• Aucun résultat trouvé

Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications

N/A
N/A
Protected

Academic year: 2021

Partager "Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-01623096

https://hal.archives-ouvertes.fr/hal-01623096

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Anthraquinone modification of microporous carbide

derived carbon films for on-chip micro-supercapacitors

applications

K. Brousse, C. Martin, A.L. Brisse, C. Lethien, P. Simon, P.L. Taberna, T.

Brousse

To cite this version:

K. Brousse, C. Martin, A.L. Brisse, C. Lethien, P. Simon, et al.. Anthraquinone modification of

mi-croporous carbide derived carbon films for on-chip micro-supercapacitors applications. Electrochimica

Acta, Elsevier, 2017, 246, pp.391 - 398. �10.1016/j.electacta.2017.06.037�. �hal-01623096�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 19338

To link to this article :

DOI: 10.1016/j.electacta.2017.06.037

URL :

http://dx.doi.org/10.1016/j.electacta.2017.06.037

To cite this version :

Brousse, Kevin and Martin, Cédric and Brisse,

Anne-lise and Lethien, Christophe and Simon, Patrice and Taberna, Pierre-Louis

and Brousse, T. Anthraquinone modification of microporous carbide

derived carbon films for on-chip micro-supercapacitors applications. (2017)

Electrochimica Acta, vol. 246. pp. 391-398. ISSN 0013-4686

Any correspondence concerning this service should be sent to the repository

(3)

Anthraquinone

modification

of

microporous

carbide

derived

carbon

films

for

on-chip

micro-supercapacitors

applications

K.

Brousse

a,b

,

C.

Martin

c

,

A.L.

Brisse

c,d

,

C.

Lethien

b,e

,

P.

Simon

a,b

,

P.L.

Taberna

a,b,

**

,

T.

Brousse

b,d,

*

aCIRIMAT,UniversitédeToulouse,UMRCNRS5085,INPT,UPS,118routedeNarbonne,31062,ToulouseCedex09,France bRéseausurleStockageElectrochimiquedel’Energie,FRCNRSno.3459,France

cCAPACITES-iTIS!,Polytech’Nantes,RueChristianPauc,44300Nantes,France

dInstitutdesMatériauxJeanRouxel(IMN),UniversitédeNantes,UMRCNRS6502,2ruedelaHoussinièreBP32229,44322Nantescedex3,France eInstitutd’Electronique,deMicroélectroniqueetdeNanotechnologies,UniversitédeLille,CNRS,CentraleLille,ISEN,UniversitédeValenciennes,UMR8520 IEMN,F-59000Lille,France

Keywords: micro-supercapacitors carbide-derivedcarbon anthraquinone electrochemicalgrafting diazoniumchemistry ABSTRACT

The modification of carbide derived carbon (CDC) thin film electrodes with anthraquinone (AQ) moleculeswasdemonstratedbyusingpulsedchronoamperometry,in0.1MNEt4BF4/ACNsolutionofAQ diazoniumderivative.ThefunctionalizationofCDCelectrodeswasonlypossiblewhenacriticalporesize isreached:only2nmporediameterCDCcanbegraftedwithAQmoieties,smallerporesizeleadingtoa poorlyfunctionalizedelectrode.HighAQsurfacecoverageof0.88!10"10mol.cm"2wasdetermined using2nmporesizeCDC.Despiteadecreaseindoublelayercapacitancevalueofabout10%,thetotal capacitanceoftheAQ-modifiedon-chipCDCelectrodeswastwicelargerthanthatofpristineCDCfilm, leadingtohightotalcapacitancevalueof44mF.cm"2(338F.cm"3).Thecyclabilityofthe

AQ-modified on-chipCDCelectrodewasalsoinvestigated.ThefaradiccontributionofAQgraftedmoleculesprogressively decreasedduringcycling andonly39%ofthenormalizedcapacityremainedafter500cycles;this decreasehasbeenassignedtoelectrostaticrepulsionofdianionicAQconfinedinnarrowmicroporesin thealkalinemedia.

1.Introduction

Portableelectronicdevices requireintegratedenergystorage devicesprovidinghighpowerandenergydelivery[1].However, whileElectrochemicalDoubleLayerCapacitors(EDLCs),thatcan handlefastchargeanddischargeformorethan1000000times, are very promising topower numerous applications,they still delivermoderate energy densities, which remains a hinder for theirimplementationinelectricalandelectronicdevices[2,3].To tacklethislimitation,innovativeelectrolyteswithlargerpotential windowor new electrode materialshave beendesigned [4–8]. Bothstrategiesimpactthedoublelayercapacitancewhichcomes fromthechargeseparationattheelectrode/electrolyteinterface, whereelectrolyteionsreversiblyadsorbtobalancethechargesat the electrode [2]. Pseudocapacitive materials provide higher

capacitance values owing to fast redox reactions occurring at thesurfaceorsub-surfaceofmetaloxides[9].

An alternativeto this strategy consistsin modifyingcarbon materials with foreign heteroatoms [10] or electrochemically activemolecules[11],wherethegraftedmoleculesofferfaradic contributionoriginatingfromredoxreactionsinadditiontothe doublelayercapacitivecurrent[12].Therefore,manystudieshave focused on the functionalization of carbon with electroactive moieties.Diazoniumchemistryisaconvenientwaytoreachthis goal.Thereduction ofthediazoniumcationproceedsthrougha concerted mechanism in which an electron transfer and di-nitrogenlossleadtotheformationofanarylradical.Theresulting radicalspeciesfurther reactwiththesurfacetoformacovalent bondwithactivesitesontheelectrode[13–16].Delamarand co-workerswerethefirsttotakeadvantageoftheelectrochemical reductionofdiazoniumcationstomodifycarbonelectrodes[17,18]. Precursor solutions for such electrochemical grafting can be prepared either from dissolution of diazonium derivatives in acetonitrile[19],orbyinsitugenerationofdiazoniumsaltsfrom theparentaniline[20,21].Bothmethodshavebeenusedtograft

* Correspondingauthor. ** Correspondingauthor.

E-mailaddresses:taberna@chimie.ups-tlse.fr(P.L. Taberna),

(4)

variousarylradicalsonalargevarietyofsubstratessuchashigh surfaceareacarbons,metalsorsemi-conductors[22–25].

Electrochemical grafting can be achieved using a three electrode configuration [26,27]. For example, one-step electro-chemicalgraftingofanthraquinonemoleculesoncarbonsurfaces using in-situ generated anthraquinone diazonium salts was successfully performed in both organic and aqueous media containingtheaminoprecursorandtert-butylnitriteorsodium nitrite, respectively [28]. While the surface concentration in-creased asthegraftingpotentialbecomesmorecathodic,itwas proposed that multilayers of aryl radical can be grown from diazonium reduction. Although the diazonium salts are not designed to polymerize,films significantly thicker than mono-layerscanbeobtainedduetoradicalspeciesformedinthevicinity of the electrode that can react with the previously grafted molecules[11,15].

Thegraftingofquinones hasbeenextensivelystudiedinthe literatureastheyallowatwoelectrontransferduringreduction process[29,30].Chemicalgraftingofquinoneswasperformedon glassy carbon [31], carbon nanotubes (CNTs) [32], onion-like carbons(OLCs)[33],graphite[34],CVDgrowngraphene[35]and porouscarbons[36–38]inordertoimprovetheperformanceof theseEDLCselectrodes.Asanexample,graftingofAQonporous BlackPearlscarbon(AQ-BP)ledtoadrasticimprovementofthe capacitanceupto195F.g"1foranAQloadingof14%wt,compared

with100F.g"1for

non-modifiedcarbon[37].Furthermore,the AQ-BPshowedacceptablecapacitanceretentionuntil100mV.s"1and

goodcyclabilitywithonly17%faradiccapacitancelossobserved after 10000charge/discharge cycles [37].Similarly, the capaci-tancedeliveredby9,10-phenanthrenequinonegraftedOLCsin1M H2SO4 was 3 to 9 times higher than for pristine OLC [33].

Galvanostatic charge/discharge experiments showed good cyclabilityofthemodifiedOLC,with97%oftheinitialcapacitance retainedafter10000cycles[33].

Graftedcarbonshavebeensuccessfullyusedinsymmetricalor asymmetric hybrid supercapacitors [39,40]. For instance, AQ-grafted carbon fabrics were used as negative electrode in an asymmetric cell against a positive dihydroxybenzene modified carbon fabric electrode, providing an energy density that was foundtobedoublethevalueobtainedforasymmetricdevicewith twounmodifiedcarbonfabricelectrodes[41].Aside,asymmetric supercapacitor was built withAQ-graftedcarbon fabrics at the negative electrode and pseudocapacitive ruthenium oxide as positiveelectrode,providingagravimetriccapacitanceof109F.g"1

overaslightlyincreased1.3Vpotentialwindow[42].However,to thebestofourknowledge,thegraftingofquinonemoietieshas neverbeenreportedoncarbidederivedcarbons(CDC)despitethe fact that such carbonbased electrodesweredepictedashighly desirableinvariousapplicationsincludingbulkdevices[43] and micro-supercapacitors[44].

Recently,wereportedthefabricationofon-chipcarbidederived carbon films for micro-supercapacitors applications [44,45]. Carbide-derivedcarbonsareproducedfromtheselective extrac-tionofmetallicatomsfromametalcarbideprecursorthroughhigh temperature chlorination process, offering a fine control at nanometer scale of thecarbon porosity [46].This narrowpore sizedistribution(PSD)ledtohighvolumetriccapacitancevalues, and allowed the preparation of high performance CDC based

micro-supercapacitors embedded on silicon chips [44]. The presentstudyaimsatpreparingCDCfilmsgraftedwith anthra-quinone moieties for on-chip micro-supercapacitor electrodes. ChemicalandelectrochemicalgraftingwereperformedonSi/SiO2/

TiC/CDCsubstratesinorganicelectrolytecontainingthediazonium derivative,namelyanthraquinone-1-diazonium.Theinfluenceof theelectrochemicalprocessusedforthediazoniumreductionis discussed,aswellastherelationbetweentheAQcoverageandthe CDCporousstructure.

2.Experimental

2.1.On-chipCDCfilmspreparation

Inordertogetridofthepreparationofcompositeelectrodes using active material, binder and conductive additive, the electrochemical tests were performed on on-chip porous car-bide-derived carbonfilms such asdescribed elsewhere [44,45]. Briefly,TiCfilmsweredepositedat750#Cand10-2mbaronSi/SiO

2

wafers using non-reactive direct current magnetron sputtering process(DC-MS)fromaTiCtarget(99.5%,10cmdiameter,6mm thick)underargonatmosphere.Depositiontimehasbeentunedin ordertodeposittherequestedthickness.ThelayeredSi/SiO2/TiC

samplewasthenintroducedinafurnaceunderargonpurgeand heatedatthedesiredtemperature.Thetitaniumcarbidefilmwas then converted into porous CDC by reacting withchlorine gas followingthereactionbelow(1):

TiC(s)+2Cl2(g)!TiCl4(g)+C(s) (1)

ThethicknessoftheCDCelectrodesdependsonthe chlorina-tiondurationandpartialchlorinationledtostronglyadherent on-chipCDCfilms[44]withaTiCadhesionlayerinbetweenthesilicon substrateandtheporouscarbonlayer,whichwillbedenominated asCDCelectrodeinthisstudy.Aside,fullchlorinationoftheTiC layerwasperformedbyincreasingthechlorinationtimewhichin turnledtotheseparationofCDCfilmfromtheSi/SiO2substrate

duetothelackofTiCintermediateadhesivelayer[44].Thus,the formation of self-supported CDC films of several square centi-meters(footprintarea)canbeachieved.Theseself-supportedCDC filmswereusedtoestimatetheCDCweightpercm2forfurtherAQ

coverage calculation. Indeed, several self-supported CDC films wereweightedwitha SARTORIUS(Germany)analyticalbalance. Thenthe total areaof CDC was established by analyzing with imageJsoftwareopticalpicturesofthefilmstakenwithasuited camera.Thus,theweightsofCDCchlorinatedat450#Cand700#C were calculated to be 1.4! 10"4 and 1.2!10"4g.cm"2.

m

m"1,

respectively.

Annealing was performed for 1hat 600#C under H

2

atmo-spheretoremovechlorineresiduestrappedintothemicropores

[44].Ramanspectroscopyand energydispersive X-rayanalyses confirmthati)TiCisnolongerpresentafterfullchlorinationofthe films,ii)TicontentintheCDClayerwaslessthan1at.%.Allon-chip CDCfilmthicknessesweremeasuredbetween1and5

m

mtomake thecomparison oftheelectrochemicaltestsrelevant. Themain structuralproperties of theas-preparedCDCfilmsare listedin

Table1,accordingtopreviousreports[47].Theuseofsuchthinfilm electrodeallowstheinvestigationoftheintrinsicpropertiesofCDC without the drawbacks usually related to the fabrication of

Table1

Structuralpropertiesoftheas-preparedon-chipCDCfilms.

Chlorinationtemperature(TCl#) SBET(m2g"1) Microporevolume(cm3g"1) Meanporesize(nm)

450 977 0.47 0.59

(5)

composite electrodes, i.e. the addition of electronically non-conductivepolymericbinderandtheneedforconductivecarbonto balancethemoderateelectronicconductivityofthickcomposite electrode(<1Scm"1)[48].

2.2.Anthraquinonegrafting 2.2.1.Reagents

Tetraethylammoniumtetrafluoroborate(NEt4BF4,Acros

Organ-ics)wasdriedat120#Cundervacuumfor24handdissolvedin acetonitrile(ACN,99.9%Extra-dry,AcrosOrganics).Then,FastRed Al salt (antraquinone-1-diazonium hemi(zinc chloride), Sigma-Aldrich)wasaddedtotheelectrolyte.

2.2.2.Chemicalgrafting

The surface coverageof porous carbon by electrochemically activespeciesstronglydependsonthegraftingconditions.While chemicalrouteshavebeenextensivelyusedforcarbon modifica-tion[13],theelectrochemicalgraftingisfasterandprovideshigher grafting loadings [27]. Two methods were used to graft AQ molecules on microporous on-chip CDC film. A spontaneous modification(chemicalroute)[49]wasachievedbyimmersingthe CDCelectrodefor3.5hinacetonitrilesolutioncontaining AQ-1-diazonium concentrated at 20mM and 0.1M NEt4BF4. The

modified on-chip CDC film was then washed with aliquots of ethanolpriortoelectrochemicalcharacterization.

2.2.3.Electrochemicalgrafting

The electrochemicalmodification of on-chip CDC electrodes was achieved using a Biologic VMP3 potentiostat in a three-electrodeconfiguration.Toperformtheelectrochemicalgraftingof anthraquinonemolecules,AQ-1-diazoniumwasdissolvedat5mM in0.1MNEt4BF4/ACNelectrolyte.On-chipCDCfilmswereusedas

working electrodes, whereas counter and reference electrodes consistedofaPtwireandAg/AgClelectrode,respectively.Cyclic voltammetry experiments were first performed from EOCV to

negativepotentialsuntilthereductionpeakoftheAQdiazonium derivativewasobserved[50].FromtheseobtainedCVcurves,we defineEredandEendwhichcorrespondstothepeakpotentialofthe

AQ-1-diazonium reduction, and the potential at which the reduction iscomplete, respectively. Then, pulsed chronoamper-ometrystepswereadaptedfromthemethodpreviouslydescribed

[38]:arestperiodatEOCVwaskeptfor90ms,followedbya10ms

pulseatEendorEred.Finally,theAQ-graftedCDCfilmwaswashed

withaliquotsofethanoltoremovetheorganicelectrolyte. 2.2.4.ElectrochemicalcharacterizationsofthemodifiedCDCfilm

Electrochemical characterizations of the as-prepared AQ-graftedCDCfilmswereperformedin1MKOHusingtheon-chip CDCfilmasworkingelectrode,aPtwireascounterelectrodeanda saturatedcalomelelectrodeSCEasreference.Cyclicvoltammetry was also performed on the pristine CDC film prior to the modificationprocess.AQmoleculesare knowntocontributeto

thechargestoragemechanism bya2-electron reductionof the quinonegroupsinacidicelectrolytestogivehydroquinone,while thetransferoftwoelectronsissupportedbyacharge compensa-tionofcationicspecies(2protonsoranyothercationsfromthe supportingelectrolyte)orwatermoleculesinalkalineelectrolyte

[38](Scheme1).

The modification of carbon with chloroanthraquinone has demonstratedthattheloadingestimatedfromthechargepassedis ingoodagreementwiththequantificationfromchlorinedetection

[51].ThetotalchargeQtotpassedintheelectrodeisthesumofa

doublelayercontributionQEDLCandthefaradiccontributiondueto

theAQredoxprocessQAQ(C).QAQwasdeterminedfromCVcurves

withEC-Labsoftwarebycalculatingthechargecorrespondingto the oxidation wave of the AQ grafted sample [11,38]. The AQ capacity QAQwas normalized totheCDCfilm footprintarea,as

gravimetriccapacityandcapacitancearemeaninglessfor micro-supercapacitorselectrodes[52].Thecoulombicchargecouldthen betranslatedintoequivalentelectrodecapacitanceCAQ(F.cm"2)

forcomparisonpurposebydividingbythepotentialwindowofthe CDCelectrode,i.e.1.1V.ThedoublelayercapacitanceCEDLC(F)was

deducedfromthesubtractionof thefaradiccontributiontothe integratedchargecurrentfollowingtheequation(2):

CEDLC¼ Z I:dE

nD

E " QAQ

D

E ð2Þ

whereIstandsforthechargecurrent(A),

n

thescanrate(V.s"1)and

D

Ethepotentialwindow(V).ThedoublelayercapacitanceCEDLC

wasalsonormalizedtotheCDCfilmarea(F.cm"2).Sincesamples

withdifferentthicknesseshavebeengrown,thearealcapacitance may vary from one sample to another. However, pristine and functionalized electrodes are compared in the studywhenever theyhavesimilarthicknesses.Allthepotentialsrefertothenormal hydrogenelectrode(NHE).

3.Resultsanddiscussion 3.1.ChemicalgraftingofAQ

Thevoltammogramofa450#CchlorinatedCDC

filmtestedin 1MKOHbefore(dashedline)andafter(solidtriangles)chemical graftingwithAQmoleculesispresentedinFig.1.Thecurrentwas normalizedtotheCDCfilmfootprintsurfaceareaandthickness. BothCVcurvesexhibita quasi-rectangularshapewithina 1.1V potential window, typical from capacitive signature of carbon materialinKOHelectrolyte[21].Furthermore,smalloxidationand reductionwavesareobservedat"0.18VvsNHEand "0.37Vvs NHE, respectively, after modification. Indeed, AQ-grafted mole-culescontributetothetotalcapacitanceoftheCDCfilmbyaddinga faradiccurrentcomingfromredoxmechanism.However,onlya small coulombic contribution of 0.8 mC.cm"2 (equivalent to a

meanareal capacitanceof 0.7mF.cm"2over1.1V)iscalculated

fromtheanodicpeakforthemodifiedCDCfilm.Thistransforms

Scheme1.Reductionofanthraquinone(AQ)in(a)acidicelectrolyteand(b)basicelectrolyte[38].Inthelattercase,thenegativechargeonoxygencanbecompensatedeither byacation(M+)and/orbyhydrogenbondswithwatermolecules.

(6)

into alow AQloadingof1.6!10"12mol.cm"2[20],i.e.less than

1wt%ofAQmoleculesgraftedontotheCDCfilm.Onecannoticea

slightdecreaseofthedoublelayercapacitancefrom46to41mF. cm"2, associated with a blocking of small micropores by the

grafting [12]. Indeed,theAQradicals reactpredominantlywith carbonatomsonthemorereactiveedgesitesattheentranceofthe carbonpores[12].Our450#CchlorinatedCDCfilmshaveavery narrowPSD,withanaverageporesizeof0.59nmasconfirmedin previous work [47]. Therefore, although small AQ loadingwas achieved (only 0.89% of the theoreticalvalue expected for the formationofanAQmonolayer[36])someofthemicroporesare blockedbytheAQspecies,thuslimitingthecapacitiveresponseof theelectrode.Forcomparison,AQloadingof5.6!10"11mol.cm"2

was obtained from similar procedure with the same molecule graftedonVulcan,whichcontainsmicroandmesopores[36].Such lowAQloadingonCDCcouldalsobeexplainedbytheCDCsurface modification occurring during annealing under reductive H2

atmosphereathightemperature.Indeed,SmithandPickup[36]

studiedthecompetitionbetweencovalentlybondedandadsorbed AQandtheinfluenceofthecarbonsurfacemodificationby pre-treatmentineitheroxidativecondition(nitricacid)orreductive conditions(NaBH4)ofactivatedcarbon.Theyevidencedthatthe

carboxylic acidfunctional groups formed duringoxidative pre-treatments promotethecovalent bondingof diazoniumcations

[36].Onthecontrary,itwasshownthattheadditionofNaBH4in

themixtureledtolessC-AQcovalentbondsandmoreadsorbedAQ

[36]. Moreover, the low grafting loading found for our CDC substrateisconsistentwiththeworkofIsiklietal.whoreported small loadings of 0.75wt% and 0.55wt% for loosely bonded 1,4,9,10-anthracenetetraoneonPICAandVulcancarbons, respec-tively,throughsamechemicalroute[53].Hence,itisexpectedthat AQmolecules are more likely adsorbedat the CDCsurface via physisorption mechanisms through

p

-stacking between the aromaticringsofAQandgraphiticplanes[54].

AnothermainproblemmaybetheaccessibilityofAQmolecules totheporosityofCDC.Anelectrochemicalgraftingwasenvisioned toassessifanyadditionaldrivingforcewouldenhancethegrafting yield.

3.2.DeterminationofthereductionpotentialofAQ-1-diazonium cationsoncarbide-derivedcarbon

Electrochemicalgraftingisassumedtoprovidebettermobility of theAQspecies, allowinghigher AQloadings. To achieve the electrochemicalgraftingof AQmoleculesonCDCfilms,wefirst determinedthereductionpotentialofAQdiazoniumcations.For thispurpose,cyclicvoltammetryexperimentswereperformedon Si/SiO2/TiC/CDCelectrodeat50mV.s"1inacetonitrilecontaining

5mM AQ-1-diazoniumand 0.1MNEt4BF4.Sameprocedure was

usedwithglassycarbonelectrodetocomparetheelectrochemical grafting on non-porous carbon and microporous carbon film.

Fig. 2A shows the CV corresponding to the reduction of the anthraquinone-1-diazoniumonglassycarbon.Abroadirreversible cathodicwaveisvisibleat+0.21VvsNHEduringthefirstpotential sweep, corresponding to the reduction of diazonium cations, possiblyleadingtotheformationofcovalentbondwiththecarbon surface[15].Thecathodiccurrentisdrasticallydecreasedduring thenext 4cycles,indicatingthatthegraftedlayerprogressively inhibits further electron transfer, in agreement with previous reports[50].Thecyclicvoltammogramofthe450#Cchlorinated CDCsampleexhibitssimilarshape,withanintensereductionpeak centeredat"0.06VvsNHE(Fig.2B),evidencingthatthereduction ofdiazoniumcationscanbeachievedonCDCelectrode.However, thechargepassedthroughtheCDCelectrodeissimilartothatof glassycarbondespitealargedifferenceinthespecificsurfacearea (977m2.g"1forCDC).Thismightbea

firstinformationaboutthe accessibilityof the AQ diazoniumto thecarbon microporosity, whichwillbediscussedinSection3.3.Aside,theshiftinpotential compared to glassy carbon electrode can be assigned to the

Fig.1.Cyclicvoltammogramsofpristine(dashedline)andchemicallyAQ-grafted 2.0mm-thickCDCfilm(solidtriangles)recordedat50mV.s"1in1MKOH.

Fig.2. Cyclicvoltammogramsof(A)glassycarbonelectrodeand(B)on-chipCDCfilm(2.0mm-thickCDCfilm)recordedat50mV.s"1in0.1MNEt

4BF4/ACNcontainingFastRed Al.

(7)

presenceofmanyedgeplanesduetothespecificporosityofCDC electrode.Suchshiftwasalreadyobservedinotherstudies[16]. 3.3.ElectrochemicalgraftingofAQmolecules

Pulsepotentialdepositionhasbeenreportedintheliteratureas anefficienttechniquetotacklemasstransport limitations[38]. Therefore,seriesofrestandgraftingstepswereused.Thepotential duringthereststepwasfixedattheOCVandthegraftingstepwas achievedatEend="0.4VvsNHE,thatisundercathodic

polariza-tionforreduction.EOCVandEendwereappliedfor90msand10ms,

respectively, for 1h. It has been shown that the longer the relaxationtime,thehigherthegraftingloading[38].However,this wasobservedforin-situgenerateddiazoniumcationsinaqueous media with NaNO2 as diazotization agent, where nitrite ions

depletionisavoidedbylongerrelaxationtime[38].Theinfluence ofthecarbonporousstructureonthegraftingyieldwasstudied,as wellastheroleofthepotentialappliedduringthegraftingsteps. Thecyclicvoltammogramrecordedat50mV.s"1in1MKOHforthe

as-prepared450#Cchlorinatedon-chipCDCfilmgraftedwithAQis shown Fig. 3A. As for the case of chemical route, rectangular signaturesareobservedforboth pristine(dashed line)and AQ-grafted CDC electrode (solid triangles), with a double layer capacitance decrease from 35 mF.cm"2 to 27 mF.cm"2 after

grafting.TheweakoxidationwaveofAQonlybringsanadditional 0.3mC.cm"2 (equivalent to 0.3mF.cm"2 if averaged over the

potentialwindow)tothedoublelayercurrentcontribution.The lowsurfacecoveragemeasuredmayoriginatefromastericeffect, since thesize of theAQ molecule (0.388nm!0.744nm!1.165 nm)[55]isclosetothesizeofmostoftheCDCpores(meanpore sizeof0.59nm).Asaresult,AQmoleculescouldonlybondtothe outersurface,confirming,assuspectedfromourpreviouschemical graftingattempts,thatthemainissueisthepoorporeaccessibility. Totacklethislimitation,sputteredTiCthinfilmswerechlorinated athighertemperaturevalue(700#C)toprepareon-chipCDC

films withlargermicropores(meanporesizeof0.85nm)[47].Indeed, theporousstructureofCDCscanbefine-tunedbyadjustingthe chlorinationconditions.Diameterof700#CchlorinatedCDCpores wasreportedtoreacha maximumvalueof2nm,whereasit is limitedto1nmasamaximumforCDCfilmspreparedat450#C

[47].

On-chip CDC electrodes chlorinated at 700#C and annealed under H2 atmosphere were grafted using the same pulsed

technique.TheCVcurvesofthe700#Cchlorinatedon-chipCDC film recorded before (dashed lines) and after (solid circles)

chronoamperometry are shown in Fig. 3B. For comparison, an arealcapacitanceof71mF.cm"2(152F.cm"3)wasdeliveredforthe

pristineCDCelectrode.AftergraftingwithAQ,theCVplotofthe AQ-grafted CDC film exhibits two intense anodic and cathodic peaks.Theapparentredoxpotentialwasmeasuredat"0.26Vvs NHEandtheassociatedcoulombicchargewasestimatedtobe18.7 mC.cm"2 from the integration of the oxidation peak. The AQ

surface coverage was calculated to be 0.16!10"10mol.cm"2,

correspondingto(9%ofamonolayer[20].Furthermore,adouble layer capacitance value of 59 mF.cm"2 (127F.cm"3) is still

deliveredafterAQgrafting(correspondingtoonlya17%decrease compared to pristine on-chip CDC film), evidencing that ion adsorptionintotheCDCmicroporesisstilleffectiveaftergrafting. Tostudytheinfluenceofthereductionpotentialusedduring pulsedchronoamperommetry,thepotentialEendwasswitchedto

thepotentialoftheAQ-1-diazoniumreductionpeakEred="0.06V

vsNHE,suchasshownincyclicvoltammogramsrecordedin0.1M NEt4BF4/ACN. The pulse step time was kept the same. Fig. 4

presents the CV curves recorded at 50mV.s"1in 1M KOH for

pristine700#Cchlorinatedon-chipCDCfilm(dashedline)andfor the as prepared AQ-grafted 700#C chlorinated CDC film (solid circles). An areal capacitance of 20 mF.cm"2 (152F.cm"3) was

delivered at 50mV.s"1for the non-grafted CDC

filmexhibiting rectangularCVshape.However,afterthegraftingprocedure,two broadredoxwavesareobserved,withanapparentredoxpotential stilllocatedat"0.24VvsNHE.Asaresult,acorrespondingfaradic capacity QAQof 28.3mC.cm"2(equivalentto26 mF.cm"2when

averagedoverthe1.1Vpotentialwindow)wascalculated.Aside, thedoublelayercapacitancewasonlyslightlydecreasedofabout 10%(18mF.cm"2).Interestingly,thedoublelayercapacitanceisless

affectedbythegraftingprocessachievedatlessabsolutecathodic potential during chronoamperometry, whereas the AQ surface coverage is increased to 0.88!10"10mol.cm"2. Using a high

cathodicoverpotential(absolutevalue),thegrowthkineticisvery fastascomparedwiththediffusionofAQmolecules,althoughthe pulsed deposition technique avoids depletion at the electrode/ electrolyteinterface[56];thus,thespeciesavailableforreduction directlyreactattheoutercarbonsurface,leadingtopreferential graftingattheentranceofthemicropores.Whiledecreasingthe absolutecathodicoverpotential,themore kineticallycontrolled reduction process allows the AQ to react inside the porous network.Forthe700#CchlorinatedCDCfilm,theequivalentof( 50%ofamonolayerofAQmoleculesisgraftedonthesurfaceofthe carbon electrode, and the total electrode capacitance is twice higher(44mF.cm"2after

modification,tobecomparedwith20mF.

Fig.3.(A)Cyclicvoltammogramsrecordedat50mVs"1in1MKOHforthe450#Cand(B)700#CchlorinatedCDCelectrodes(4.8and4.6mm-thick,respectively)before (dashedline)andaftergrafting(solidsymbols)usingEend="0.4VvsNHEduringchronoamperometry.

(8)

cm"2 for the pristine 700#C chlorinated CDC film). This is consistent with previous reports for AQ-modified activated carbons[37,57].

3.4.EvaluationofthestabilityofAQinon-chipCDC

The700#Cchlorinatedon-chipCDCelectrodemodifiedwithAQ was further characterized by electrochemical impedance spec-troscopytoinvestigatetheinfluenceofthegraftedAQspecieson thecapacitivebehavioroftheCDCfilm.Thesamplewasusedas working electrode in a three-electrode cell with Pt as counter electrodeandAg/AgClasreference.EISwasperformedin1MKOH atEOCV=+0.01VvsNHE.ThecorrespondingNyquistplotisshown

inFig.5A(solidcircles).Forcomparisonpurpose,theNyquistplot ofpristine700#CchlorinatedCDCfilmwasadded(opencircles). The high frequency resistance is about 1

V

cm2, which is a

conventionalvaluefor1MKOHelectrolyte(insetFig.5A);asthe frequencydecreases,asemi-circleappearsasalreadyobservedfor CDCelectrodes[58].It revealsthationicmasstransport in sub-nanometerporesislimitedduetosizeeffect.However,the semi-circle diameter increases for AQ grafted CDC electrode which suggeststhatAQmoleculesalsolimitiondiffusionintheporosity due tosteric hindrance.In the low frequency range, the quasi verticallineparalleltotheimaginaryaxis,observedforpristine CDCelectrode,istypicalofacapacitivebehaviorinagreementwith the CVs ofFig. 4. Deviation fromtheverticalcapacitive plot is observedforthegraftedsample.Suchfeaturewasalsoreportedfor AQ-GF,andwasassignedtotheexistenceofanadditionalcharge transfer resistanceowingtotheredoxmechanismsinvolved at suchpotential[59].

Grafted Si/SiO2/TiC/CDCelectrode was subjectedto repeated

potentiostaticcyclingin1MKOHwithina1Vpotentialwindowat 20mV.s"1 (Fig. 5B). The faradic contribution coming from the

redoxreactionsoccurringatthequinonesitesisstillvisibleafter 500cycles,althoughthecoulombicchargedecreasesuponcycling. Also, the difference between the anodic and cathodic peak potentials(

D

Ep)isprogressivelyshiftedtohighervalues,

indicat-ingaslowerelectrontransfer.Aside,thedoublelayercapacitance regioniskeptconstantuponcycling.Fromthesefeatures,wewere abletoplotthechangeofthepuredoublelayercapacitanceCEDLC,

estimatedfromtherectangularpartoftheCVbetween0V and +0.3VvsNHE,andthechangeoftheAQfaradiccapacityQAQupon

cycling(Fig.5C).Ashighlightedinsimilarstudies,theAQcapacity drops dramatically during the first 50 cycles. This is usually assignedtothedesorptionofpoorlyattachedorphysicallybound AQ molecule from the carbon surface [39]. Then, the faradic contributionduetoAQmoleculesstabilizesandtheAQ-modified on-chipCDCretains66%oftheinitialcapacityoverthefollowing 300 cycles. Meanwhile, the double layer capacitance remains stable, albeit it hasslightly decreased from 15%. Then, theAQ contributionstarts to decrease sharply, while the double layer capacitancerecovers and reaches94%of theinitialcapacitance after500 cycles. AQ-modified activatedcarbons usuallyexhibit goodcapacitanceretentionovermorethan1000cycles[37].Sucha capacityfadeissimilartothosereportedintheliterature[38,53].

Fig.5.(A)Nyquistplotofpristine(opencircles)andAQgrafted(solidcircles)700#C chlorinatedCDCfilm(1.3mm-thick);insert:detailofthehighfrequenciesregion. (B)CyclicvoltammogramsoftheAQgraftedCDCfilm testedin1MKOHand recordedat20mVs"1during500cycles.(C)ChangeofthenormalizedAQcapacity (left)andnormalizeddoublelayercapacitance(right)uponcycling.

Fig.4. Cyclicvoltammogramsrecordedat50mVs"1

in1M KOHfora 700#C chlorinated CDCelectrode(1.3mm-thick)before(dashed line)andafter(solid circles)electrochemicalAQ-graftingusingEredduringchronoamperometry.

(9)

AfterthedepartureoflooselyattachedAQmoleculesuponthefirst 50cycles,thesecondfadeinfaradiccontributionofAQafter300 cyclescouldbeduetotherepeatedformationofquinonedianions uponcycling.Itwasproposedthatthequinonedianionsinduced fromthetwoelectronprocessoccurringinverybasicmediacan endure repulsion interactions toward the negatively charged carbonsurfaceanddissolveinthealkalineelectrolyte[60].This couldexplainthelossoffaradicresponserecordedafterthe300th cycle,as electrostatic repulsion should be exacerbated in such confinedmicropores.Thisissupportedbytheparallelincreasein thedoublelayercapacitancevalue,asAQdissolutionreleasesthe CDCsurfaceandbringsbacksomeporeaccessibilityfortheionsof theelectrolyte.Also,thisisingoodagreementwiththeprogressive shifts of the anodic and the cathodic peaks leading to higher potential differences

D

Ep,where slowerelectron transfer origi-natesfromtheprogressivedepartureoftheAQmoleculesdueto electrostaticrepulsions.Thus,thebeneficialeffectofAQgraftingin CDCfilmsisbalancedbythereleaseofAQspeciesafteronlyfew hundredcycles.Althoughsupercapacitorelectrodesareexpected tohandlefastchargeanddischargeoverthousandsofcycles,itis thefirst time thaton-chip carbon electrodescapacity couldbe boostedbyelectrochemicalgraftingofAQmoleculesinto micro-pores. The stability of the grafted AQ moieties over charge/ discharge cycles might be further improved by changing the orientationof the graftedmolecules onthecarbon surface, i.e. starting with AQ-2-diazonium precursor, thus modifying the strength of theinteractions between theAQ molecule and the substrate[16].ThemodificationoftheCDCelectrodeswithinsitu generateddiazoniumderivativescouldalsoleadtobettercapacity retention.

4.Conclusion

Themodificationofon-chipCDCelectrodeswithAQmolecules wasperformedbyelectrochemicalroute,using0.1MNEt4BF4/ACN

solutionofAQdiazoniumderivative.Usingporouscarbide-derived carbon(CDC)filmswithnarrowporesizedistribution,thegrafting yieldstronglydependsontheaverageporesize:only2nmpore diameterCDCcanbegraftedwithAQmoieties,lowerporesize leadingtoapoorlyfunctionalizedelectrode.Indeed,for0.59nm averageporesize, thedecreaseof thedouble layercapacitance suggests that the AQ species block the entrance of the small micropores. By increasing the chlorination temperature, the porosityoftheCDCfilmswasslightlyextendedupto2nm,thus allowingtheaccessofthecarbonporousnetworkduringpotential pulsedchronoamperometryexperiments.HighAQsurface cover-ageof0.88!10"10mol.cm"2,whichrepresentshalfofa

monolay-er,wasobtainedwhilethedoublelayercapacitancevaluewasonly decreasedby10%.Thisisthefirsttimethatsuchlimitationdueto porediameter is evidenced forcarbon electrodes, and thatthe potentialgraftingofAQmoleculesisevidencedinCDCelectrodes. ThecyclabilityoftheAQ-modifiedon-chipCDCelectrodewas alsoinvestigated. The current which originates fromthe redox wavesofAQprogressivelydecreasedduringcyclinguntilonly39% ofthefaradiccontributionwaskeptafter500cycles.Thisdecrease has been assigned to electrostatic repulsion of dianionic AQ confinedinnarrowmicroporesinthealkalinemedia.Nevertheless, thegraftingstrategyhasdemonstratedabeneficialeffectonthe totalcapacitanceoftheAQ-modifiedon-chipCDCelectrodesthat hasbeendoubledcomparedtothepristineCDCfilm,leadingto hightotalcapacitancevalueof44mF.cm"2(338F.cm"3).Thusthe

AQmolecules graftedontheCDCelectrode serve asa proofof concepttodemonstratethatthemodificationofmicroporous on-chipCDCfilmswithelectrochemicallyactivespeciescanbeastep forward for the improvement of micro-supercapacitors

performance. Otherredoxmolecules havetobetestedinorder toincreasethecapacitanceoftheelectrodeswhilemaintaininga goodcyclability.

Acknowledgements

K.B.wassupportedbytheChairofExcellencefromtheAirbus Group.TheauthorsthanktheFrenchnetworkofthe electrochem-ical energy storage (RS2E)and theANR (Labex Storex)for the financial support. The French RENATECH network is greatly acknowledgedfortheuseofmicrofabricationfacilities.

References

[1]M.Beidaghi,Y.Gogotsi,Capacitiveenergystorageinmicro-scaledevices: recentadvancesindesignandfabricationofmicro-supercapacitors,Energy EnvironSci.7(2014)867–884,doi:http://dx.doi.org/10.1039/c3ee43526a. [2]P.Simon,Y.Gogotsi,Materialsforelectrochemicalcapacitors,Nat.Mater.7

(2008)845–854,doi:http://dx.doi.org/10.1038/nmat2297.

[3]P.Simon,Y.Gogotsi,Capacitiveenergystorageinnanostructured carbon-electrolytesystems,Acc.Chem.Res.46(2013)1094–1103,doi:http://dx.doi. org/10.1021/ar200306b.

[4]M.Brachet, T.Brousse,J.LeBideau,Allsolid-state symmetricalactivated carbonelectrochemicaldoublelayercapacitorsdesignedwithionogel electrolyte,ECSElectrochem,Lett.3(2014)A112–A115,doi:http://dx.doi.org/ 10.1149/2.0051411eel.

[5]L.Negre,B.Daffos,P.L.Taberna,P.Simon,Solvent-freeelectrolytesforelectrical doubleLayercapacitors,J.Electrochem.Soc.162(2015)A5037–A5040,doi: http://dx.doi.org/10.1149/2.0061505jes.

[6]A. Brandt, P. Isken, A. Lex-Balducci, A. Balducci, Adiponitrile-based electrochemicaldoublelayercapacitor,J.PowerSources.204(2012)213– 219,doi:http://dx.doi.org/10.1016/j.jpowsour.2011.12.025.

[7]A.Brandt,A.Balducci,Theinfluenceofporestructureandsurfacegroupson theperformanceofhighvoltageelectrochemicaldoublelayercapacitors containingadiponitrile-basedelectrolyte,J.Electrochem.Soc.159(2012) A2053–A2059,doi:http://dx.doi.org/10.1149/2.074212jes.

[8]F.Béguin,V.Presser,A.Balducci,E.Frackowiak,Carbonsandelectrolytesfor advancedsupercapacitors,Adv.Mater.26(2014)2219–2251,doi:http://dx.doi. org/10.1002/adma.201304137.

[9]S.Ardizzone,G.Fregonara,S.Trasatti,InnerandouteractivesurfaceofRuO2 electrodes,Electrochim.Acta35(1990)263–267,doi:http://dx.doi.org/ 10.1016/0013-4686(90)85068-X.

[10]E.Frackowiak,Carbonmaterialsforsupercapacitorapplication,Phys.Chem. Chem.Phys.9(2007)1774–1785,doi:http://dx.doi.org/10.1039/b618139m. [11]B.D.Assresahegn,T.Brousse,D.Bélanger,Advancesontheuseofdiazonium

chemistryforfunctionalizationofmaterialsusedinenergystoragesystems, CarbonN.Y.92(2015)362–381,doi:http://dx.doi.org/10.1016/j.

carbon.2015.05.030.

[12]G.Pognon,T.Brousse,D.Bélanger,Effectofmoleculargraftingontheporesize distributionandthedoublelayercapacitanceofactivatedcarbonfor electrochemicaldoublelayercapacitors,CarbonN.Y.49(2011)1340–1348, doi:http://dx.doi.org/10.1016/j.carbon.2010.11.055.

[13]P.Abiman,G.G.Wildgoose,R.G.Compton,Amechanisticinvestigationintothe covalentchemicalderivatisationofgraphiteandglassycarbonsurfacesusing aryldiazoniumsalts,J.Phys.Org.Chem.21(2008)433–439,doi:http://dx.doi. org/10.1002/poc.1331.

[14]R.D.L.Smith,P.G.Pickup,Novelelectroactivesurfacefunctionalityfromthe couplingofanaryldiaminetocarbonblack,Electrochem.Commun.11(2009) 10–13,doi:http://dx.doi.org/10.1016/j.elecom.2008.10.014.

[15]D. Bélanger, J. Pinson, Electrografting: a powerful method for surface modification,Chem.Soc.Rev.40(2011)3995–4048,doi:http://dx.doi.org/ 10.1039/c0cs00149j.

[16]M.Weissmann,O.Crosnier,T.Brousse,D.Bélanger,Electrochemicalstudyof anthraquinonegroups,graftedbythediazoniumchemistry,indifferent aqueousmedia-relevanceforthedevelopmentofaqueoushybrid electrochemicalcapacitor,Electrochim.Acta82(2012)250–256,doi:http://dx. doi.org/10.1016/j.electacta.2012.05.130.

[17]P.Allongue,M.Delamar,B.Desbat,O.Fagebaume,R.Hitmi,J.Pinson,J.M. Savéant,Covalentmodificationofcarbonsurfacesbyarylradicalsgenerated fromtheelectrochemicalreductionofdiazoniumsalts,J.Am.Chem.Soc.119 (1997)201–207,doi:http://dx.doi.org/10.1021/ja963354s.

[18]M.Delamar,R.Hitmi,J.Pinson,J.M.Saveant,Covalentmodificationofcarbon surfacesbygraftingoffunctionalizedarylradicalsproducedfrom electrochemicalreductionofdiazoniumsalts,J.Am.Chem.Soc.114(1992) 5883–5884,doi:http://dx.doi.org/10.1021/ja00040a074.

[19]M.Mooste,E.Kibena,A.Sarapuu,L.Matisen,K.Tammeveski,Oxygenreduction onthickanthraquinonefilmselectrograftedtoglassycarbon,J.Electroanal. Chem.702(2013)8–14,doi:http://dx.doi.org/10.1016/j.jelechem.2013.04.031. [20]M.Toupin,D.Bélanger,Thermalstabilitystudyofarylmodifiedcarbonblack byinsitugenerateddiazoniumsalt,J.Phys.Chem.C111(2007)5394–5401, doi:http://dx.doi.org/10.1021/jp066868e.

(10)

[21]A. Le Comte, D. Chhin, A. Gagnon, R. Retoux, T. Brousse, D. Bélanger, Spontaneousgraftingof9,10-phenanthrenequinoneonporouscarbonasan activeelectrodematerialinanelectrochemicalcapacitorinanalkaline electrolyte,J.Mater.Chem.A3(2015)6146–6156,doi:http://dx.doi.org/ 10.1039/C4TA05536E.

[22]G.Pognon,C.Cougnon,D.Mayilukila,D.Bélanger,Catechol-modifiedactivated carbonpreparedbythediazoniumchemistryforapplicationasactive electrodematerialinelectrochemicalcapacitor,ACS4(2012)3788–3796,doi: http://dx.doi.org/10.1021/am301284n.

[23]A. Laforgue,T. Addou,D. Bélanger, Characterizationof thedeposition of organicmoleculesatthesurfaceofgoldbytheelectrochemicalreductionof aryldiazoniumcations,Langmuir21(2005)6855–6865,doi:http://dx.doi.org/ 10.1021/la047369c.

[24]A.Mesnage,X.Lefèvre,P.Jégou,G.Deniau,S.Palacin,Spontaneousgraftingof diazoniumsalts:chemicalmechanismonmetallicsurfaces,Langmuir28 (2012)11767–11778,doi:http://dx.doi.org/10.1021/la3011103.

[25]C.H. De Villeneuve,J. Pinson, M.C.Bernard, P.Allongue, L. De Physique, Electrochemicalformationofclose-packedphenyllayersonSi(111),J.Phys. Chem.B.101(1997)2415–2420S1089-5647(96)02581-3.

[26]A.J. Downard,Electrochemicallyassisted covalentmodification ofcarbon electrodes,Electroanalysis12(2000)1085–10961040-0397/00/1410-1085. [27]T. Breton,D. Bélanger,Modificationofcarbonelectrodewitharylgroups

havinganaliphaticaminebyelectrochemicalreductionofinsitugenerated diazoniumcations,Langmuir24(2008)8711–8718,doi:http://dx.doi.org/ 10.1021/la800578h.

[28]M.Kullapere,J.Seinberg,U.Mäeorg,G.Maia,D.J.Schiffrin,K.Tammeveski, Electroreductionofoxygenonglassycarbonelectrodesmodifiedwithinsitu generatedanthraquinonediazoniumcations,Electrochim.Acta54(2009) 1961–1969,doi:http://dx.doi.org/10.1016/j.electacta.2008.08.054.

[29]M.Quan,D.Sanchez,M.F.Wasylkiw,D.K.Smith,Voltammetryofquinonesin unbufferedaqueoussolution:reassessingtherolesofprotontransferand hydrogenbondingintheaqueouselectrochemistryofquinones,J.Am.Chem. Soc.129(2007)12847–12856,doi:http://dx.doi.org/10.1021/ja0743083. [30]F. Mirkhalaf, K. Tammeveski, D.J. Schiffrin, Substituent effects on the

electrocatalyticreductionofoxygenonquinone-modifiedglassycarbon electrodes,Phys.Chem.Chem.Phys.6(2004)1321–1327,doi:http://dx.doi. org/10.1039/b315963a.

[31]B. Sljukic,C.E. Banks, S. Mentus, R.G. Compton, Modification ofcarbon electrodesforoxygenreductionandhydrogenperoxideformation:Thesearch forstableandefficientsonoelectrocatalysts,Phys.Chem.Chem.Phys.6(2004) 992–997,doi:http://dx.doi.org/10.1039/b316412h.

[32]M.A.Ghanem,I.Kocak,A.Al-Mayouf,M.Alhoshan,P.N.Bartlett,Covalent modificationofcarbonnanotubeswithanthraquinonebyelectrochemical graftingandsolidphasesynthesis,Electrochim.Acta68(2012)74–80,doi: http://dx.doi.org/10.1016/j.electacta.2012.02.027.

[33]D.M.Anjos,J.K.Mcdonough,E.Perre,G.M.Brown,S.H.Overbury,Y.Gogotsi, Pseudocapacitanceandperformancestabilityofquinone-coatedcarbon onions,NanoEnergy2(2013)702–712,doi:http://dx.doi.org/10.1016/j. nanoen.2013.08.003.

[34]M.Pandurangappa,N.S.Lawrence,R.G.Compton,Homogeneouschemical derivatisationofcarbonparticles:anovelmethodforfunctionalisingcarbon surfaces,Analyst127(2002)1568–1571,doi:http://dx.doi.org/10.1039/ b209711g.

[35]E.Kibena,M.Marandi,V.Sammelselg,K.Tammeveski,B.B.E.Jensen, A.B. Mortensen,M.Lillethorup,M.Kongsfelt,S.U.Pedersen,K.Daasbjerg, ElectrochemicalbehaviourofHOPGandCVD-growngrapheneelectrodes modifiedwiththickanthraquinonefilmsbydiazoniumreduction, Electroanalysis26(2014)2619–2630,doi:http://dx.doi.org/10.1002/ elan.201400290.

[36]R.D.L.Smith, P.G.Pickup,Voltammetricquantificationofthespontaneous chemicalmodificationofcarbonblackbydiazoniumcoupling,Electrochim. Acta54(2009)2305–2311,doi:http://dx.doi.org/10.1016/j.

electacta.2008.10.047.

[37]G.Pognon,T.Brousse,L.Demarconnay,D.Bélanger,Performanceandstability ofelectrochemicalcapacitorbasedonanthraquinonemodifiedactivated carbon,J.PowerSources196(2011)4117–4122,doi:http://dx.doi.org/10.1016/j. jpowsour.2010.09.097.

[38]A.LeComte,T.Brousse,D.Bélanger,Simplerandgreenergraftingmethodfor improvingthestabilityofanthraquinone-modifiedcarbonelectrodein alkalinemedia,Electrochim.Acta137(2014)447–453,doi:http://dx.doi.org/ 10.1016/j.electacta.2014.05.155.

[39]G.Shul,D.Bélanger,Self-dischargeofelectrochemicalcapacitorsbasedon solubleorgraftedquinone,Phys.Chem.Chem.Phys.18(2016)19137–19145, doi:http://dx.doi.org/10.1039/C6CP02356H.

[40]Y.Yu,C.E.Adams,Capacitorsandsupercapacitorscontainingmodifiedcarbon products,USPatent6,522,522,2003.

[41]Z. Algharaibeh, P.G. Pickup, An asymmetric supercapacitor with anthraquinoneanddihydroxybenzenemodifiedcarbonfabricelectrodes,

Electrochem.Commun.13(2011)147–149,doi:http://dx.doi.org/10.1016/j. elecom.2010.11.036.

[42]Z.Algharaibeh,X.Liu,P.G.Pickup,Anasymmetricanthraquinone-modified carbon/rutheniumoxidesupercapacitor,J.PowerSources187(2009)640– 643,doi:http://dx.doi.org/10.1016/j.jpowsour.2008.11.012.

[43]R.Dash,J.Chmiola,G.Yushin,Y.Gogotsi,G.Laudisio,J.Singer,J.Fischer,S. Kucheyev,Titaniumcarbidederivednanoporouscarbonforenergy-related applications,CarbonN.Y.44(2006)2489–2497,doi:http://dx.doi.org/10.1016/ j.carbon.2006.04.035.

[44]P.Huang,C.Lethien,S.Pinaud,K.Brousse,R.Laloo,V.Turq,M.Respaud,A. Demortière,B.Daffos,P.L.Taberna,B.Chaudret,Y.Gogotsi,P.Simon,On-chip andfreestandingelasticcarbonfilmsformicro-supercapacitors,Science351 (2016)691–695,doi:http://dx.doi.org/10.1126/science.aad3345.

[45]M.Létiche, K.Brousse,A.Demortière,P. Huang,B. Daffos,S.Pinaud, M. Respaud,B.Chaudret,P.Roussel,L.Buchaillot,P.L.Taberna,P.Simon,C.Lethien, Sputteredtitaniumcarbidethickfilmforhigharealenergyonchip carbon-basedmicro-supercapacitors,Adv.Funct.Mater.(2017)1–10,doi:http://dx. doi.org/10.1002/adfm.201606813.

[46]J.Chmiola,G.Yushin,Y.Gogotsi,C.Portet,P.Simon,P.L.Taberna,Anomalous increaseincarboncapacitanceatporesizeslessthan1nanometer,Science313 (2006)1760–1763,doi:http://dx.doi.org/10.1126/science.1132195.

[47] K.Brousse,P.Huang,S.Pinaud,M.Respaud,B.Daffos,B.Chaudret,C.Lethien,P. L.Taberna,P.Simon,Electrochemicalbehaviorofhighperformanceon-chip porouscarbonfilmsformicro-supercapacitorsapplicationsinorganic electrolytes,J.PowerSources328(2016)520–526,doi:http://dx.doi.org/ 10.1016/j.jpowsour.2016.08.017.

[48]B.Dyatkin,O.Gogotsi,B.Malinovskiy,Y.Zozulya,P.Simon,Y.Gogotsi,High capacitanceofcoarse-grainedcarbidederivedcarbonelectrodes,J.Power Sources306(2016)32–41,doi:http://dx.doi.org/10.1016/j.

jpowsour.2015.11.099.

[49]J.M.Seinberg,M.Kullapere,U.Mäeorg,F.C.Maschion,G.Maia,D.J.Schiffrin,K. Tammeveski,Spontaneousmodificationofglassycarbonsurfacewith anthraquinonefromthesolutionsofitsdiazoniumderivative:Anoxygen reductionstudy,J.Electroanal.Chem.624(2008)151–160,doi:http://dx.doi. org/10.1016/j.jelechem.2008.09.002.

[50]J. Pinson, F. Podvorica, Attachment of organic layers to conductive or semiconductivesurfacesbyreductionofdiazoniumsalts,Chem.Soc.Rev. 34(2005)429–439,doi:http://dx.doi.org/10.1039/b406228k.

[51]A.LeComte,T.Brousse,D.Bélanger,Chloroanthraquinoneasagraftedprobe moleculetoinvestigategraftingyieldoncarbonpowder,Electrochim.Acta197 (2016)139–145,doi:http://dx.doi.org/10.1016/j.electacta.2016.01.219. [52]Y.Gogotsi,P.Simon,Trueperformancemetrics inelectrochemicalenergy

storage,Science334(2011)917–918,doi:http://dx.doi.org/10.1126/ science.1213003.

[53]S.Isikli,R.Díaz,Substrate-dependentperformanceofsupercapacitorsbased onanorganicredoxcoupleimpregnatedoncarbon,J.PowerSources206 (2012)53–58,doi:http://dx.doi.org/10.1016/j.jpowsour.2012.01.088. [54]L.Madec,A.Bouvrée,P.Blanchard,C.Cougnon,T.Brousse,B.Lestriez,D.

Guyomard,J.Gaubicher,Insituredoxfunctionalizationofcomposite electrodesforhighpower-highenergyelectrochemicalstoragesystemsviaa non-covalentapproach,EnergyEnvironSci.5(2012)5379–5386,doi:http:// dx.doi.org/10.1039/c1ee02490f.

[55]L.Tamam,H.Kraack,E.Sloutskin,B.M.Ocko,P.S.Pershan,E.Ofer,M.Deutsch, LangmuirfilmsofanthracenederivativesonliquidmercuryII:Asymmetric molecules,J.Phys.Chem.C111(2007)2580–2587,doi:http://dx.doi.org/ 10.1021/jp063937g.

[56]Y.Lei,B.Daffos,P.L.Taberna,P.Simon,F.Favier,MnO2-coatedNinanorods: Enhancedhighratebehaviorinpseudo-capacitivesupercapacitor, Electrochim.Acta55(2010)7454–7459,doi:http://dx.doi.org/10.1016/j. electacta.2010.03.012.

[57] A.LeComte,G.Pognon,T.Brousse,D.Bélanger,Determinationofthe quinone-loadingofamodifiedcarbonpowder-basedelectrodeforelectrochemical capacitor,Electrochemistry81(2013)863–866,doi:http://dx.doi.org/10.5796/ electrochemistry.81.863.

[58]J. Segalini, B. Daffos, P.L. Taberna, Y. Gogotsi, P. Simon, Qualitative electrochemicalimpedancespectroscopystudyofiontransportinto sub-nanometercarbonporesinelectrochemicaldoublelayercapacitorelectrodes, Electrochim.Acta55(2010)7489–7494,doi:http://dx.doi.org/10.1016/j. electacta.2010.01.003.

[59]N.An,F.Zhang,Z.Hu,Z.Li,L.Li,Y.Yang,B. Guo,Z.Lei,Non-covalently functionalizingagrapheneframeworkbyanthraquinoneforhigh-rate electrochemicalenergystorage,RSCAdv.5(2015)23942–23951,doi:http://dx. doi.org/10.1039/c4ra16092d.

[60]G.Jürmann,D.J.Schiffrin,K.Tammeveski,ThepH-dependenceof oxygen reductiononquinone-modifiedglassycarbonelectrodes,Electrochim.Acta53 (2007)390–399,doi:http://dx.doi.org/10.1016/j.electacta.2007.03.053.

Figure

Fig. 2. Cyclic voltammograms of (A) glassy carbon electrode and (B) on-chip CDC fi lm (2.0 m m-thick CDC fi lm) recorded at 50 mV.s &#34;1 in 0.1 M NEt 4 BF 4 /ACN containing Fast Red Al.
Fig. 3. (A) Cyclic voltammograms recorded at 50 mV s &#34;1 in 1 M KOH for the 450 # C and (B) 700 # C chlorinated CDC electrodes (4.8 and 4.6 m m-thick, respectively) before (dashed line) and after grafting (solid symbols) using E end = &#34;0.4 V vs NHE
Fig. 4. Cyclic voltammograms recorded at 50 mV s &#34;1 in 1 M KOH for a 700 # C chlorinated CDC electrode (1.3 m m-thick) before (dashed line) and after (solid circles) electrochemical AQ-grafting using E red during chronoamperometry.

Références

Documents relatifs

Void growth and coalescence fracture mechanism has been widely assessed experimentally on both real materials - where voids come from inclusions cracking or decohesion - and

conditional analysis, including this variant, abolish evidence for association at rs138326449 (Supplementary Table 4) nor was this particular signal supported using

cadres qui poursuivent des études universitaires.. Dans une perspective de soutien au développement de cette compétence, j’ai expérimenté un groupe de codéveloppement

La protéine TRFl, qui lie les répétitions TIAGGG double-brin chez les mammifères (voir plus loin), cofractionne avec les préparations de matrices et colocalise avec

Au Vietnam , le lien entre l'environnement et les catastrophes naturell es a été reconnu comme base d'une stratégie nationale de prévention , de contrôl e et

Abréviations ATD : analyse thermique différentielle ATG : analyse thermogravimétrique CEC: capacité d'échange cationique CEA: capacité d'échange anionique d, d00l:

In spite of numerous efforts to investigate the strength properties and durability of concretes and mortars containing natural zeolite [ 9 , 11 , 12 , 15 – 20 ], in our knowledge,

Therefore, the objective of the current study was to determine whether early, postnatal oral citrulline supplementation would alter: (1) early growth; and (2) fat mass accretion