• Aucun résultat trouvé

Stability and performance of two GSBR operated in alternating anoxic/aerobic or anaerobic/aerobic conditions for nutrient removal

N/A
N/A
Protected

Academic year: 2021

Partager "Stability and performance of two GSBR operated in alternating anoxic/aerobic or anaerobic/aerobic conditions for nutrient removal"

Copied!
11
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 9981

To link to this article :

DOI:10.1016/j.bej.2012.05.001

URL :

http://dx.doi.org/10.1016/j.bej.2012.05.001

To cite this version :

Filali, Ahlem and Manas, Angela and Mercade, Myriam and

Bessiere, Yolaine and Biscans, Béatrice and Sperandio, Mathieu

Stability and performance of two GSBR operated in alternating

anoxic/aerobic or anaerobic/aerobic conditions for nutrient removal.

(2012) Biochemical Engineering Journal, vol. 67 . pp. 10-19. ISSN

1369-703X

(2)

Stability

and

performance

of

two

GSBR

operated

in

alternating

anoxic/aerobic

or

anaerobic/aerobic

conditions

for

nutrient

removal

Ahlem

Filali

a,b,c,1

,

Angéla

Ma˜nas

a,b,c,d,1

,

Myriam

Mercade

a,b,c

,

Yolaine

Bessière

a,b,c

,

Béatrice

Biscans

d

,

Mathieu

Spérandio

a,b,c,∗

aUniversitédeToulouse;INSA,UPS,INP;LISBP,135AvenuedeRangueil,F-31077Toulouse,France bINRA,UMR792IngénieriedesSystèmesBiologiquesetdesProcédés,F-31400Toulouse,France cCNRS,UMR5504,F-31400Toulouse,France

dCNRS,LaboratoiredeGénieChimique,UMR5503;4,alléeEmileMonsoBP84234-F-31432ToulouseCedex4,France

Keywords: Aerobicgranulation Nitrification Denitrification Phosphorus Filamentous Precipitation

a

b

s

t

r

a

c

t

Twogranularsludgesequencingbatchreactors(GSBR)withalternatinganoxic/aerobic(R1)and anaer-obic/aerobic(R2)conditionswereoperatedwitha4-carbon-sourcesyntheticinfluent.Thephysical propertiesofthegranularsludgewereverygood(SVI≈20mLg−1)andhighsolidconcentrations(up to35gL−1)wereobtainedinthebioreactoroperatedwithapre-anoxicphasewithadditionalnitrate (R1).Incontrast,performanceandgranulesettleabilitywerelowerinR2duetothedevelopmentof fil-amentousheterotrophicbacteriaonthesurfaceofgranules.Thesedisturbanceswerelinkedtothefact thatafractionofCODremainedduringtheaerobicphase,whichwasnotstoredduringtheanaerobic period.TostabilizeaGSBRwithamixtureoforganiccarbonsources,itisthusnecessarytomaximize theamountofsubstrateusedduringthenon-aerated,anaerobicoranoxic,phase.Comparable phos-phateremovalefficiencywasobservedinbothsystems;enhancedbiologicalPremovalbeinggreater inanaerobic/aerobicconditions,whilethecontributionofprecipitation(Ca–P)wasmoresignificantin anoxic/aerobicconditions.

1. Introduction

The aerobicgranular sludgeprocess hasbeen proposedas a promisingapproachtobiologicalwastewatertreatment[1].Thanks totheirdensestructure,aerobicgranuleshaveverygoodsettling abilitythatallowshighbiomassretentioninthebioreactor.This enablestheprocesstowithstandhigh-strengthwastewaterand resultsinthebiologicalreactorhavingasmallervolumethan con-ventionalactivated sludge systems[2].The sizeand density of thegranulesallowsimultaneousnitrification,denitrificationand phosphorusremoval,SNDPR[3,4]tobemaintained.However,the operatingconditionsthatimprovethestabilityofthereactor’s per-formanceandthephysicalpropertiesofaerobicgranularsludgestill needconsideration.Instabilityandpoorerpropertiesofgranular sludgehavebeenreportedforrealsewage,forexample,compared totheidealresultsreportedwithpurelyacetatefedgranules[5–7]. Variousoperatingparametershavebeenidentifiedthat influ-ence granule formation in aerobic systems. They include the

∗Correspondingauthorat:UniversitédeToulouse,INSA,UPS,INP,LISBP,135

AvenuedeRangueil,F-31077Toulouse,France.Tel.:+33561559755.

E-mailaddress:sperandio@insa-toulouse.fr(M.Spérandio).

1 Theseauthorscontributedequallytothiswork.

aerationrate,substratefeedingmode,organic loadingrate,and settlingtime[8–12].Ingranularsludgesequencingbatchreactors (GSBR),theaerationrateplaystwomajorroles:firstly,itimposes thehydrodynamicconditionsinthereactorand,secondly,it con-trolstheoxygen masstransferin theaggregates.High aeration ratehasbeenshowntoprovidehighshearforce,whicherodesthe surfaceofgranules;tostimulatebacterialstrainstosecretemore extracellular polymericsubstances (EPS),thus enhancing struc-turalintegrity;toreducesubstratetransferresistanceintheliquid boundarylayeratthegranulesurface;andtoprovidesufficient oxy-genfororganicsubstratedegradation[8,13].Variousstudieshave demonstratedthatahighaerationrate(expressedbythesuperficial airvelocitySAV)acceleratestheformationofstableaerobic gran-ules.Beunetal.[14]showedthatsmooth,stablegranulescouldbe obtainedonlywithanSAVabove2.0cms−1.Tayetal.[13]found

thatregular,rounder,compactaerobicgranulescouldbeformed onlyaboveaminimumaerationrate(SAV=1.2cms−1).Hence,the

developmentofstableaerobicgranulesinpure aerobicsystems islimitedbecauseofthehigh energydemandinvolved in aera-tion[15]andbecauseefficientnitrogenandphosphorusremoval requiresthepresenceofanaerobicoranoxicandaerobicconditions

[16].

Alternating anoxic/aerobic and anaerobic/aerobic conditions haveboth beenreportedtobehelpful for granulation.Possible

(3)

Nomenclature

ACP amorphouscalciumphosphate(Ca3(PO4)2·XH2O)

AOB ammoniumoxidizingbacteria COD chemicaloxygendemand(mgL−1)

DO dissolvedoxygenconcentration(mgL−1)

EBPR enhancedbiologicalphosphorusremoval EPS extracellularpolymericsubstance GSBR granularsequencingbatchreactor HAP hydroxy-apatiteCa5(PO4)3(OH) MLSS mixedliquorsuspendedsolid(gL−1)

MLVSS mixedliquorvolatilesuspendedsolid(gL−1)

NOB nitriteoxidizingbacteria

OLR organicloadingrate(kgCODm−3d−1)

PAO polyphosphateaccumulatingorganism SAV superficialairvelocity(cms−1)

SND simultaneousnitrificationdenitrification SVI sludgevolumeindex(mLg−1)

VFA volatilefattyacid

explanationsforthisarethatconversionofreadilybiodegradable CODtointernalstoredbiopolymerslimitsthesubstrateutilization rateduringtheaerobicphase[17]orthatanoxicgrowthinsidethe granuleimprovesaggregatedensity[18,19].Anotherreasonisthat alternatingnon-aeratedfeastperiodsandaeratedfamineperiods encouragestheselectionofslow-growingbacteria,whichare sup-posedtobepositiveforthedensificationofbio-aggregates[9].The workofWanetal.[18]showedthatthealternatinganoxicfeast andaerobicfamineregimesallowedtheformationofstable aero-bicgranulesandsimultaneousnitrificationdenitrification(SND)at areducedairflowrate(SAV=0.6cms−1).Ontheotherhand,the

alternationofanaerobicandaerobicconditionshasbeenwidely reported topromote internal biopolymer storage and enhance biological phosphorus removal by polyphosphate-accumulating organisms[20,21].

Therefore,theaimofthisstudywastocomparetheeffectof alternatinganoxic/aerobicandanaerobic/aerobicconditionsonthe performanceandstabilityofanaerobicgranularsludgeprocessfor simultaneouscarbon,nitrogenandphosphorusremoval.Forthis purpose,two reactorswererunin parallel.Theywerefed with amixtureoforganicsubstratesandoperatedwithasimilar aer-ation rate.Thefirst reactor(R1) wasoperatedwithalternating anoxic/aerobicconditions,thesecondone(R2)wasoperatedwith alternatinganaerobic/aerobicconditions.Processperformanceand themicroscalestructure of granuleswereinvestigatedfor both reactors.

2. Materialsandmethods

2.1. Reactoroperatingconditions

Theexperimentalset-upincludedtwogeometricallyidentical granularsequencingbatchreactors(GSBR),eachwithaworking volumeof 17L (internaldiameter=15cm, total height=105cm, H/D ratio=7). Both reactors were inoculated with the same concentrationofastabilizedhybridsludge(containingbothflocs andgranules)cultivatedinalternatinganoxic/aerobicconditions. TheinitialMLSSand MLVSSconcentrationswere19.5gL−1 and

13.1gL−1respectively.TheinitialSVIwas22mLg−1

MLSS.ReactorR1

wasoperatedwithalternatinganoxic/aerobicconditions,whereas R2wasoperated withalternating anaerobic/aerobicconditions. Eachreactorwasoperatedsequentiallywithacycletimeof 4h including15minoffeeding,20minofanoxicoranaerobicreaction (nitrogen gasinjection); 145minof aerobic reaction;30minof

Table1

Operatingconditionsofbothreactors.

Parameter R1 R2

Volumetricexchangeratio(%) 47

Hydraulicretentiontime(h) 8.5

Organicloadingrate(kgCODm−3d−1) 2.8

Ammonialoadingrate(kgN–NH4m−3d−1) 0.14

Nitrateloadingrate(kgN–NO3m−3d−1) 0.28 0

Phosphorusloadingrate(kgP–PO4m−3d−1) 0.08

SuperficialupflowvelocityofN2(cms−1) 1.1±0.1 0.6±0.1

Superficialupflowvelocityofair(cms−1) 1.0±0.1

Temperature(◦C) 20±2

pH(notregulated) 7.5–9.2 7.2–8.5

settling and 30min of discharge (with a volumetric exchange ratioof47%).Theaerationratewassimilarinbothreactors,with a superficialair upflow velocity (SAV) of 1.0±0.1cms−1. Both reactorswerefedatthebottomofthecolumnwhenaerationwas stopped (static fill).Thefeedconsisted ofa synthetic substrate

[18]havingthefollowingcomposition:CODof1000mgL−1(25%

contributioneachofglucose,acetate,propionicacidandethanol), [PO43−]=30mgPL−1, [Ca2+]=46mgL−1, [HCO3−]=100mgL−1,

[MgSO4·7H2O]=12mgL−1, [NH4+]=50mgNL−1. A COD/N–NH4+

ratioof20wasmaintained.NitratewasdosedinR1inorderto maintainanoxicconditionsafterfeeding([NO3−]=100mgNL−1).

ThepHprobeandDOprobewereinstalledonlineandthedata wereacquiredbythecomputerevery30s.pHfluctuatednaturally duringareactorcycle,from7.5to9.2inR1andfrom7.2to8.5 inR2.Thetemperaturewasmaintainedat20±2◦Cwithawater jacket.Thereactorperformancewasmonitored throughweekly cyclestudies,inwhichsampleswereanalysedatregularintervals during an SBARcycle. Table 1 summarizes themain operating conditionsofthetworeactors.

Duetoannualclosure,thesupplyofinfluenttothereactorswas interruptedfortwoconsecutiveweeksandthecycleofoperation wasmodified:thenew2-hcycleconsistedof15minaerationand 105minsettling.Thisperiod(fromday105today120)isreferred toasthe“starvationperiod”.

2.2. Analyticalcharacterizationoftheliquidandsolidphases

Analyses were conducted according to standard methods (AFNOR)[22]:COD(NFT90-101),MLSS(NFT90-105)andMLVSS (NFT90-106).NO2−,NO3−,PO43−,NH4+,Ca2+,K+,Mg2+

concentra-tionswereanalysedbyionchromatography(IC25,2003,DIONEX, USA)withpriorfilteringofthesamplesthrougha0.2mm pore-sizeacetatefilter.Thesludgevolumeindex(SVI)wasmeasured inthereactorafter30minofsettlingandshowedlessthan±10% ofdifferencerelativetothestandardprocedureinagraduatedtest tube.Microscopicobservationsofsludgesamplesweremadewitha Biomed-Leitz®binocularphotonicmicroscope.Particlesize

distri-butionwasmeasuredwithaMalvern2000Mastersizer®analyzer

andwithstatisticalimageprocessing.

Theproportionofgranulesbymassandbyvolumewas esti-matedusingEqs.(1)and(2)respectively:

Percentageofgranulesbymass =MLSSMLSSgranule×100

hybridsludge

(1)

Percentageofgranulesbyvolume =VVgranule×100

hybridsludge (2)

whereMLSSgranuleandMLSShybridsludgearethemixedliquor

sus-pendsolidsingranulesandhybridsludgerespectively.Inorderto assesstheMLSSofgranules,sievingat315mmwasperformedas describedinFilalietal.[23].VgranuleandVhybridsludgerepresentthe

apparentvolumeofgranulesandhybridsludge,respectively,inthe reactorafter30minofsettling.

(4)

0 5 10 15 20 25 30 35 40 0 100 200 300 time (day) M L S S a n d M L V S S ( g L -1) 0 20 40 60 80 100 S V I (m L g -1 ) 0 5 10 15 20 25 30 35 40 0 100 200 300 time (day) MLSS and MLVSS (g L -1) 0 20 40 60 80 100 S V I (m L g -1 )

2

R

)

(b

1

R

)

(a

Fig.1.Evolutionofsuspendedsolidsduringtherunningperiodofthereactors()MLSS,()MLVSSand( )SVIinR1(a)andR2(b).

2.3. Microbialcharacterization

2.3.1. FISHprobing

Floc and granule samples were fixed as described in Filali et al. [23]. Filamentous bacteria that had developed at the surfaceofgranulesweredetachedwithasterilescalpeland sub-jectedtothesameprocedure astheflocs. Insitu hybridization wasperformed according to the standard hybridization proto-col[24].The fluorescently labelled oligonucleotideprobesused wereas follows: Nso190 and Nso1225 (labelledwith FITC) for AOB[25],Nit3(labelledwithCy3) forNitrobacter spp.[26] and Ntspa662(labelledwithCy3)forNitrospiraspp.[27].DAPI(4′

,6-diamidino-2-phenylindole,dihydrochloride)wasusedtostainall the DNA-containing organisms. To avoid non-specific staining, unlabelledcompetitorprobesCNit3andCNtspa662wereadded withequimolaramountsofNit3andNtspa662,respectively.

Fluorescent insitu hybridizationimageswerecollected with a confocal laser scanning microscope (LEICA SP2, DMRXA2, Germany) using an argon laser (488nm) for FITC excitation, a helium–neon laser for Cy3 (543nm) and a diode laser for DAPI(405nm).Theirfluorescencewasdetectedat498–550nm, 571–630nm or 415–450nm respectively. To obtain images of half-granulesections,10–20(dependingonthesizeofthe gran-ule)overlapping,consecutiveimagesof1024×1024pixelswere acquiredusinga16×oilobjective.Thefinalcompositeimageof thegranulesectionwasthenreconstructedfromallthe individ-ualimagescollectedusingINKSCAPEopensourcescalablevector graphics.Imagesofbacterialclusterswereacquiredusinga100× oilobjective.

2.3.2. PHBstaining

Poly-hydroxybutyrate(PHB)stainingwascarriedoutusinga protocoladaptedfromPandolfietal.[28]. Sampleswerecutto 100-mmthicknessandspreadoveraglassplate.Onceair-dried, thesampleswereplacedinasolutionofSudanblackfor5min,then rinsedwithethanolat70vol.%anddried.Safraninwasdroppedon tothedrysamples,coveringthemcompletely,andleftincontact for5s.Thesamplesweredriedagain,thenrinsedwithdistilled waterandobservedwithanopticalmicroscope.Safraninwasused toshowupthe cytoplasmicmembranesin red(bacterial cells) whereasSudanblackstainedthePHBinclusionsblue.

3. Resultsanddiscussion

3.1. Performancestability

Figs.1and2showtheevolutionofsolidconcentrationandthe removalefficienciesofreactorsR1andR2,respectively,duringthe wholeoperation.Bothreactorswerestartedwithsimilarseedsand showedthesamesuspendedsolidsconcentration,i.e.19.5gTSSL−1

and13.1gVSSL−1,togetherwithverygoodsettlingproperties(SVI

wasinitiallycloseto22mLg−1).

Afterabout50daysofrunninganduptotheendofthestudy (300days),performancewasverystableintheanoxic/aerobic reac-tor(R1).TheremovalofsolubleCOD,ammoniaandtotalnitrogen were96%,100%and89%,respectively.Theremovalof phospho-rousgraduallyincreasedandstabilizedat45%.MLSSandMLVSS firststabilizedaround21.0±1.5gTSSL−1and13.8±1.2gVSSL−1,

respectively,and then graduallyaccumulated in thereactor up to35gTSSL−1 and25gVSSL−1,witha VSS/TSSratioof65–70%.

Theaccumulationofsuspendedsolidswasalsoassociatedwitha decreaseofSVI(16±2mLg−1).Performanceswerestableandit

wasinterestingtoobservethat,afterastarvationperiodof15days (startingonday105)duringwhichitwasnotfed,thereactorwas easilystartedagainandittooklessthanoneweekforremoval per-formancestobefullyrecovered,underliningtherobustnessofthe granulesfromR1.

Inthesecondreactor(R2),performanceinitiallydeclinedand neitherthe sludge concentration northe reactor performances werefullystabilizedatanytimeduringthestudy.TheMLSS concen-trationinitiallyincreased,reaching32gL−1,butthenprogressively

decreased toless than 10gL−1.The sludge volume index (SVI)

fluctuated around70±15mLg−1 during thefirst 100 days and

thenincreasedto90mLg−1.TheCODremoval efficiencyvaried

between90and95%,whereasammoniaandtotalnitrogenremoval fluctuatedbetween60%and100%(meanvaluesof86%and84% respectively).Phosphorusremovaloscillatedbetween10and80% withameanefficiencyof42%.

3.2. Evolutionofsludgeproperties

Asbothreactorswereinitiallyseededwithamixtureof gran-ulesandflocs,theevolutionofthepercentageofgranulesinthetwo reactorswasaninterestingindicatorofsludgeproperties(Fig.3). AslightenrichmentingranuleswasobservedinR1,thegranule percentageincreasingfrom60to80%ofthetotalvolumeand con-stitutingmorethan90%ofthemass.Granulesizealsoprogressively increased(from1to3mm).Concomitantly,adecreasingproportion offlocswasobservedthroughoutthestudy.

Incontrast,inR2,sludgepropertiesevolveddifferently.From day33, an increase of granule fraction bymass wasobserved, togetherwithadecreaseoftheirfractionbyvolume,whichclearly indicatesastrongmodificationoftheaggregatepropertiesandfloc washout.Thiscanbeexplainedbythefactthatgranulesrapidly becamebigger(from1to4mmindiameter)duetoafilamentous (fluffy)growthonthesurface.Asgranularsludgeoccupiedalarger volumeinthereactoraftersettling,flocswerewashedoutandthe granulepercentageinitiallyincreased.Concomitantly,filamentous suspendedgrowthwasalsoobservedandtheflocsthusgenerated, eventhoughtheycontributedlittletothetotalmassofsludge,were

(5)

Fig.2.Evolutionofremovalefficienciesof( )COD,( )N–NH4,( )TN,()P–PO4and( )Ca2+inR1(a)andR2(b).

likelytooccupyalargevolumeandtoconsiderablyaffectsludge settlingastheSVIroseto70±15mLg−1.

Fig.4showsthecorrelationbetweentheMLSSconcentration andthepercentageofgranulesinbothreactors.Itindicatesthat theMLSSgloballyincreasedwiththeproportionofthevolume occupiedbythegranulesandthediminutionofsuspendedbiomass growth.

Fromthemicroscopeobservations(Fig.5),itcanbeseenthat granulesfromR1presentedasmoothroundsurfacesimilartothe granulesinitiallyseeded(Fig.5a).Incontrast,asalreadymentioned, filamentous bacteriagrew out fromthe surface of R2granules

(Fig.5b),andthisfilamentouslayerseemedtocauseoxygen trans-ferlimitationasindicatedbythereleaseofgasbubbles(Fig.5e). AssuggestedbyMosquera-Corraletal.[15],long-termanaerobic conditionsinsidethegranulecouldleadtogrowthofmethanogenic bacteria.

Withtime,thesurfaceofsomeofthematuregranulesfrom bothreactorsbecamecrackedandbroken,revealingastrongercore (Figs.5candd).Thestrengthoftheinternalpartofthegranules wasprobablyexplainedbymineralprecipitationasdemonstrated byMa˜nasetal.[29].Whereas,inR1,thelossofefficiencydueto maturegranuledisintegrationseemedtobecompensatedbythe

(6)

0% 20% 40% 60% 80% 100% 300 250 200 150 100 50 0

me (day) me (day)

MLSS Volume 0% 20% 40% 60% 80% 100% 300 250 200 150 100 50 0 Granule proporon (%) Granule proporon (%) MLSS Volume

(b)R2

(a)R1

Fig.3.EvolutionoftheproportionofgranulesinMLSSandinvolumeofthehybridsludgeinbothreactors.

0 10 20 30 40 100% 80% 60% 40% 20% 0%

Granule proportion in volume (%)

M L SS o f th e hyb rid slud ge (g L -1 ) R2 R1

Fig.4.RelationshipbetweentheMLSSconcentrationandthegranulepercentage

byvolume.

birthofsmallnewones,granulesfromR2progressivelylosttheir densitybutnonewsmallgranulesseemedtobegeneratedinthis reactor.

3.3. Nitrogenremoval

3.3.1. Kinetics

Kineticanalyseswereperformedduringthebatchcycletoassess COD,nitrogenandphosphorusremoval(Fig.6).

During the anoxic phase in reactor R1, COD and nitrate were rapidly depleted. Denitrification occurred at a rate of 350mgNL−1h−1,andnitriteconcentrationincreased,transiently

reaching5mgNL−1.Ammoniumwasdepletedafter1.5hduring

theaerobic phase, 46%beingremoved byheterotrophic assim-ilation during the anoxic period and 54% aerobically at a rate (AUR)of8.9mgNL−1h−1.Nitriteandnitrateaccumulated,

reach-ing6mgNL−1and14mgNL−1respectively.DOwasfirststabilized

at5mgL−1 duringnitrificationand thenincreasedto6.3mgL−1

afterammoniadepletion.ThestableprofileofTNduringthe aero-bicperiodindicatesthatsimultaneousnitrificationdenitrification didnotoccursignificantlyinthisreactor.Thiscouldbeexplained byDOnotbeinglowenoughandinsufficientorganiccarbonbeing storedduringtheanoxic(feast)phasetoallowdenitrificationinthe granulesduringtheaeratedphase.

InreactorR2,duringthenon-aeratedphase,theCODdecreased by134mgL−1,whichcorrespondsto25%oftheCODfedtothe

system,andreachedaplateauatabout400mgL−1.Duringthe

aer-atedphase,theoxygenprofilereachedafirstplateauat2.5mgL−1,

asecondplateauat4mgL−1,andthenincreasedto6.3mgL−1after

85%oftheCODhadbeenremoved.ThepHincreasefrom7.2to8.2 duringthefirstoxygenplateauindicatedprobableconsumptionof VFAandstrippingofCO2.Duringthesecondplateau,ammonium wasprogressively consumed but nitrate and nitrite concentra-tionremainednegligible.Concomitantly,thepresenceofAOBwas demonstratedbyFISHanalysisingranulesfromR2whereasNOB werenotdetected(seeSection3.3.2).Inaddition,thenitrification

(7)

Fig.6. Typicalprofileofsolublecompoundsinbothreactorsduringacyclestudyperformedonday167.Theseparationbetweentheanoxic(R1)oranaerobic(R2)/aerobic

phasesisdepictedbyaverticalline.

ratewasalsomeasuredinbatchrespirometrictestswithgranular sludgecollectedfromR2attheendoftheaerobicphase(atDOof 5mgL−1,withammoniaadditionof10mgNL−1,withoutaddition

oforganiccarbon).AURwas0.99mgNg−1VSSh−1,nonitratewas

observedandnitriteaccumulatedatarateof0.57mgNg−1VSSh−1.

Theseobservations encourageus tothink thatammonium was simultaneouslyremovedbyheterotrophicassimilationand SND duringtheaerobicphaseinthereactorR2.Duetoheterotrophic bacteriarespirationandgrowthonstoragecompounds,thenitrite producedbyAOBwasfullyconsumedandsomeoftheammonia wasalsoassimilated.Thisisinaccordancewiththepresenceof AOBandtheabsenceofNOBinthesegranules.Despitethefactthat theAURinR2wasclosetothatobservedinR1(8.3mgNL−1h−1),

theammoniumwasnotdepletedattheendofthecyclebecause ammoniumstarted tobe nitrified afterthe COD wasdepleted. Beforethat,theoxygenlevelinthegranuleswasprobablytoolow becauseofhighheterotrophicactivity.Thefinalconcentrationof ammoniumintheeffluentwas11mgNL−1butvariedgreatlyfrom

onecycletoanother,leadingtounstableammoniumremoval effi-ciency(Fig.2b).Thiscriticalinstabilityofnitrificationwasduetothe smallproportionofammoniaassimilatedduringthenon-aerated

phaseandtothestrongcompetitionbetweenheterotrophicand autotrophicbacteriaforoxygenduringtheaerobicphase.

3.3.2. Spatialdistributionofnitrifiers

FISHanalysiswasperformedtoassessthemicroscalestructure ofgranulesandthelocalizationofnitrifyingbacteria.Fig.7shows theimagesofgranulesfromR1(a,candd)andR2(bandg),together withsuspendedbiomassfromR1(e)andfilamentousbacteriafrom R2(f).DAPIstaining(blue)indicatedthepresenceofheterotrophic bacteriainthegranules.Fig.7bconfirmsthatgranulesfromR2were muchmoreirregularthanthoseofR1(a).

In thefirst reactor,thelocalization of nitrifiersinthe gran-ules did not change significantly during therun. The imageof ahalf-granule section(Fig.7a)showsthatAOB(magenta)were distributedthroughoutthegranuleand,inparticular,nearlarge channelsandinternalvoids.TheNOB(yellow)werefoundtobe locatedindeeperlayersofthegranule (about250mmfromthe surface)andprofuselyaroundtheinternalcoreofthegranule.As observedinpreviousstudies[30,31],channelsandinternalvoids mayplayakeyroleinthetransportofoxygenandsubstrate,which would explainthis localization.AOBwerefoundtoformdense

(8)

Fig.7. ConfocallaserscanningmicroscopyimagesofFISHmicrographsofnitrifiers.HalfgranulesectionofR1(a)andpartofthesection(candd).Halfgranulesectionof

R2(b)andpartofthesection(g).ConfocallaserscanningmicrographsofFISHperformedonaflocsofR1(e)andfilamentousbacteriaofR2(f).AOBappearinmagenta

(hybridizedwithFITC-labelledNso190+Nso1225),NOBappearinyellow(hybridizedwithCy3-labelledNit3+Ntspa662),otherbacteriaappearinblue(DNAstainingwith

DAPI).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

bacterialclusterswithsizesrangingfrom10to50mm(Fig.7c). NOBclusters weredense and small,their sizerarelyexceeding 10mm(Fig.7d).HybridizationofsamplesofflocsfromR1wasalso performed(Fig.7e).AOBwerefrequentlyobservedinfloc sam-ples,forminglarge,dense clusters,whereasveryfewNOBwere observed.

The spatialdistributionofnitrifiersin ahalf-granule section ofR2(observedonday227)isreportedinFig.7b.The distribu-tionofAOBinR2granuleswaslessextensivethanthedistribution observedinR1.AOBwerelocatedonlyintheoutermost250mmof theR2granules.Theirdistributionwasnothomogeneousthrough thatlayer.AOBclusterscolonizedsomelargepartsoftheaggregate andweretotallyabsentfromothers.Inaddition,manyofthemwere foundtodevelopatthesurfaceofthegranule.Fig.7gshowstypical denseclustersofAOBthathavedevelopednearthesurfaceofthe granule.IncontrasttoR1clusters,AOBclustersinR2wererelatively smallandrarelyexceededa sizeof20mm.Thehybridizationof NOBwiththeoligonucleotidesNit3andNtspa662gavealowsignal similartobackgroundnoiseandnotypicalbacterialclusterscould beidentified(witha magnification100×).Itwasthusobserved thatNOBwerenotsignificantlypresentingranulesfromR2.The hybridizationofsamplesofflocsandfilamentousbacteriathathad developedatthesurfaceofthegranules(Fig.7f)fromR2indicated

thatsuspendedbiomassdidnotcontainnitrifyingbacteria,bethey AOBorNOB(resultnotshown).

TheFISHresultscorroboratethekineticassessmentthatneither nitritenornitratewasaccumulated(Section3.3.1),indicatingthat nitrifiersaredifficulttomaintaininananaerobic/aerobicsystem becauseofstrongcompetitionwithheterotrophsforoxygenand space.Furthermore,theabsenceofNOBinthereactorconfirms thatSNDfavoursthedirectdenitrificationofnitriteinthecoreof granules,whichprogressivelylimitsthedevelopmentofNOB.

3.4. Phosphorusremoval

3.4.1. Kineticassessment

Kineticsassessedoverareactorcycle(Fig.6)showedthe dif-ferentprocessesinvolvedinphosphorusremoval.InR1(Fig.6a), a rapiddecrease ofPO4 wasobservedduring theanoxicphase

concomitantwithapHincreaseduetodenitrification.Ithasbeen demonstratedpreviously[29]thatcalciumphosphateprecipitation isresponsibleforthisphenomenon.Therewasnoapparent phos-phatereleaseinR1duringtheunaeratedperiod.Thisobservation seemslogicalbecause,usually,apre-anaerobic(ratherthananoxic) periodisusedtoinducebiologicalphosphateremoval.Here,nitrate was preferentially used by ordinary heterotrophic biomass for

(9)

Fig.8.Microscopicimagesofthestained10mm-cutgranules:(a)R1;(b)R2;(c)R1filamentousbacteria;(d)R2filamentousbacteria.Thescalebar=100mmfor(a)and(b)

and5mmfor(c)and(d).PHBgranulesarestainedinblue/blackwhereascytoplasmicmembrane(cells)arestainedinpink/red.(Forinterpretationofthereferencestocolour

inthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

substrateoxidation.However,alittlepolyphosphate-accumulating organism(PAO)activity cannevertheless besuspectedin reac-torR1fortworeasons:first,thepotassiumconcentrationshowed a profile (release and uptake) typically explained by its inclu-sioninapolyphosphatestructureand,second,specificanaerobic batchtestsperformedwithgranularsludgefromR1(withacetate asthesolecarbonsource,withoutadditionalcalciumor magne-sium,atapHthatavoidedprecipitation)showedaPreleaserate of2.18mgPg−1MLVSSh−1,whichiscomparabletodataobtained

withsludgefromtheEBPRprocess[32].ThepresenceofPAOin reactorR1couldappearsurprisingasthisreactorwasoperated mainlyinanoxic/aerobicconditions.Howeveritshouldbenoted thatnitrateandnitriteweredepletedafter10–15minandtheend oftheperiodwasanaerobic.Moreover,duetothedensityof gran-ules,ananaerobiczonecouldbefoundinsidethem,eventhough nitrateandnitriteweremeasuredinthebulk.Thus,anaerobicP releaseanduptakewaspossiblymaskedbyPprecipitationinthe GSBRreactorR1.Finally,despitethepossiblepresenceofPAO,the contributionofbiologicalreactionstoPremovalwasprobablylow comparedtoprecipitation(seeSection3.4.3).

AsshownbyFig.6b,significantanaerobicreleaseofPO4 took

placein thesecondreactor (R2).Thisrelease continuedduring thefirstoxygenstepintheaerobicphase(DO=2.5mgL−1),which

meansthatsomeofthePAOwerestillconvertingsubstrate(VFA)to internalpolymers(assuggestedbytheconcomitantpHincrease). Thiswaspossiblyduetothepresenceofanaerobiczonesinthe granuleduringthisphase asoxygenuptakeratewashighuntil CODwasdepletedinthereactor.Inthekineticspresented,thefinal phosphateconcentrationissimilartothatobservedinreactorR1. However,dependingonthecycle,phosphateremovalwasunstable inR2.Thismayhavebeenduetosignificantvariabilityinthe het-erotrophicactivityatthebeginningoftheaerobicphase(Fig.2b), whichwouldinfluencePuptakerate.Anotherexplanationcouldbe

theheterogeneoussludgewastageimposedinthegranularsludge process.Sludgewasnaturallywastedvialossofsuspendedsolids afterbiomassdetachmentfromgranules.Thismeansthatitwas difficulttosetagivenretentiontimeforbacteriaasinthe conven-tionalEBPRprocesses.Here,apparentmeanSRTvariedfrom5to15 daysbasedonthesuspendedsolidsmassbalance.However,local SRTsinthegranuleswereprobablyhigher.ThebiologicalPremoval wouldprobablyhavebeenmorestableifaregularwastageof gran-uleshadbeenperformed.Thisassumptionneedstobeconfirmed infuturework.

3.4.2. PHBstaining

BacterialcarbonstoragewasanalysedusingthePHBstaining techniqueinbothreactors.Fig.8aandbshowsgranulesections,one fromR1andonefromR2,obtainedfromsamplescollectedatthe beginningoftheaerobicphase(PHBgranulesarestainedblue/black whereascytoplasmicmembranes(cells)arestainedpink/red).

PHBwasdistributedinathinlayerintheperipheralzoneofthe granulesandclosetointernalvoidsandchannelsintheinternal partofthegranules.Comparisonofsamplesfromthetworeactors indicatedthat,inthegranulesfromR2,PHBwasmorepresentin theperipheralzone,includingthefilamentousbacterialoutgrowth (Fig.8d).Thisconfirmsthathighheterotrophicactivityandcarbon storageoccurredatthesurfacewhereasgrowth/storageinthe cen-trebecamedifficult,probablybecauseofdiffusionlimitationinthe granulesfromR2.

3.4.3. Phosphateprecipitationcontribution

The contribution of precipitation to overall P removal can be estimated from calcium behaviour. Calcium is not signifi-cantly implicated in the biological formation of polyphosphate

[33]butprecipitatesmainlyintheformofcalciumphosphateas demonstratedbyMa˜nasetal.[29].Fromthermodynamicanalysis,

(10)

amorphouscalciumphosphate(ACP)andhydroxy-apatite(HAP) werethemostprobableminerals.X-raydiffractionpatterns(not shown)werecomparedforgranulesfromR1andR2,andshowed thatthemostsignificantmineralwasHAPCa5(PO4)3(OH)although,

inthe case of theR1 spectrum,a small amountof whitlockite (Ca18Mg2H2(PO4)14)wasalsoindicated.

PrecipitationwasmainlycontrolledbypHinthebioreactors. Calciumconcentrationdecreased inR1duringtheanoxicphase whenpHreachedthehighestvalues,closeto9,andcalciumwas progressivelyreleasedduringtheaerobicperiodaspHdecreased withnitrification (Fig. 6a). The calcium profile in R2 (Fig. 6b) remainedstableduringtheanaerobicperiodwithstablepHaround 7.5butdecreasedduringtheaerobicphaseasaconsequenceof pHincreasingto8.ThetotalCa2+ removalwas40%inreactor1

(seeFig.2)whereasitprogressivelydecreasedto20%inreactorR2 (moreunstable).Thistendstoshowthatcalciumphosphate pre-cipitationwasgreaterinthefirstreactorthaninthesecond,which isconsistentwiththefactthatmeanpHwashigherinthefirst reac-torduetomoreintensedenitrification.Moredetailsontherelation betweenpH,calciumconcentrationandphosphateprecipitationin granulescanbefoundinarecentarticlebyMa˜nasetal.[34].

4. Discussion

In this study,significant differences wereobservedbetween GSBRsin termsofperformancesandstability.Thesedifferences canfirstlybeexplainedbythefactthatanoxic/aerobicconditions encouraged pre-denitrification (R1) whereas anaerobic/aerobic conditionsfavouredbiologicalphosphorusremoval(R2).Secondly, anotherimportantconsequenceofworkingwithamixtureof car-bonsourcesandarelativelyshortanaerobicperiodinR2wasthe factthatafractionoftheeasilybiodegradableorganicsubstrate wasnotremovedanaerobicallybutwasdegradedintheaerobic period,whichprobablyexplainsthegrowthoffilamentous bacte-ria.Despitethefactthatalternatinganaerobic/aerobicconditions theoreticallyfavourgranulationbypromotingcarbonstorage, fil-amentousbacteriathatdevelopedatthesurfaceofgranuleshada negativeimpactonsettleabilityandnitrification.

The stability of physicalproperties is a key issuefor ensur-ingthelong-termoperationofagranularsludgereactoranditis characterizedbypropersettleability,whichallowshighbiomass retention.Here,averylowsludgevolumeindex(15mLg−1)and

astable,highMLSSconcentration(upto35gL−1)wereobtained

intheGSBRoperatedwithalternatinganoxic/aerobicconditions (R1).Incontrast,filamentous growthatthesurface ofgranules (andfinally in thebulk)progressively deteriorated the proper-tiesofgranularsludgeanddegradedtheperformancereactorR2, which was operated with alternating anaerobic/aerobic phases (SVI=70±15mLg−1, MLVSS dropped to 10gL−1). Filamentous

growthhaspreviouslybeenobservedinaerobicgranularsludge SBRs, resulting from a changein the wastewater composition, organicloadingrate(OLR)orDOconcentration[13,15,35,36].It isgenerallyacceptedthatfilamentousgrowthisfavouredatlow oxygenavailability.ForinstanceMosquera-Corraletal.[15]noted thataerobicgranuleslosttheirstabilityduetotheoutgrowthof filamentousbacteriawhentheDOwasreducedtolessthan40%of saturation.Inthepresentstudy,despitesimilaraerationratesbeing imposedinbothreactors,lowerDOconcentrationwasobtained atthebeginningoftheaerobic phasein R2(anaerobic/aerobic) duetoresidualCODthatwasnotremovedduringthenon-aerated phase.Thisleadsustothinkthat,here,filamentousgrowthwasdue tooxygen-limitedgrowthofheterotrophicbacteriawithaneasily availablecarbonsource(glucose,ethanolorresidualacetateor pro-pionate)atthebeginningoftheaerobicphase.ThehighCOD:DO

ratiomaintainedinthebulkatthisperiodmadeitdifficultfora densebiofilmtogrowonthesurfaceofthegranules.

Traditionally, physiological studies have revealed that most of the filamentous bacteria have strictly aerobic metabolisms, althoughasmallnumberofmorphotypeshavebeenclaimedto havefermentativemetabolisms[37],givingthemselection advan-tagesin anaerobic/aerobic systems. A plug-flowregime reactor liketheSBRexertsaselectionpressureonfloc-formingbacteria throughthehighgradientsofsubstratepreserved[38]andthe con-versionofeasilybiodegradablesubstratetointernalpolymers[17]. Inthisworkwithacarbonsourcecomposedofglucose,propionate, acetateandethanol,onlyafractionofCODwasremoved anaerobi-callyandconvertedtoPHB.Astheanaerobicperiodwasrelatively short,anaerobicfermentationdidnotplayanimportantroleinthe reactorstudied.TheconsequencewasthatafractionofCODwas notstoredbyPAOandwasstillpresentintheaerobicphase.This wasdetrimentaltogranulepropertiesduetofilamentousgrowth. Areactorwithalongerpre-anaerobicphaseorapre-fermentation phasewouldprobablybebeneficialtogranularsludgeformation. Analternativesolutionwouldbetoincreasetheaerationrateas shownbyMosquera-Corraletal.[15]butthiswouldinducehigher energyconsumption.

Thepresenceof nitrateduringthefeastperiod seemed crit-icalfor the stability ofthe granulesin the firstreactor (R1).A firstexplanationisthatCODwasfullyremovedbydenitrification, thusensuringtheabsenceofCODintheaerobicphase(unlikein R2).Moreover,asshownbyWanetal.[18],theanoxicgrowthof heterotrophicbacteriaintheinnerlayerscouldencourage aggre-gatedensification.Boththesesituationsarelikelytoenhancethe strengtheningofthegranulestructureandimprovegranule sta-bility.Inrealwastewater,nitrateandnitritearerarelypresentand cannotreasonablybeinjectedcontinuously,exceptperhapsduring startuptoacceleratetheformationofgranules.Thismeansthat, forgranularsludgestability,itiscriticaltomaximizetheamountof substrateusedduringthenon-aerated(eitheranaerobicoranoxic) phase.Forthatreason,anadequatecombinationofanoxic, anaer-obicandaerobicphasesshouldbechosen,accordingtotheratio betweenCOD,nitrogenandphosphorusintheinfluent[5].

Thedifferences in termsof nutrient removalshouldalso be pointedout. First,stablefull nitrificationwasmaintained in R1 andammoniumnitrifyingbacteria(AOB)werefoundtobe dis-tributedevenlythroughoutthegranules.Incontrast,filamentous heterotrophicbacteriagrowingattheperipheryofgranulesinR2 madenitrificationdifficultand unstable,andFISHanalysis con-firmedthat nitrifyingbacteriawerelocatedbehindthelayerof filaments.Ontheotherhand,SND(duringtheaerobicphase)was notobservedinR1butwasprobableinR2.Thiscanbeexplained bythefactthatlessstoredCODwasavailablefordenitrification duringtheaerobicperiodinasystemworkingwithapre-anoxic phase(R1).Regardingphosphorus,therecentworkofMa˜nasetal.

[34]demonstrates thatboth biologicaland physical–chemicalP removalshouldbeconsideredinEBPRgranularsludge.Here, bio-logicalPreleasewaslowerinR1thaninR2,whichwaslogically explainedbyless VFAstorage byPAOinanoxicconditions.But globalPremovalefficiencywassimilarandmorestableinR1.This wasbecausemorecalciumphosphateprecipitatedinR1,thanks toahigherpHduetodenitrification.Althoughsomeauthorshave questionedtheactiveroleofcalciuminEBPR[39,40],theeffectof calciumprecipitationongranularsludgeperformanceand prop-ertiesstillneedsmoreinvestigation.In thisstudy,basedonthe calciummassbalanceandconsideringthatmostofthecalcium wasremovedviaprecipitation,thecontribution ofprecipitation was estimated as in Ma˜nas et al. [34]. Depending on the pH, 60–70%ofphosphorusremovalwasduetotheprecipitation mech-anismin R1 whereas precipitationwasresponsible for 40–45% ofPremovalinR2.Hencethesignificantcontributionofcalcium

(11)

phosphateprecipitationshouldbeconsideredwhenevaluatingthe fateofremovedphosphorusinGSBR.Onlypartofthe phospho-rusremovedis extracted aspolyphosphate inthebiomass and mostofitcanbeaccumulatedinthegranules,mainlyascalcium phosphate(dependingonthepH,andthewastewatercalciumand phosphateconcentrations).Consequently,adedicatedworkwould benecessarytofindtheoptimalextractionstrategyforgranules, consideringtheeffectofprecipitationongranulestrengthand sta-bility.

5. Conclusions

Inthisstudy,significantdifferenceswereobservedbetweentwo GSBRsworkinginanoxic/aerobicandanaerobic/aerobicconditions. In the anoxic/aerobic reactor, very good settling properties forgranular sludge (SVI≈20mLg−1)and high MLSS

concentra-tionwere stabilized. Full and stable nitrificationwas obtained. Apre-anoxicperiodresultedintheCODbeinguseddirectlyfor denitrification,thuslimiting biologicalphosphorusremovaland SNDbutinducingmorecalcium–phosphateprecipitationdue to pHincrease.

Filamentousbacteriawereobservedintheanaerobic/aerobic reactorand weredetrimentaltogranularsludge propertiesand performances.Apossibleexplanationisthepresenceofresidual, easilybiodegradableCODattheendoftheanaerobicphase,which wasthendegradedaerobically.Acriticalpointwhenusinga mix-tureoforganiccarbonsourcesisthustomaximizetheamountof substrateusedduringthenon-aerated,eitheranaerobicoranoxic, phase.

Acknowledgements

Theauthorswould liketoacknowledge P.Boe,C.Caudan,S. Julien,E.Mengelle,M.Bounouba,andD.Delagnesfortheir help-fulcontributionstotheexecutionofthisworkandC.Pouzet(T.R.I. imagingunit,FR3450,CastanetTolosan)forherhelpwiththe con-focalmicroscopy.

References

[1]M.K.deKreuk,N.Kishida,M.C.M.vanLoosdrecht,Aerobicgranularsludge–

stateoftheart,WaterSci.Technol.9(2007)75–81.

[2]E.Morgenroth,T.Sherden,M.C.M.VanLoosdrecht,J.J.Heijnen,P.A.Wilderer,

Aerobicgranularsludgeinasequencingbatchreactor,WaterRes.31(12)

(1997)3191.

[3]M.deKreuk,J.J.Heijnen,M.C.M.vanLoosdrecht,SimultaneousCOD,nitrogen,

andphosphateremovalbyaerobicgranularsludge,Biotechnol.Bioeng.6(2005)

761–769.

[4]G.Yilmaz,R.Lemaire,J.Keller,Z.Yuan,Simultaneousnitrification,

denitrifica-tion,andphosphorusremovalfromnutrient-richindustrialwastewaterusing

granularsludge,Biotechnol.Bioeng.3(2008)529–541.

[5]Coma,S.Puig,M.D.Balaguer,J.Colprim,Theroleofnitrateandnitriteina

gran-ularsludgeprocesstreatinglow-strengthwastewater,Chem.Eng.J.1(2010)

208–213.

[6]Y.-Q.Liu,B.Moy,Y.-H.Kong,J.-H.Tay,Formation,physicalcharacteristicsand

microbialcommunitystructureofaerobicgranulesinapilot-scalesequencing

batchreactorforrealwastewatertreatment,EnzymeMicrob.Technol.6(2010)

520–525.

[7]A.Nor-Anuar,Z.Ujang,M.C.M.vanLoosdrecht,M.K.deKreuk,G.Olsson,

Strengthcharacteristicsofaerobicgranularsludge,WaterSci.Technol.65(2)

(2012)309–316.

[8]Y.Liu,J.H.Tay,Theessentialroleofhydrodynamicshearforceinthe

for-mation of biofilm and granularsludge, Water Res. 36 (avr.(7)) (2002)

1653–1665.

[9] Y. Liu, S.-F. Yang, J.-H. Tay, Improved stability of aerobic granules by

selecting slow-growing nitrifying bacteria, J. Biotechnol. 108 (2) (2004)

161.

[10]B.S.McSwain,R.L.Irvine,P.A.Wilderer,Theeffectofintermittentfeedingon

aerobicgranulestructure,WaterSci.Technol.12(2004)19–25.

[11]B.Y.P.Moy,J.H.Tay,S.K.Toh,Y.Liu,S.T.L.Tay,Highorganicloadinginfluences

thephysicalcharacteristicsofaerobicsludgegranules,Lett.Appl.Microbiol.6

(2002)407–412.

[12]L.Qin,Y.Liu,J.-H.Tay,Effectofsettlingtimeonaerobicgranulationin

sequenc-ingbatchreactor,Biochem.Eng.J.21(1)(2004)47.

[13]J.H.Tay,Q.S.Liu,Y.Liu,Theeffectsofshearforceontheformation,structure

andmetabolismofaerobicgranules,Appl.Microbiol.Biotechnol.57(Oct.(1–2))

(2001)227–233.

[14]J.J.Beun,A.Hendriks,M.C.M.VanLoosdrecht,E.Morgenroth,P.A.Wilderer,J.J.

Heijnen,Aerobicgranulationinasequencingbatchreactor,WaterRes.33(juill.

(10))(1999)2283–2290.

[15] A.Mosquera-Corral,M.K.deKreuk,J.J.Heijnen,M.C.M.vanLoosdrecht,Effects

ofoxygenconcentrationonN-removalinanaerobicgranularsludgereactor,

WaterRes.12(2005)2676–2686.

[16] S.Tsuneda,T.Ohno,K.Soejima,A.Hirata,Simultaneousnitrogenand

phos-phorusremovalusingdenitrifyingphosphate-accumulatingorganismsina

sequencingbatchreactor,Biochem.Eng.J.27(janv.(3))(2006)191–196.

[17]M.C.M.VanLoosdrecht,M.A.Pot,J.J.Heijnen,Importanceofbacterialstorage

polymersinbioprocesses,WaterSci.Technol.1(1997)41–47.

[18] J.Wan,Y.Bessiere,M.Spérandio,Alternatinganoxicfeast/aerobicfamine

condi-tionforimprovinggranularsludgeformationinsequencingbatchairliftreactor

atreducedaerationrate,WaterRes.20(2009)5097–5108.

[19]J.Wan,M.Sperandio,Possibleroleofdenitrificationonaerobicgranularsludge

formationinsequencingbatchreactor,Chemosphere2(2009)220–227.

[20]P.M.J.Janssen,K.Meinema,H.F.vanderRoest,BiologicalPhosphorusRemoval:

ManualforDesignandOperation,IWAPublishing,2002.

[21]T.Mino,W.Liu,F.Kurisu,T.Matsuo,Modellingglycogenstorageand

denitrifi-cationcapabilityofmicroorganismsinenhancedbiologicalphosphateremoval

processes,WaterSci.Technol.31(janv.(2))(1995)25–34.

[22]AfnorÉd.,Qualitédel’eau,in:Recueildenormes,AfnorEditions,1994.

[23]A.Filali,Y.Bessiere,M.Sperandio,Effectsofoxygenconcentrationonthe

nitri-fyingactivityofanaerobichybridgranularsludgereactorRIDA-1878-2012,

WaterSci.Technol.65(2)(2012)289–295.

[24]R.Amann,B.M.Fuchs,S.Behrens,Theidentificationofmicroorganismsby

flu-orescenceinsituhybridisation,Curr.Opin.Biotechnol.12(juin(3))(2001)

231–236.

[25]B.K.Mobarry,M.Wagner,V.Urbain,B.E.Rittmann,D.A.Stahl,Phylogenetic

probesforanalyzingabundanceandspatialorganizationofnitrifyingbacteria,

Appl.Environ.Microbiol.62(janv.(6))(1996)2156–2162.

[26] M.Wagner,G.Rath,H.-P.Koops,J.Flood,R.Amann,Insituanalysisofnitrifying

bacteriainsewagetreatmentplants,WaterSci.Technol.2(1996)237–244.

[27]H.Daims,P.H.Nielsen,J.L.Nielsen,S.Juretschko,M.Wagner,Novel

Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilmsfrom wastewater

treatmentplants:diversityandinsituphysiology,WaterSci.Technol.41(juin

(4–5))(2000)85–90.

[28]D.Pandolfi,M.-N. Pons,M.daMotta,Characterization ofPHBstoragein

activatedsludgeextendedfilamentousbacteriabyautomatedcolourimage

analysis,Biotechnol.Lett.29(août(8))(2007)1263–1269.

[29] A.Ma˜nas,B.Biscans,M.Spérandio,Biologicallyinducedphosphorus

precipita-tioninaerobicgranularsludgeprocess,WaterRes.12(2011)3776–3786.

[30]V.Ivanov,S.T.-L.Tay,Q.-S.Liu,X.-H.Wang,Z.-W.Wang,J.-H.Tay,Formation

andstructureofgranulatedmicrobialaggregatesusedinaerobicwastewater

treatment,WaterSci.Technol.7(2005)13–19.

[31]Y.-M.Zheng,H.-Q.Yu,G.-P.Sheng,Physicalandchemicalcharacteristicsof

granularactivatedsludgefromasequencingbatchairlift reactor,Process

Biochem.40(févr.(2))(2005)645–650.

[32]J.K.Park,L.M.Whang,J.C.Wang,G.Novotny,Abiologicalphosphorusremoval

potential test forwastewaters, Water Environ. Res. 73 (mai (3))(2001)

374–382.

[33]N.Jardin,H.J.Pöpel,Behaviorofwasteactivatedsludgefromenhanced

biolog-icalphosphorusremovalduringsludgetreatment,WaterEnviron.Res.68(6)

(1996)965–973.

[34]A.Ma˜nas,M.Pocquet,B.Biscans,M.Sperandio,Parametersinfluencingcalcium

phosphateprecipitationingranularsludgesequencingbatchreactor,Chemical

EngineeringScience,(2012)http://dx.doi.org/10.1016/j.ces.2012.01.009.

[35]N.Schwarzenbeck,R.Erlay,P.A.Wilderer,Aerobicgranularsludgeinan

SBR-systemtreatingwastewaterrichinparticulatematter,WaterSci.Technol.12

(2004)41–46.

[36]Y.-M.Zheng,H.-Q.Yu,S.-J.Liu,X.-Z.Liu,Formationandinstabilityofaerobic

granulesunderhighorganicloadingconditions,Chemosphere63(10)(2006)

1791.

[37]G.Nowak,G.D.Brown,CharacteristicsofNostocoidalimicolaanditsactivityin

activatedsludgesuspension,Res.J.WaterPollut.ControlFed.62(mars(2))

(1990)137–142.

[38]A.M.P.Martins,K.Pagilla,J.J.Heijnen,M.C.M.vanLoosdrecht,Filamentous

bulk-ingsludge–acriticalreview,WaterRes.38(févr.(4))(2004)793–817.

[39] C.F.C.Bonting,G.J.J.Kortstee,A.Boekestein,A.J.B.Zehnder,Theelemental

com-positiondynamicsoflargepolyphosphategranulesinAcinetobacterstrain

210A,Arch.Microbiol.159(mai(5))(1993)428–434.

[40]C.Schönborn,H.-D.Bauer,I.Röske,Stabilityofenhancedbiologicalphosphorus

removalandcompositionofpolyphosphategranules,WaterRes.35(Sept.(13))

Figure

Fig. 1. Evolution of suspended solids during the running period of the reactors () MLSS, () MLVSS and ( ) SVI in R1 (a) and R2 (b).
Fig. 2. Evolution of removal efficiencies of ( ) COD, ( ) N–NH 4 , ( ) TN, () P–PO 4 and ( ) Ca 2+ in R1 (a) and R2 (b).
Fig. 3. Evolution of the proportion of granules in MLSS and in volume of the hybrid sludge in both reactors.
Fig. 6. Typical profile of soluble compounds in both reactors during a cycle study performed on day 167
+3

Références

Documents relatifs