. [23]L.C.Chiang,J.E.Chang,T.C.N.Wen,Destructionofrefractoryhumicacidby electromechanicaloxidationprocess,WaterSci.Technol.42(2000)225–232. [24]X.Z.Li,F.B.Li,C.M.Fan,Y.P.Sun,Photoelectrocatalyticdegradationofhumic

acidinaqueoussolutionusingaTi/TiO2meshphotoelectrode,WaterRes.36

(2002)2215–2224.

[25]H.Selcuk,J.J.Sene,H.Z.Sarikaya,M.Bekbolet,M.A.Anderson,Aninnovative photocatalytictechnologyinthetreatmentofriverwatercontaininghumic substances,WaterSci.Technol.49(2004)153–158.

[26]H. Watanabe, H. Tanaka, A Non-ionic surfactant as a new solvent for liquid–liquidextractionofzinc(II)with1-(2-pyridylazo)-2-naphtho,Talanta 25(1978)585–589.

[27]C.Bordier,PhaseseparationofintegralmembraneproteinsinTritonX-114 solutions,Biol.Chem.256(1981)1604–1607.

[28]K.C.Hung,B.H.Chen,E.Y.Liya,Cloud-pointextractionofselectedpolycyclic aromatichydrocarbonsbynonionicsurfactants,Sep.Purif.Technol.57(2007) 1–10.

[29] Z.S.Ferrera,C.P.Sanz,C.M.Santana,J.J.S.Rodriguez,Theuseofmicellarsystems intheextractionandpre-concentrationoforganicpollutantsinenvironmental samples,TrendsAnal.Chem.23(7)(2004)479–489.

(9)

[30]L.D.Nogueira,J.PCanselier,Oxo-alcoholethoxylates:surfaceand thermody-namicpropertiesandeffectofcariousadditivesonthecloudpoint,Tenside Surf.Det.42(2005)299–305.

[31]Z.Talbi,B.Haddou,Z.Bouberka,Z.Derriche,Simultaneouseliminationof dis-solvedanddispersedpollutionfromcuttingoilwastesusingtwoaqueousphase extractionmethods,J.Hazard.Mater.163(2/3)(2009)748–755.

[32]K.Mateja,S.Barbara,Theinfluenceofnonionicsurfactantstructureonthe thermodynamicsofanionicdye-cationicsurfactantinteractionsinternary mix-tures,DyesPigments79(2008)59–68.

[33] L.A.M.Rupert,Athermodynamicmodelofcloudinginwater/alcoholethoxylate mixtures,J.ColloidInterfaceSci.153(1992)92–105.

[34] B.Haddou,J.P.Canselier,C.Gourdon,Purificationofeffluentsbytwo-aqueous phaseextraction,IChemE,England181(A)(2003)1184–1192.

[35] P.Trakultamupatam,J.F.Scamehorn,S.Osuwan,Scalingupcloudpoint extrac-tionofaromaticcontaminantsfromwastewaterinacontinuousrotatingdisk contactor.II.Effectofoperatingtemperatureandaddedelectrolyte,Sep.Sci. Technol.39(3)(2004)501–516.

[36]K.D.Sharma,G.Sudha,S.K.Suri,H.S.Randhawa,Studiesonmixedsurfactant systems:effectofsomeanionicsurfactantonthecloudpointofpoly(nona-) oxyethylatednonylphenol,J.Am.OilChem.Soc.66(7)(1989)1015–1017. [37]B.Haddou,N.Guitri,A.Debbab,C.Gourdon,Z.Derriche,Cloudpointextraction

of OrangeII and OrangeGusing neutraland mixedmicelles: compara-tive approachusingexperimentaldesign,Sep.Sci.Technol.46(5)(2011) 734–743.

[38]B.Haddou,J.P.Canselier,C.Gourdon,Cloudpointextractionofphenoland benzylalcoholfromaqueousstream,Sep.Purif.Technol.50(1)(2006)114–121. [39]G.Box,N.Draper,EmpiricalModelBuildingandResponseSurfaces,JohnWiley

&Sons,NewYork,1987.

[40]J.P. Canselier, C. Gourdon, L.D. Nogueira, Duarte, E.L. De Barros Neto, B. Haddou, C. Gumila, Procédé d’extraction sans solvant des polluants organiquesetmétalliques,FrenchPatent06/03632,WO-2007-122158,2006. [41]H.Saito,K.Shinoda,Thesolubilizationofhydrocarbonsinaqueoussolutionof

nonionicsurfactants,J.ColloidInterfaceSci.24(1967)10–15.

[42]J.Buffle,ComplexationReactionsinAquaticSystems:AnAnalyticalApproach, EllisHorwood,Chichester,1988.

[43] M.Schnitzer,S.U.Khan,HumicsSubstancesintheEnvironment,Dekker,New York,1972.

[44] H.Dautzenber,W.Jaeger,J.Köt,B.Philip,C.Seidel,D.Stscherbina, Polyelec-trolytes:Formation,CharacterizationandApplication,Hanser,Munich,1994. [45] S.J.Marshal,K.Gregson,Humicacid–protonequilibria:acomparisonoftwo

modelsandassessmentoftitrationerror,Eur.J.SoilSci.46(1995)471–478. [46] T.Miyajima,K.Yoshida,Y.Kanegae,H.Tohfuku,J.A.Marinsky,Metal

complex-ationofnegativelychargedpolymers,React.Polym.15(1991)55–62. [47] A.M.Posner,Titrationcurvesofhumicacid,in:EighthInt.Congr.SoilSci.Trans.,

vol.3,1964,pp.161–174.

[48] A.M.Posner,Thehumicacidsextractedbyvariousreagentsfromasoil:part1. Yield,inorganicscomponentsandtitrationcurves,SoilSci.17(1966)65–78. [49] L.Robert,A.Revia,G.Makharadze,Cloud-pointpreconcentrationoffulvicand

humicacids,Talanta48(1999)409–413.

[50]J.H.Fendler,MembraneMimeticChemistry,WileyInterscience,NewYork, 1982.

[51]L.J.N.Duarte,J.P.Cancelier,ExtractionparCoaservatEnVueDeL’élimination deContaminantsOrganiquesetD’ionsMétalliques,ThèsedeDoctorat,Ecole nationalPolytechniquedeToulouse,2005.

[52]K.A.Gutschick,in:J.I.Kroschwitz(Ed.),Kirk-OthmerEncyclopediaofChemical Technology,vol.15,4thed.,Wiley,NewYork,1995.

Figure

Fig. 2 represents the three-dimensional isoresponse curves of the studied properties smoothed by the quadratic model (Eqs
Fig. 1. Effect of humic acid and CTAB on the cloud point of Lutensol ON 30 and Dowfax 20B102.
Fig. 4. Three-dimensional isoresponse curves smoothed by a quadratic model, X t.w = f(X t
Fig. 8. Effect of pH on the extraction extent of humic acid (E%).
+2

Références

Documents relatifs

Abstract The aim of this work is the extraction of tannic acid (TA) with two commercial nonionic surfactants, sep- arately: Lutensol ON 30 and Triton X-114 (TX-114).The

In the next section, the filtration performances are given in terms of permeation flux, lactic acid/lactate recovery rate, impurities rejection (phosphate, sulfate, chloride,

Abstract The aim of this work is the extraction of tannic acid (TA) with two commercial nonionic surfactants, sep- arately: Lutensol ON 30 and Triton X-114 (TX-114).The

In the next section, the filtration performances are given in terms of permeation flux, lactic acid / lactate recovery rate, impurities rejection (phosphate, sulfate,

Towards an in situ product recovery of bio-based 3-hydroxypropionic acid: influence of bioconversion broth compo- nents on membrane-assisted reactive extraction... Towards an in

General design methodology for reactive liquid–liquid extraction: application to dicarboxylic acid recovery in fermentation broth. Chemical Engineering and Processing: