• Aucun résultat trouvé

Influence of crystallinity and particle size on the electrochemical properties of spray pyrolyzed Nd2NiO4+δ powders

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of crystallinity and particle size on the electrochemical properties of spray pyrolyzed Nd2NiO4+δ powders"

Copied!
7
0
0

Texte intégral

(1)

To link to this article :

DOI:10.1016/j.electacta.2012.07.134

URL :

http://dx.doi.org/10.1016/j.electacta.2012.07.134

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 9367

To cite this version :

Mesguich, David and Bassat, Jean-Marc and Aymonier, Cyril and

Brüll, Annelise and Dessemond, Laurent and Djurado, Elisabeth

Influence of crystallinity and particle size on the electrochemical

properties of spray pyrolyzed Nd2NiO4+į powders. (2013)

Electrochimica Acta, vol. 87 . pp. 330-335. ISSN 0013-4686

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Influence

of

crystallinity

and

particle

size

on

the

electrochemical

properties

of

spray

pyrolyzed

Nd2NiO

4+ı

powders

D.

Mesguich

a,1

,

J.-M.

Bassat

a

,

C.

Aymonier

a

,

A.

Brüll

a

,

L.

Dessemond

b

,

E.

Djurado

b,∗

aCNRS,UniversitédeBordeaux,ICMCB,87avenueduDr.A.Schweitzer,33608Pessac,France

bLEPMI,UMR5279,CNRS,GrenobleINP,UniversitédeSavoie,UniversitéJosephFourier,BP75,38402SaintMartind’HèresCedex,France

Keywords:

Solidoxidefuelcell Cathode

Mixedionicandelectronicconductor Electrochemicalimpedancespectroscopy Nickelates

Ultrasonicspraypyrolysis

a

b

s

t

r

a

c

t

ThispaperisdedicatedtothestudyoftherelationshipbetweentheNd2NiO4+ıpowdermicro-structural

properties(especiallyparticlesizeandcrystallinity)andelectrochemicalpropertieswhentheoxide

isusedasSOFCcathodedepositedon8YSZelectrolytecoatedwiththindopedceria.Nano-structured

particlesofNd2NiO4+ıwithcontrolledcrystallinity,sizeandmorphologyhavebeensynthesizedusing

ultrasonicspraypyrolysis(USP).Theseriesandpolarizationresistancesmeasuredonsymmetricalhalf

cellsNd2NiO4+ı/YDC/8YSZ/YDC/Nd2NiO4+ıarebothfoundtobedependentonthecathode

microstruc-tureandpresentasimilarevolutionwithtemperature.Thebestresultsareobtainedforhighlycrystalline

cathodepowderscombinedwithasmallparticlesize.

1. Introduction

Among the essential efforts devoted toSOFCs development, one of the long-established pathways deals with the cathode materialoptimization.Thechallengeistoobtainhighactivityfor electrochemicaloxygenreductioninthe600–700◦Ctemperature operatingrangewhileretainingchemicalcompatibilitywith elec-trolytematerials.

Rare-earthnickelateswiththeK2NiF4-typestructure,namely Ln2NiO4+ı (Ln=La,Nd,Pr)appeartobepromisingmaterialsfor applicationssuch as cathodes for low-temperature solid oxide fuelcells (LT-SOFCs)and oxygen separationmembranes. Inthe pastfifteenyears, severalgroups havefocusedtheir researches onthedevelopmentof theseoxides [1–6]. TheA2MO4+ı struc-ture,whichconsistsofMO6 octaedrasheetsinterleavedbyA2O2 layers,showsalternativetransportpropertiesincomparisonwith thoseoftheisotropicperovskitestructure.Indeed,theanisotropy ofanionicconductivityinthistwodimensional-typestructurewas demonstratedonLa2NiO4+ısinglecrystalsandthinfilms[7,8],the diffusionbeingatleastone totwo ordersof magnitudehigher inthe(a,b)planewhencomparedwiththeperpendicular direc-tion.Thenickelatestructureprovidespreferentialpathforoxygen

∗ Correspondingauthor.Tel.:+330476826684;fax:+330476826777.

E-mailaddress:elisabeth.djurado@lepmi.grenoble-inp.fr(E.Djurado).

1 Permanentaddress:UniversitédeToulouse,UPS,INP,InstitutCarnotCirimat,

118routedeNarbonne,F31062Toulousecedex9,France.

whichresultsinhighoxygenmobility.Moreover,suchoxidesare goodelectronicconductorsthankstothemixedvalencyofnickel (Ni2+/Ni3+).Referredtoasmixedionicandelectronicconductors (MIEC), these materials are highly desirable for improving the oxygenreductionkinetics.Indeedforhighionicandelectrical con-ductivitytheoxygenreductionreactionislikelytobedelocalized overthewholeelectrodesurface.

While current investigations on nickelates mainly focus on La2NiO4+ı [9], Nd2NiO4+ı was selected in this workbecause it showsalargeover-stoichiometryinthewholetemperaturerange 0–1000◦C [1,2] (for example ı=0.17 at 700C), which should leadtoimproved properties. At700◦C,its ionicconductivityis about0.01Scm−1 and itselectronic conductivityis 100Scm−1. Its thermal expansioncoefficient(˛=12×10−6K−1)makes this materialcompatiblewithusualelectrolytesYSZanddopedceria

[1,2].Theelectrocatalyticproperties(surfaceexchangecoefficient

k=10−6cms−1at800C)andoxygentransportproperties(oxygen diffusioncoefficientD*=10−7cm2s−1at800C)ofNd2NiO

4+ı sur-passthebestvaluesobtainedforreferencesperovskitematerials byaboutoneorderofmagnitude,especiallyatmoderate temper-atures[1,2].Moreover,theactivationenergyvaluefortheoxygen diffusion(0.85eV)islowerthaninYSZorperovskitematerialssuch asLSF[10].

Electrochemicalpropertiesofnickelatematerialshavebeen pre-viouslyreported, Nd2NiO4+ı exhibitslow ASR values (lessthan 0.5cm2at700C),highcurrentdensity(at0.70V,0.54Acm−2 at700◦C)combinedwithalowreactivitywithYSZ[11–14].Here, theauthors haveexplored anoriginal route,namely ultrasonic

(3)

spraypyrolysis(USP),tosynthesizenanostructuredcathode pow-derswhichcouldleadtoimprovedelectrochemicalproperties.USP isatechniquerelyingontheultrasonicatomizationofa precur-sorsolutiontogenerateanaerosol subsequentlypyrolyzedina veryshorttime.Themainadvantageofthistechniqueisconferred bythedropletsoftheaerosolactingasindividualmicro-reactors, leadingtomicronandsubmicron powders.Thismethodallows thesynthesis of complexoxides submicron powderswithvery shortreactiontimes:1–10s;theoxidesproducedarecomposedof nanocrystallineparticles,generallyeliminatingtheneedfor post-treatments.

Thispaperisdedicatedtothestudyoftheelectrochemical prop-ertiesofNd2NiO4+ıpowderspreparedbyUSP,whentheoxideis usedascathode,depositedon8YSZelectrolytecoatedwiththin dopedceria.Theadditionofsuchthinionicconductinginterface between8YSZandthecathodelayer,alsoactingasabufferlayer, wasshowntoimprovetheelectrochemicalproperties,especially inthecaseofnickelatematerials[6].

2. Experimental

Neodymiumoxide(Nd2O3,99.9%,AlfaAesar)andnickelnitrate hexahydrate(Ni(NO3)2·6H2O,Sigma–Aldrich)wereusedas start-ingpowders.Neodymiumoxidewasfirstdissolvedintoaslight excess of nitric acid (HNO3, 68wt% in water, Prolabo). The neodymiumnitratesolutionobtainedwasdilutedindistilledwater toreachthedesiredconcentration.Nickelnitratewaseasily dis-solvedintodistilledwater,thenbothnitratessolutionsweremixed togetherinastoichiometricamount(Nd:Ni=2:1)andtheprecursor solutionwasfinallyintroducedintothehigh-frequencyultrasonic mistgeneratoratroomtemperature.Inordertovarythe atom-izationfrequency,twodifferentpiezoelectricceramictransducers havebeenused,characterizedby2.5and1.7MHzfrequencies.A syntheticair(80%N2,20%O2)flowrateof6Lmin−1wasselectedto carrytheformedaerosolthroughthe3-zoneshightemperature fur-nace.Temperatureinthelasttwozoneswasfixedat700◦C,900C or1100◦C(thefirstzonealwaysbeingset50Clowertoavoidtoo fastevaporationofthesolventandheterogeneousprecipitationof thesolute).Drypowdersarerecoveredoutsidethefurnaceusing anelectrostaticfilter.Furtherdetailsontheexperimentalsetupcan befoundinpreviouspublications[15,16].

Cathode inks have been prepared mixing USP Nd2NiO4+ı powders(70wt%)withaterpineol-based dispersantmedium, a commercialsolvent(alsocontainingterpineol)fromDupontand ahome-madeorganicbinderusinga Dispermatmillingsystem. Yttria-dopedceria(YDCCe0.8Y0.2O1.9)inkswereprepared simi-larlyfromcommercialpowderfromPraxair.YDCbufferlayerswere screen-printedonbothsidesof8YSZelectrolytesandannealedin airat1400◦Cfor1h,resultingin2–3mmthickporouslayers. Cath-odelayers(20–25mmthick)weresubsequentlyscreen-printedon bothsidesofYDC-coated8YSZandannealedat1100◦Cfor3h.

Each cell consists of a 100mm thick dense 8YSZ ((ZrO2)0.92(Y2O3)0.08) electrolyte coated on both sides with a 2–3mmthickYDCbufferlayeranda20–25mmthickNd2NiO4+ı cathode layer. The only difference between each cell is the cathodemicrostructureand crystallinity,everyotherparameter (electrolyte, YDC interlayer, ink composition, screen printing parameters,annealing steps)beingidentical. Comparisons have beenperformedusingcommercialNd2NiO4+ıpowdersdeposited usingthesameprocedure.Forrelevantcomparisonsallsamples have beenprocessed in conditions optimized for thereference commercialpowder.

Thesesymmetricalcellshavebeencharacterizedbyimpedance spectroscopymeasurements(AutolabPGSTAT302Ncoupledwith a frequency responseanalyzer) at open circuit potential in the

frequency range 106–10−2Hz (10points per decade) underair between500◦Cand800C.Themagnitudeofthemeasuring sinu-soidalvoltagewaschosenequalto50mVtoensurethelinearity of theelectrical response.Platinum grids (mesh225) mechani-callypressedagainstbothelectrodeswereusedaselectricalcurrent collectors.Platinumwireswereusedtoconnectelectrodestothe externalelectricalcircuit.

The particles morphology and cathode layer microstructure werestudiedusinghighresolutionscanningelectronmicroscopy (HR-SEM,JEOL6700)under5.0kVacceleratedvoltageand trans-missionelectronmicroscopy(TEMJEOL2000).Theparticlesizewas evaluatedfromtheSEMmicrographsbycountingover500 par-ticlesusingImageToolsoftware;themainparticlesizereported herecorrespondstod0.5(50%oftheparticlesarebelowthissize). DilatometricanalyseswereperformedwiththehelpofaNetzsch STA409C/CDapparatusunderanairflowof100mLmin−1(heating rate2Kmin−1fromroomtemperatureupto1000K).X-raypowder diffraction(XRD)characterizationwasperformedonaPANalytical X‘PertMPDdiffractometerin–configurationwithaCuKa radia-tion(=1.5418)overthe2range5–80◦ina0.036s−1continuous scanmodeatroomtemperature.

3. Resultsanddiscussion

3.1. Controlofcrystallinity,particlesizeandmorphology

Before addressing the electrochemical properties of USP Nd2NiO4+ıcathodes,wewillfirstsummarizetheresultspreviously reportedconcerningthehighcontrolofferedbyUSPovernickelate powderproperties;foradditionaldetailsonecanreferto[16]. Con-troloftheprimaryparticlediameterusingtheprocessparameters isoneofthemostimportantadvantagesofthissynthesismethod sinceit allowsfinecontroloftheparticle sizeandcrystallinity. Indeed,thereactionsresponsibleforproductformationare con-finedwithintheindividualmicrometer-sizeddropletswhichactas individualchemicalreactors.Thefourmainoperatingparameters controllingpropertiesofthefinalpowdersaretheconcentration oftheprecursorsolution,theatomizationfrequency,thefurnace temperatureandthecarriergasflowrate.Simplychangingoneof thesefourparameterswillchangethesizeoftheparticle,and con-sequentlytheprimaryparticlediameterandmorphology,aswell asitscrystallinity[16,17].

Adjustingtheprecursorsolutionconcentrationaswellasthe atomization frequency allows fine tuning of the particle size.

Table1presentstheexperimentalparametersforUSPsynthesisand thecorrespondingmainparticlesizeforeachsample.Theoretically, theparticlesizevarieslinearlywiththedropletsize(influencedby atomizationfrequency)andwiththeprecursorconcentrationto thepower1/3asconfirmedwithourexperiments.Fig.1provides someexamplesofmorphologiesofNd2NiO4+ıUSPpowders. Com-parisonbetweensamples1(Fig.1a)and3(Fig.1b)clearlyshows theinfluence of theprecursor concentrationover particle size; decreasingtheconcentrationfrom5×10−2Mto5×10−3Mleads toareductioninmainparticlesizefrom542nmto190nm. Atom-izationfrequencydoesnotonlycontroltheparticlesizebutalso theparticle sizedistribution(PSD).Highatomizationfrequency (2.5MHzinsteadof1.7MHz)generatessmalleraerosoldroplets, reducingtheprobabilityofcollisionsbetweendropletsresponsible forthebroadparticlesizedistributionusuallyobservedusingspray pyrolysis.

The powder morphology varies in regard to the precursor concentrationand pyrolysistemperature.Smooth and spherical nanoparticles are synthesized at lower concentrations (Fig. 1b) whilerougherparticleswithmoreirregularshapesareobtainedat higherconcentrations(Fig.1aandc).Surfaceprecipitationbecomes

(4)

Table1

ExperimentalparametersforthesynthesisofUSPNd2NiO4+ıpowdersandRpvaluesat600◦CforthecorrespondingNd2NiO4+ı/YDC/8YSZhalfcells.

ExperimentalparametersforUSPNd2NiO4+ıpowdersynthesis Mainparticlesize(nm) Rp600◦C(cm2)

Pyrolysistemperature (◦C) Precursorconcentration (×10−3molL−1) Atomizationfrequency (MHz)

Nd2NiO4+ı/YDC/8YSZcells

1 700 50 1.7 542 8.65

1annealed900◦C1h 700 (Sinteredgrains) 4.08

2 700 50 2.5 463 4.27

3 700 5 1.7 190 4.53

4 900 50 1.7 521 2.59

5 1100 50 2.5 423 1.80

6 1100 50 1.7 474 1.91

significantforlargedropletsizescombinedwithfastevaporation

[20] (i.e.for high precursor concentrationcombined with high pyrolysistemperature)leadingtotheemergenceofopenporosity forthelargerparticles(Fig.1c).

Finally,powdercrystallinitydependsonthepyrolysis tempera-ture:amorphouspowdersareobtainedforamoderatetemperature (i.e.700◦C)whereashighlycrystallinepowdersareformedathigh pyrolysistemperature(i.e.1100◦C). XRDpatternrepresentative ofNd2NiO4+ıpowderssynthesizedat1100◦CisshowninFig.1d. Becausetheamorphouspowdersexhibithighreactivity (calcina-tionof1hat900◦Cunderair issufficienttoinduceNd2NiO

4+ı crystallization),theNd2NiO4+ıcathodelayerdepositedfromUSP powdersisalwayswellcrystallizedafterashortannealingstep.It isremarkabletosynthesizehighlycrystallineNd2NiO4+ıpowders (averagecrystallitesize=35±3nm)withsuchshortreactiontimes (8s)whilelowtemperaturesyntheses[11,13,14,18,19]andsolid statereaction[2,13]systematicallyrequireasubsequentannealing step(8–12h)over1000◦C.

3.2. Electrodemicrostructure

The electrode microstructurehas been investigatedby SEM. Goodadhesionhasbeenobservedbetweenthecathodelayerand theYDCinterlayer(Fig.2a).Althoughlowparticlesizecanenhance

crackingproblems[6],itisworthmentioningthatthisissuehasnot beenobservedwithUSPpowdersexhibitingparticlesizeaslowas 190nm.ComparisonbetweenFig.2bandcprovesmoreadvanced sinteringforthecathodemadefromNd2NiO4+ıUSPpowderthan forthecathodemadefromacommercialpowderwithd0.5equalto about800nm.

EnhancedsinteringofthepowderssynthesizedbyUSPisalso demonstratedbydilatometrymeasurementsshowninFig.3.For instance, the sintering of powder 6 begins approximately at a temperature100◦Clowerthanforthereferencepowder. Further-more,powderdensificationismuch higherfortheUSPpowder (dL/L=236×10−3 instead of 124×10−3 at 1300C). The signal derivativealsoshowsmultiplesinteringstepsthatcouldbedue to theparticle size dispersion, the smaller particles being sin-teredatlower temperaturesthanthelargerones.Here particle sizedistributionandmorphologyclearlyhavearole.Anarrower particlesizedistribution(PSD)(enabledbyhigheratomization fre-quency)eliminatesthescarcelargerparticles,whichleadstomuch higher sinterability. Powders synthesized withhigh concentra-tionsandhightemperaturealreadyunderwentplasticdeformation andshrinkageduringthepyrolysisprocesswhichshouldalsobe beneficial to the sintering activity. One major benefit of using Nd2NiO4+ı powders produced by USP comes from their high reactivity(illustrated bythefastcrystallizationof Nd2NiO4+ı at

Fig.1. SEMmicrographsshowingthedifferentparticlesizesandmorphologiesofNd2NiO4+ıpowderssynthesizedbyultrasonicspraypyrolysis:(a)powder1(T=700◦C,

C=5× 10−2M,f=1.7MHz),(b)powder3(T=700C,C=5×10−3M,f=1.7MHz)and(c)powder6(T=1100C,C=5×10−2M,f=1.7MHz),(d)X-raydiffractionpatternof

(5)

Fig.2.SEMmicrographsof(a)cell5,(b)cathodelayerofcell5and(c)cathodelayerofreferencecell.

moderatetemperatureswhenstartingfromamorphouspowders) inducinghighsinteringactivity.Consequently,thistechniqueoffers finercontrolofthecathodemicrostructurewhichcouldbe associ-atedwithareductionintemperatureduringtheannealingstep ofthecathode layerin anefforttominimize thechemical dif-fusion at the cathode/buffer layer and buffer layer/electrolyte interfaces.

3.3. Electrochemicalperformances

The influenceof theelectrode microstructureon the corre-spondingelectrochemicalpropertiesofNd2NiO4+ıcathodelayers depositedbyscreenprintinghasbeencarefullystudied.The elec-trochemicalperformancesofsymmetricalcellsmadewithdifferent USPNd2NiO4+ıpowdershavebeencomparedwiththoseofa refer-encecellmadewithNd2NiO4+ıcommercialpowder[21].Therefore thedifferencesobservedarediscussedinregardtotheinitial intrin-sic properties of the cathode powder (mainly crystallinity and particlesize)andthedifferencesinelectrodemicrostructurewhich canbeinducedduringthermalannealing.Hereitisworthnoting thattheparametersadoptedforthecathodelayerdepositionand subsequentannealingstepforallsamplesinthisstudyhavebeen determinedafteralengthy optimizationprocessconcerningthe referencepowder[13].In ordertoattributedifferencesin elec-trochemicalproperties solely tothecathode powderused, USP sampleshavebeenprocessedinthesameexactconditions.

AtypicalimpedancespectrumobtainedisshowninFig.4.The experimentaldiagramsweredecomposedbymeansofanonlinear leastsquarefitusingtheZview2®software(ScribnerAssociates), intotwoorthreeelementarycontributions(parallelcombinations of resistance and constant phase element connected in series), depending on the measuring temperature; the corresponding equivalentcircuitisshowninFig.4.Hereafterthediscussionwill

Fig.3. Dilatometrycurves(solidlines)andsignalderivative(dottedlines)forUSP Nd2NiO4+ıpowder6(greencurves)andreferenceNd2NiO4+ıpowder(redcurves).

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthearticle.)

befocusedontheresultsrelatedtotheseriesresistanceRsand thepolarizationresistanceRp.Forthesakeofcomparison,both resistances were normalized by the electrode area. The series resistancewasdeterminedbytheinterceptofthehighfrequency partoftheelectrodecharacteristicontherealaxisintheNyquist plane.Thepolarizationresistancewasdeducedfromthedifference betweenthelowfrequencyrealpartoftheelectrodeimpedance and the series resistance, divided by 2 since symmetrical cells werecharacterized.Table1summarizes themainexperimental parametersusedforsynthesizingthedifferentUSPpowdersused ascathodeslayersalong withtheparticlesizeand Rpvalues at 600◦Cforthecorrespondingcells.Fig.5presentsRpvaluesplotted versus1000/T.Averageactivationenergyis1.16±0.04eVwhich iscomparabletotheoneofthereferencecell(1.13eV).

From the results of Fig. 5, the first peculiar feature is that cathodes madefrom highly crystallinepowders (cells5 and 6, pyrolysistemperatureof1100◦C)exhibitthelowestpolarization resistances,whichareclosedtovaluesrecordedforthereference cell withinthe experimental accuracy.In situ crystallizationof thecathodematerialontopoftheYDCinterlayer(startingfrom amorphouspowdersasforcells1–3withapyrolysistemperature of700◦C)leadstopoorerresults.Thisislikelytooriginatefrom smallamountsofimpurities(1.0wt%nitrogenand0.6wt% hydro-genasmeasuredbyInductive-CoupledPlasmaandCHNSanalyzer combinedwiththermogravimetricanalyses[16])whichhinder sin-teringofamorphouspowdersandyieldlowerintimatecontacts withYDC.Preliminary heattreatment (900◦C, 1hunderair)of theamorphouscathodepowderstoinduceNd2NiO4+ı crystalliza-tionbeforetheirscreen-printingdepositionresultsindecreased polarizationresistancebyafactorof2,whichunderlinesthe impor-tanceof theinitial powdercrystallinity. IntermediateRpvalues recordedforcell4(pyrolysistemperatureof900◦C)alsosupport thisassumption.

Fig.4.TypicalexperimentalimpedancediagramforNd2NiO4+ı/YDC/YSZcells

(mea-surementat600◦Cforcell6).Thecorrespondingequivalentcircuitusedforfitting

isalsodisplayed,thefittingcurveisoverlaidonthedatapointsandsignalfrequency isindicated.

(6)

Fig.5.Arrheniusplotofpolarizationresistance(Rp)forNd2NiO4+ı/YDC/YSZcellswithdifferentNd2NiO4+ıcathodelayers.ExperimentalparametersforUSPNd2NiO4+ı

powdersusedincells1–6areindicated(pyrolysistemperature,precursorconcentrationandatomizationfrequency,respectively).

The secondfeature tounderline isthat smaller particle size and narrower PSD (forinstance, by increasing theatomization frequency)arebeneficialfortheelectrochemicalpropertiesof cath-ode, particularly for the ones made from amorphous powders sincetherareverylargemicron-sizedparticlesaremostly respon-siblefor theorganic impurityrelease duringthesinteringstep. Indeedimpedancespectroscopy measurementfor cells 1and 3 showthat lowerparticlesize (542nmand190nmrespectively, withprecursor concentrationdivided by10) leadsto a signifi-cantdecreaseofRp(8.65cm2and4.53cm2respectively).The changeinducedbyanarrowerPSDforhighlycrystallinepowders is less noticeable since the microstructure is still more regu-lar.Theclosedpolarizationresistancesofcells 5and6(particle sizelowerthan500nm)andthereferenceone(particle sizeof

800nm)couldberegardedasconflicting.But,thesintering activ-ityofUSPNd2NiO4+ıishigher(Fig.3)andalowermeanporosity aftersintering can thusimpede theaccess of thegas phase to the reaction sites. At this stage, it is worth noting that, with-outanyoptimizationoftheprocessingparameters,theRpvalues reportedherearealreadyremarkablylow,i.e.lessthan0.3cm2at 700◦Cwhichcomparesfavorablywiththe0.5cm2valuecitedin introduction.

Similartrendscanbeextractedfromthevariationoftheseries resistanceasafunctionofthepowdercrystallinityofthecathode layer(Fig.6).Thehigheristhecrystallinity,thelowertheseries resistance.ThisconfirmsthatanenhancedsinteringofNd2NiO4+ı yieldsbetter contactswiththeYDC interlayer. Moreover,for a givencrystallinity,theinfluenceoftheparticlesizeontheseries

(7)

resistanceisfarlesspronouncedthanforthepolarization resis-tances.Thisindicatesthattherespectivevolumesrelatedtoeach resistivecontributionaredifferent,ascouldbeexpectedforaMIEC electrode.ItisworthnotingthattheexperimentalvaluesofRsare higherthanthosewhichcanbecalculatedfromtheconductivities ofYSZ[22]andYDC[23]andtherelatedvolumes.Thissuggests thattheseriesresistanceincludesthecontributionofconstriction ofcurrentlinesrelatedtoaninsufficientcurrentcollectionwhich can strongly alter theperformance of a SOFC cathode [24,25]. Indeed,thesheetresistance arisingfromtheelectrontransport withinthecathode layeris expected tobenegligible since the electronicconductivityofNd2NiO4+ıishigherthan10Scm−1[2]. Inthisstudy,onecannotdistinguishtherelativecontributionsof theNd2NiO4+ı/YDCandNd2NiO4+ı/currentcollectorinterfacesto thecurrentconstrictioneffect.

4. Conclusions

ThisstudyisthefirstassessmentofthesuitabilityoftheUSP technique,offeringgreatopportunitiestotunethepowder proper-tiesinparticularpowdercrystallinityandparticlesize,foranSOFC application.Theaimofthispaperwastoshowtherelationships betweenthecathodepowderpropertiesandthecathoderesistance toidentifyexperimentalparametersleadingtobestresultsinterms ofelectrochemicalperformance.Electrochemicalimpedance spec-troscopymeasurementsshowthattheseriesresistanceRsandthe polarizationresistanceRparebothdependentonthe microstruc-tureoftheelectrodeandexhibitthesamevariationtrends.Thebest results(Rpvaluesbelow0.5cm2at700◦Cand2cm2at600◦C) areobtainedfromhighlycrystallineUSPpowderswithlow par-ticlesize(about400nm).Finally,highlyreactivepowdersexhibit asignificantlyimprovedsinteringactivitywhichleadstoa differ-entelectrodemicrostructurethanthereferencecell,showagood adhesionofthecathode layerandcontributetotheloweringof thecathoderesistance.Whilethisstudydemonstratesthe poten-tialofUSPNd2NiO4+ı powders,electrochemicalperformancesof USPpowderscouldbeagainenhancedafteranoptimizationofthe processingparameters(especiallythesinteringstepowingtotheir reactivitymuchhigherthantheoneofthereferencepowder). Fol-lowingtheseresultswhichdemonstratedtheinterestedofspray pyrolysissynthesisforSOFCsmaterials,anotherprojectcurrently underway focuses ontheUSP synthesis of Pr2NiO4+ı powders

whichhaveshownhighlypromisingelectrochemicalperformances at600◦C[6].

Acknowledgment

Financial supportfrom theEC within theintegrated project SOFC600(ContractNo.020089)isgratefullyacknowledged. References

[1]E.Boehm,J.-M.Bassat,M.C.Steil,P.Dordor,F.Mauvy,J.-C.Grenier,SolidState Sciences5(2003)973.

[2] E.Boehm,J.-M.Bassat,P.Dordor,F.Mauvy,J.-C.Grenier,P.Stevens,SolidState Ionics176(2005)2717.

[3] J.A.Kilner,C.K.M.Shaw,SolidStateIonics154–155(2002)523.

[4]V.V.Vashook,L.L.Yushkevich,L.V.Kokhanovsky,L.V.Makhnach,S.P.Tolochko, I.F.Kononyuk,H.Ullmann,H.Altenburg,SolidStateIonics119(1999)23. [5] D.C.Zhu,X.Y.Xu,S.J.Feng,W.Liu,C.S.Chen,CatalysisToday82(2003)151. [6]C.Ferchaud,J.-C.Grenier,Y.Zhang-Steenwinkel,M.M.vanTuel,F.P.vanBerkel,

J.-M.Bassat,JournalofPowerSources196(2011)1872.

[7]J.-M.Bassat,P.Odier,A.Villesuzanne,C.Marin,M.Pouchard,SolidStateIonics 167(2004)341.

[8]M.Burriel,G.Garcia,J.Santiso,J.A.Kilner,R.J.Chater,S.J.Skinner,Journalof MaterialsChemistry18(2008)416.

[9]R.Sayers,R.DeSouza,J.Kilner,S.Skinner,SolidStateIonics181(2010)386. [10] J.-M.Bassat,M.Petitjean,J.Fouletier,C.Lalanne,G.Caboche,F.Mauvy,J.-C.

Grenier,AppliedCatalysisA289(2005)84.

[11]C.Lalanne,G.Prosperi,J.-M.Bassat,F.Mauvy,S.Fourcade,P.Stevens,M.Zahid, S.Diethelm,J.VanHerle,J.-C.Grenier,JournalofPowerSources185(2008) 1218.

[12]C.Lalanne,F.Mauvy,J.-M.Bassat,J.-C.Grenier,D.Pordor,M.Pouchard,in:M. Mogensen(Ed.),Proc.6thEurop.SOFC,2004,ISBN3-905592-15-0,p.1351. [13]C.Lalanne,F.Mauvy,E.Siebert,M.Fontaine,J.-M.Bassat,F.Ansart,P.Stevens,

J.-C.Grenier,JournaloftheEuropeanCeramicSociety27(2007)4195. [14]F.Mauvy,C.Lalanne,J.-M.Bassat,J.-C.Grenier,H.Zhao,P.Dordor,P.Stevens,

JournaloftheEuropeanCeramicSociety25(2005)2669.

[15]R.Rocha,E.Muccillo,L.Dessemond,E.Djurado,JournaloftheEuropeanCeramic Society30(2010)227.

[16]D.Mesguich,J.-M.Bassat,C.Aymonier,E.Djurado,SolidStateIonics181(2010) 1015.

[17]E.Djurado,E.Meunier,JournalofSolidStateChemistry141(1998)191. [18]G.Amow,S.Skinner,JournalofSolidStateElectrochemistry10(2006)538. [19] J.Wan,J.Goodenough,J.Zhu,SolidStateIonics178(2007)281.

[20] G.L.Messing,S.-C.Zhang,G.V.Jayanthi,JournaloftheAmericanCeramicSociety 76(1993)2707.

[21]http://www.mariontechnologies.com/nanomateriaux/english/material.html [22] ProjectEVERESTE,ContractNo.ANR-07-PANH-005.

[23] S.Li,L.Ge,H.Gu,Y.Zheng,H.Chen,L.Guo,JournalofAlloysandCompounds 509(2011)94.

[24]K.Sasaki,J.-P.Wurth,R.Gschwend,M.Godickemeier,L.J.Gauckler,Journalof theElectrochemicalSociety143(1996)530.

Figure

Fig. 1. SEM micrographs showing the different particle sizes and morphologies of Nd 2 NiO 4+ı powders synthesized by ultrasonic spray pyrolysis: (a) powder 1 (T = 700 ◦ C, C = 5 × 10 −2 M, f = 1.7 MHz), (b) powder 3 (T = 700 ◦ C, C = 5 × 10 −3 M, f = 1.7 M
Fig. 2. SEM micrographs of (a) cell 5, (b) cathode layer of cell 5 and (c) cathode layer of reference cell.
Fig. 6. Arrhenius plot of series resistance (R s ) for Nd 2 NiO 4+ı /YDC/YSZ cells with different Nd 2 NiO 4+ı cathode layers.

Références

Documents relatifs

Once the adaptive mixture of Student-t distribu- tions is fitted to the density using a kernel, the ap- proximation provided by AdMit is used as the impor- tance sampling density

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Improvement of the final density of ceramics can be done by varying sintering parameters such as pression, temperature and time, but also preparation of the powder

Abstract - The study of the sintering of fine zircon powders shows that the -ted material (SiO + Zr02) densifies more rapidly than the recombined material (ZrSiO ) and

In summary, the contributions of this thesis are (i) a general formulation for the problem of aggregate calibration in the presence of day-to-day variation in

This important result established a link between OTD modes and covariant Lyapunov vectors and, perhaps more importantly, implied that the OTD modes, at long times, converge to

Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new.. efficient method to perform reactions at

Tropical volcanic islands commonly have pronounced relief and high runoff rates, and consist of easily weathered volcanic material. Intense mechanical and chemical