• Aucun résultat trouvé

The two-dimensional mode of the variable-density Kelvin-Helmholtz billow

N/A
N/A
Protected

Academic year: 2021

Partager "The two-dimensional mode of the variable-density Kelvin-Helmholtz billow"

Copied!
25
0
0

Texte intégral

(1)

$Q\FRUUHVSRQGHQFHFRQFHUQLQJWKLVVHUYLFHVKRXOGEHVHQWWRWKHUHSRVLWRU\DGPLQLVWUDWRU



WHFKRDWDR#OLVWHVGLIILQSWRXORXVHIU



2

SHQ

$

UFKLYH

7

RXORXVH

$

UFKLYH

2

XYHUWH

2$7$2



2$7$2 LV DQ RSHQ DFFHVV UHSRVLWRU\ WKDW FROOHFWV WKH ZRUN RI VRPH 7RXORXVH

UHVHDUFKHUVDQGPDNHVLWIUHHO\DYDLODEOHRYHUWKHZHEZKHUHSRVVLEOH

7KLVLVYHUVLRQSXEOLVKHGLQ

7RFLWHWKLVYHUVLRQ 











an author's

https://oatao.univ-toulouse.fr/608

Joly, Laurent and Fontane, Jérôme and Reinaud, Jean The two-dimensional mode of the variable-density

Kelvin-Helmholtz billow. (2007) In: 60th Annual Meeting of the Divison of Fluid Dynamics, 18 November 2007 - 20

November 2007 (Salt Lake City, United States). (Unpublished) Item availablity restricted.

(2)

The two-dimensional mode of the variable-density

Kelvin-Helmholtz billow

Laurent Joly

1

, Jérôme Fontane

1

and Jean Noël Reinaud

2

(1) ENSICA, Département de Mécanique des Fluides, Toulouse, France.

(2) Mathematical Institute, University of St Andrews, St Andrews, UK.

(3)

Outline of the talk

Previous works and motivations

The variable-density KH-billow

Results of the stability analysis

Focus on the 2D instability

(4)

Secondary modes of the shear-layer

Unequally addressed situations

Homogeneous mixing-layer

Standard scenario of the transition

Core-centered

elliptic modes by translative instability,

Pierrehumbert and Widnall (1982)

Braid-centered

hyperbolic modes, stream-wise vortices,

Metcalfe et al ; (1987)

Stratified mixing-layer

Specific biases

on secondary modes,

Klaasen and Peltier (1991)

Variable-density mixing-layer

No such deductive analysis

(5)

The Homogeneous KH-billow

Constant-density Vorticity pattern in the KH roll-up

x

y

(6)

Vorticity production in variable-density flows

d

t

ω

=

(ω · ∇)u

1

ρ

2

P

× ∇ρ

(∇· u)ω

+ ν∆ω

Dilatation/compression,

(negligible at low Mach number)

Vortex stretching,

(collapses in 2D)

Baroclinic torque,

(the main bias considered here)

b

=

1

ρ

2

P

× ∇ρ

C

ρ

=

∆ρ

ρ

0

b

= O(

u

2

C

ρ

λ

ρ

)

|C

ρ

| 6 1

(7)

Spatial organization of the baroclinic torque

vorticity deposition along the braid between adjacent primary roll-ups :

(8)

The Variable-Density KH-billow

Reynolds number Re = 1500, density contrast from 0 to 0.5

x y (a) x y (b) x y (c) x y (d) x y (e) x y (f)

(9)

Formulation of the stability problem

J. Fontane PhD Thesis

Modal representation of 3D perturbations ˆ

u

= (ˆ

u,

ˆ

v ,

w

ˆ

), ˆ

p,

ρ

ˆ

:

u,

ˆ

v ,

w ,

ˆ

p,

ˆ

ρ] (x, y , z, t) = [˜

ˆ

u,

˜

v ,

w ,

˜

p,

˜

ρ] (x, y )e

˜

i

(µx+kz)+σt

Linearized NS equations around the base state U = (U, V ), P, R :

D

t

ρ

ˆ

+ ˆ

u

· ∇R

= 0,

RD

t

ˆ

u

+ R ˆ

u

· ∇U + ˆ

ρU

· ∇U

= −∇ˆ

p

+

1

Re

∆ˆ

u

.

Quasi-static approach (KP91) and a posteriori validation by

σ

r

≫ σ

KH

Discrete eigenvalues σ issued from a Fourier-Galerkin method carried

(10)

Growth rates versus k for increasing C

ρ

Stability analysis performed at saturation of the primary KH-wave

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.05 0.1 0.15 0.2 0.25 k σr (a) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.05 0.1 0.15 0.2 0.25 k σr (b) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.05 0.1 0.15 0.2 0.25 k σr (c) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.05 0.1 0.15 0.2 0.25 k σr (d) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.05 0.1 0.15 0.2 0.25 k σr (e) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.05 0.1 0.15 0.2 0.25 k σr (f)

(11)

Summary on secondary eigen-modes

At saturation of the primary KH-wave

Elliptic modes

Core centered modes insensitive to base flow

modifications,

Hyperbolic modes

Braid centered modes are promoted for growing

density contrasts,

Hyperbolic modes

Lying preferentially on the vorticity-enhanced

part of the braid,

Two-dimensional modes

In fair competition with most amplified 3D

modes beyond Cρ

= 0.4

(12)

Structure of the 2D mode

Maximum density contrast C

ρ

= 0.5, amplification rate σ

r

= 0.237

k = 0 (b) x y B A k = 0 (d) x y k = 0 (f) x y

Energy

Vorticity perturbation

Density perturbation

Kelvin-Helmholtz instability of the stretched vorticity density-gradient layer

(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)

Summary on secondary two-dimensional modes

Fair competition with 3D braid modes

assessment of the 2D mode

relevancy complementary to the Lagrangian inviscid

simulations by Reinaud et al. (2000)

Increase in mixing rate

Non-linear simulations indicate a jump in

exponential increase of the length of the central

isopycnic line,

Generic mechanism

2D instability of variable-density roll-up

condensing onto thin unstable shear layers → 2D

cascade

Références

Documents relatifs

Although the focusing of plane waves with paraboloid mirrors can be found in several references 10,11,12 (see also 13,14 and references therein), the modes of nearly

In Figure 7 , the z-component magnetic field correlation scale τ (top left), the fitted spectral power-law index α (z) kol of the z magnetic field component (in the Kolmogorov

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Manuscript received 18 November 2005, in final form 9 August 2006 ABSTRACT The dominant mode of convectively coupled Kelvin waves has been detected over the Atlantic and Africa

Values of ε and K z , averaged over the entire vertical range of temperature sensors, vary over 3 – 4 orders of magnitude (Figure 3b), with tidal variability peaking when

4 (except instead of plasma temperature, the total pressure is shown) and shows Cluster plasma (left) and magnetic field (right) observations in local boundary normal coordinates (L,

Diazomethane umpolung atop anthracene: An electrophilic methylene transfer reagent The MIT Faculty has made this article openly available.. Please share how this access