• Aucun résultat trouvé

Hydrogen trapping by VC precipitates and structural defects in a high strength Fe-Mn-C steel studied by small-angle neutron scattering

N/A
N/A
Protected

Academic year: 2021

Partager "Hydrogen trapping by VC precipitates and structural defects in a high strength Fe-Mn-C steel studied by small-angle neutron scattering"

Copied!
8
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 8740

To link to this article : DOI:10.1016/j.msea.2011.12.080

URL :

http://dx.doi.org/10.1016/j.msea.2011.12.080

To cite this version : Malard, Benoit and Remy, B. and Scott, Colin

and Deschamps, Alexis and Chêne, Jacques and Dieudonné, Thomas

and Mathon, Marie-Hélène Hydrogen trapping by VC precipitates and

structural defects in a high strength Fe-Mn-C steel studied by

small-angle neutron scattering. (2012) Materials Science and Engineering A,

vol. 536. pp. 110-116. ISSN 0921-5093

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Hydrogen

trapping

by

VC

precipitates

and

structural

defects

in

a

high

strength

Fe–Mn–C

steel

studied

by

small-angle

neutron

scattering

B.

Malard

a,∗

,

B.

Remy

b

,

C.

Scott

b

,

A.

Deschamps

a

,

J.

Chêne

c

,

T.

Dieudonné

b,c

,

M.H.

Mathon

d

aSIMaP,INPGrenobleCNRSUJF,BP75,38402StMartind’HèresCedex,France bArcelorMittal(R&DAutomotiveProducts),VoieRomaine,57280Maizières-les-Metz,France cCEA/CNRS:“Hydrogène/Matériauxdestructure”,UMR8587,91191GifsurYvette,France dLaboratoireLéonBrillouin,CEA/Saclay,91191GifsurYvetteCedex,France

Keywords:

Small-angleneutronscattering Hydrogenembrittlement

Hydrogentrappedbynanoprecipitates

a

b

s

t

r

a

c

t

ThetrappingofhydrogenbyVCprecipitatesandstructuraldefectsinhighstrengthFe–Mn–Csteelwas studiedbysmallangleneutronscattering.NointeractionbetweenHandVinsolidsolutionhasbeen detectedbutasignificantinteractionbetweenHandstructuraldefectsintroducedbyplasticdeformation hasbeenmeasured.ThislasteffectwasreversibleuponoutgassingoftheH.Moreoverasignificant interactionbetweenHandVCprecipitateshasbeenmeasured;5ppmwt.ofHcouldbetrappedinthe precipitates.ThisisconsistentwiththehomogeneoustrappingofHwithintheprecipitatesratherthan attheprecipitate/matrixinterface.

1. Introduction

Fe–Mn–Causteniticsteelsthat exhibitthetwinninginduced plasticity(TWIP)effectareveryattractivematerialssolutionsfor weightreductionofcrash-resistantpartsinnewpassengervehicle developments,duetotheircombinationofextremelyhighenergy absorbingcapacity coupledwithlargeresidual elongationafter forming[1–6].

The combination of very high tensile strength (typically >1000MPa)coupledwithextendedformabilityinevitablyleadsto thepresenceofregionsofhighlevelsofinternalstressesaftercold formingoperations.Iftheconcentrationofmobileatomic hydro-gen(H)inthesezonesexceedsacriticallimit,thematerialcanbe susceptibletodelayedcracking[7].Hcontentinthesteelcanbe rigorouslycontrolledattheproductionstagebutmobileHmaybe introducedatlaterstagesbywelding,surfaceorheattreatments, corrosion,etc.ItisthusadvantageoustointroduceHtrappingsites inthemicrostructurethatcanactassinksformobileHandhence reducetheriskofdelayedcracking.Itisnowappreciatedthatthe additionofsmallamountsofvanadium(V)canreducetheseverity ofdelayedcrackingcausedbythepresenceofmobileH[8]whileat thesametimeenhancingthemechanicalproperties[9].However, thephysicalinteractionsbetweenmobileHandVeitherinsolid

∗ Correspondingauthor.Tel.:+330476826669;fax:+330476826644. E-mailaddress:benoit.malard@simap.grenoble-inp.fr(B.Malard).

solutionorintheformofvanadiumcarbides(VC)precipitatesin austeniticTWIPsteelsneedtobestudiedinordertoincreaseour understandingofthetrappingprocess.

Itisnoteasytoexperimentallydetecthydrogeninsteelsbecause ofitshighmobilityandlowsolubility.Therefore,theunderstanding ofhydrogenbehaviourincludingdiffusionandtrappinghasbeen limitedduetothelackofsuitablemonitoringtools[10].Thermal desorptionanalysis(TDA)isusuallyusedtodeterminethe hydro-gen desorption characteristics, giving useful information about trappingsitesandmobilehydrogencontentovertheentire speci-men[11–14].TDAisoftenusedinconjunctionwithelectrochemical permeationtechniques(EP)whichprovidecomplementary infor-mationaboutdiffusioncoefficients[15,16].However,information aboutthestate,numberanddistributionofhydrogenatomswithin thesamplearestilluncertain.

Techniquesinvolvingneutronscatteringareamongthemost suitabletoolsforobtaininginformationonHdistributionbecause neutronshavetheadvantageofahighsensitivitytolightelements likehydrogen.Neutronscatteringtechniquesareappropriatefor measuringmicrostructuresinthescalerangefromsub-angstrom (neutrondiffraction)[17]tomillimetrelevel(neutronradiography)

[18,19].Inparticular,smallangleneutronscattering(SANS)isan appropriatetechniquefordetectingHinteractionswithnanoscale microstructuralfeatures.For example,Rossetal.[20]and Max-elonetal.[21]haveusedthistechniqueinPd alloystoreacha consistentdescriptionof theinteractionbetweenhydrogenand dislocations. In addition, Kluthe et al. reported detection of H

(3)

segregationattheinternalinterfaceofAg/MgOusingSANS[22]. Theyshowedcleardifferencesinthescatteringprofilesbetween Hordeuterium(D)chargedandunchargedsamples.Insituations withlowerH concentrations,a differencein neutronscattering profilescanalsobeobservedbetweenH-chargedanduncharged steels.Ulbrichtetal.,usingSANS,reportedthatthebehaviourofH trappedinthemicrostructuralheterogeneitiesofapressurevessel steelwasmainlycorrelatedwithirradiationeffects[23].Recently, aJapaneseteamatNIMShasappliedSANStechniquestothe detec-tionofHtrappedbyniobiumcarbides(NbC)inferriticsteels[24]. TheneutronscatteringintensityfromnanometrescaleNbC pre-cipitatesappearstobehigherinthecaseofH-chargedsamples. Ifthesamesamplesarethen heatedtooutgasH theenhanced scatteringintensitydisappears.Theauthorsclaimthatthiseffect iscausedbythesegregationortrappingofHattheNbC/ferrite interface.

H also interacts withlattice defects such as vacancies, dis-locations and stacking faults. For example the trapping of H bydislocationsand«martensitehasbeenobserved experimen-tally by tritium autoradiography on austenitic stainless steels by Chêne et al. [25]. An indirect demonstration of the phe-nomenonof trapping is given by thedecrease in theapparent Hdiffusioncoefficientwhenthematerialisplasticallydeformed

[26]. The peculiarity of H trapping at dislocations lies in the fact that these traps are mobile and can therefore assist the mechanism of H diffusion. The important role of mobile traps for thetransport of H was firstproposed byBastien and Azou

[27]50yearsago.Thistransportmechanismwasexperimentally demonstrated by Donovan [28] by measuring the flow of tri-tiumdesorptionintroducedintensile specimens.Recently,new observationsconductedbyChêneandBrass[29–31]wereusedto quantifychangesintheamountoftritiumdesorbedduringa ten-siletestperformedonasinglecrystalofnickel-basedsuperalloy

[30].

Inthispresentwork,toshedlightontheinteractionbetween HandnanoscaleVCprecipitatesaswellasotherstructuraldefects suchasstackingfaults,twinsanddislocations,SANSandTDSwere employedtoinvestigatetwo TWIPsteelcompositions; aV-free steel,and a V-containingsteel where theVwaseither in solid solutionorintheformofprecipitates.Theeffectoflatticedefects wasinvestigatedbycomparingsampleswithdifferentdegreesof coldrolling.MeasurementswerecarriedoutwithandwithoutH charging.

2. Materialsandtechniques

Themeasuredspecimenswereintheformof1.2mmcoldstrips preparedwiththreedifferentmicrostructures(seeTable1foralloy compositions).

Thefirstmicrostructure(A)wasareferencealloywithnoV addi-tionsinafullyrecrystallisedstate.Thesecond(B)usesthesame basecompositionmodifiedbytheadditionof0.215wt.%V.Itwas studiedinthefullhardstate(coldrolledwith50%reduction)where allVisinsolidsolution(validatedbyselectivechemicaldissolution) andcontainingahighdensityofcrystallinedefects(dislocations, twinsandstackingfaults).Thethirdspecimen,(C)wasidenticalto (B)exceptrecrystallisationannealedwith60%oftheavailableV

Table1

Compositionoftheausteniticsteelsin%wt.

C Mn Si P N V

Sample(A) 0.585 18.4 0.195 0.032 0.020 0

Samples(B)and(C) 0.600 18.14 0.185 0.032 0.016 0.215

precipitatedassphericalshapeVC[9].1 DifferentHchargingand outgassingcycleswereappliedtothesemicrostructures.

Theprocessingcycleforthethreemicrostructureswasthe fol-lowing.Afterreheating(1180◦C15min)thecastingotswerehot

rolledto2.4mmandwaterquenchedfromabove900◦C.The

sam-pleswerethenchemicallystripped(HClbath),andcoldrolledwith areductionrateof50%to1.2mm.Atthisstepthereference(B)with Vinsolidsolutionfinisheditsprocessingcycle.Themicrostructures (AandC)wereannealedat800◦Cfor180stoformsemi-coherent

VCwithanaverageprecipitatediameterof7–8nm[9,32](C)anda fullyrecrystallisedmicrostructure(AandC).

Samples12mm×12mm in areawere mechanicallythinned andcathodicallychargedwithHin0.1MaqueousNaOHsolution. Twoseries ofcharging experimentswere carriedout, resulting invery differentH concentrationsand distribution(see Table2

fordetailsonsample thicknessand chargingconditions).Inthe moderateHchargingconditions(18◦C,24h),assumingthatthe

apparentdiffusioncoefficientofHatroomtemperatureisabout DRT=10−12cm2s−1[33],theHconcentrationprofileisexpectedto

extendoverabout10mmonbothsidesofthesamplethickness (500mm).Thiscorrespondstoanonhomogeneousdistributionof Hinthespecimenandalowaverageconcentration.Inthesevere Hchargingconditions(80◦C,62h),accordingtothe

experimen-talvalueoftheapparentdiffusioncoefficientat80◦CinFe–Mn–C

TWIPsteels[34],theHconcentrationprofileextendsabout100mm onbothsidesofthesamplethickness(200mm),resultinginamore homogeneoushydrogenationandahigheraverageconcentration. Moreovershort-circuitdiffusionofHalonggrainboundariesmay slightlyenhanceHabsorption[34].ImmediatelyafterHcharging, thesampleswerestoredinliquidnitrogentopreventHdesorption beforeSANSmeasurement.

Thetotal H contentwasmeasuredwiththe meltextraction technique.Thesampleismeltedinacrucibleandthehydrogenis extractedusinganinertcarriergaspulse(argon).Thesignal gener-atedbythethermalconductivityanalyserisintegratedtocalculate theconcentrationbyweightofthesample.Thesensitivityofthis techniqueisabout0.1ppmwt.;itwasnotpossibletogivea stan-darddeviationontheconcentrationvaluesbecauselackofmaterial meantthattoofewmeasurementscouldbemadeonhydrogenated samples.

SANSexperimentswereperformedonthePAXYinstrumentat theLaboratoireLéonBrillouin(LLB)inSaclay,France.Neutronsare monochromatedbyavelocityselectortoameanwavelengthof6 ˚A and9.5 ˚A,thewavelengthspreadbeingd/=9%.Thiswavelength waschoseninordertoavoiddoublediffractionproblemsthatcan arisefromtheaustenitemicrostructure.Sample–detectordistances of1.865mand6.065mwereusedwiththewavelengthof6 ˚Aand 9.5 ˚Awithappropriatecollimationsettingstogiveaccessto scat-teringvectorsQ(Q=4psin/)rangingfrom0.06 ˚A−1 to0.2 ˚A−1.

Thediameteroftheneutronbeamwas8mm.Dataprocessingwas carriedoutusingtheGRASPsoftwaredevelopedbyC.Dewhurst attheInstituteLaueLangevin(ILL).Datafileswerecorrectedfor electronicnoise,detectorresponseandbackgroundnoise,and nor-malisedusingawaterstandard.TheLaueintensitywassubtracted forallthepresenteddata.

3. Results

3.1. Microstructuralobservations

SampleAconsistedoffullyrecrystallisedaustenitewithagrain size of4–5mm. No precipitateswere detectedby TEManalysis.

(4)

Table2

ConcentrationinH(ppmwt)ofthedifferentsamplesusedforSANSexperiments.BchgorCchgmeanschargedsample.BoutmeansoutgassedsampleBat260◦Cduring24h. CoutmeansoutgassedsampleCat150◦Cduring16h.

Microstructure NoHcharging ModerateHcharging

0.5mm;24h;18◦C;1mA/cm2 SevereHcharging 0.2mm;62h;80◦C;50mA/cm2 (A)Novanadium <1.5 (B)Vinsolidsolution 1.9 Bchg:2.5 Bout:0.8 (C)VCprecipitates 0.7 Cchg:72 Cout:11.5

Fig.1.Microstructuralobservationsofsample(C).(a)BrightfieldTEMmicrographshowingthepartiallyrecrystallisedgrainstructure.(b)Opticalmicrograph(grainsize 3–4mm).(candd)TEMextractionreplicasshowingtheVCprecipitatesinblack.

Sample B consisted of heavily cold rolled austenite (grain size priortorolling8–10mm)whichcouldnotbeusefullyanalysedin theTEM.Howeverselectivechemicaldissolutionconfirmedthat noVwasprecipitatedinthisspecimen.Fig.1shows microstruc-tural observations of sample C (with VC). Precipitation of VC slows down the recrystallisation kinetics [9] so that the final austenitic microstructurecontains a few partiallyrecrystallised grains(Fig.1a),howeverthevastmajorityofthematerialisfully recrystallised.Themeangrainsizewas3–4mm(Fig.1b).The distri-butionandthemeanradiusoftheVCprecipitatesinthesampleC weredeterminedusingTEMextractionreplicas.Fig.1canddshows VCprecipitateswithradiivaryingfrom1to25nm.

Fig.2showstheVCsizedistributionasmeasuredfromTEM replicaobservations.Theaverageprecipitateradiusis3.9nmand the distribution can be adequately described by a log-normal function. Selective chemical dissolution followed by ICP-OES indicated that 1537ppm wt. V was precipitated after anneal-ing [9]. This is equivalent to a volume fraction of ∼0.23% of VC. 0 20 40 60 80 100 120 140 16 14 12 10 8 6 4 2 0

C

o

u

n

t

Precipitate radius (nm)

Histogram of precipitate sizes

506 precipitates Average radius 3.9 nm

(5)

0.0001 0.001 0.01 0.1 1 10 100 1000 0.1 0.01 V-free alloy V in solid solution

VC precipitated alloy

Intensity

(cm

-1

)

Q (Å-1)

Fig.3. IversusQforthe3reference(withoutH)samples.WithoutV(A),Vinsolid solution(B)andVCprecipitates(C).

3.2. SANSresults

3.2.1. Comparisonbetweentheinitial(uncharged) microstructures

Fig.3showsthescatteredintensitiesinalog–logplotforthe threeinitial(uncharged)microstructures.

Thereferencesample(A)showsthelowestscatteringintensity, duetotheabsenceofanyVCprecipitatesandthefullyrecrystallised microstructure.Therecordedsignalcorrespondstothebackground fromthematrix(scatteringfromremainingimpuritiesand crys-tallinedefects).

The full hard specimen with V in solid solution (B) shows substantial scattering at low scattering vectors. This scattering decreaseslinearlyinthelog–logplot,followingapowerlawthat willbediscussedmoreindetailinthenextsection.Sincethis mate-rialdoesnotcontainadditionalprecipitatesascomparedtosample (A),2itcanbeinferredthatthemeasuredsignalisrelatedtothehigh densityofcrystallinedefectsintroducedbycoldrolling.

The recrystallised sample containing VC precipitates (C) presents a scattering signal typical of a low volume fraction precipitate-containing matrix, witha broad shoulder. The inte-gratedintensityofthissignalQo(afterbackgroundLaueintensity

subtractionandextrapolationtoinfinitescatteringvectorsusing thePorodasymptoticbehaviour)providesameasurementofthe precipitatevolumefraction:

Qo=

Z

∞ 0

I(Q )Q2dQ=22f

v(1−fv)(p−m)2

wherefvistheprecipitatevolumefraction,pandmarethe

den-sityofneutronscatteringlengthsintheprecipitatesandmatrix: p= bV +bC 2˝p =3.49×1014m−2, m∼=4bFe+bMn 5˝m =5.77×1014m−2

wherebiisthenuclear(coherent)scatteringlengthofspeciesi(see

Table3),and˝p=8.97 ˚A3and˝m=11.8 ˚A3aretheaverageatomic

volumesoftheprecipitateandmatrix.

Themeasuredvolumefractionis0.27%,whichisingood agree-mentwiththatobtainedbyselectivedissolutionpresentedabove (∼0.23%).

2Theabsenceofanystrain-inducedprecipitationwasconfirmedbychemical extractionfollowedbyICP-OES.

Table3

Nuclearcoherentscatteringlength.

Fe Mn C V H b(1×E−15m) 9.4500 −3.7300 6.6460 −0.3824 −3.739 0.0001 0.001 0.01 0.1 1 10 100 1000 0.1 0.01 V - 50% rolling V - 15% rolling V - 0% rolling V-free alloy Intensity (cm -1 ) Q (Å-1)

Fig.4.IversusQforthesampleswithVinsolidsolution(B)atdifferentcoldrolling reduction(0%,15%and50%reductions).Thereference(A)annealedsamplewithout Visincludedforcomparison(freealloy).

Fromthisscatteringcurve,wealsocalculatedthePorodradius oftheprecipitatedistributionusingtheequationbelow:

Rp=3V S =

3Qo

K

SandVarethetotalsurfaceandthetotalvolumeoftheprecipitates, Qo is theintegrated intensityasdefined above and Kis the

Y-interceptofI·q4=f(q4)[35].WeobtainedavalueofR

p=3.3±0.2nm, whichisconsistentwiththeTEMmeasurements.

3.2.2. Effectofcoldrollingreduction

Theintensityof scatteringfromsample(B)washigher than expected. In order tofurther investigatethe origin of this sig-nalwemeasuredsampleswithdifferentcoldrollingreductions.

Fig.4showstheeffectofvariationsintheamountofcoldrolling reduction(0%,15%and50%)appliedtoreferencesample(B)on thescatteringintensityintheunchargedstate(<2ppmwt.ofH). Thescatteringintensityofthefullyrecrystallisedreferencesample withoutV(sample(A))isalsoincludedforcomparison.

Whennocoldrollingisapplied,thescatteringintensityofthe V-containingmaterialissimilartothatoftherecrystallised,non-V containingmaterial,showingthatthepresenceofVinsolidsolution andalsothedifferenceingrainsizedoesnothaveasignificant effectontheneutronscatteringintensity.Thesamplewith15% coldreductionshowsascatteringintensityintermediatebetween thatofthe0%and50%rolledmaterials.Italsoexhibitsasimilar power-lawscatteringbehaviour,withanexponentofabout−3.5. Thisbehaviourisconsistentwithwhatisknownfromthescattering ofdislocations,whichhavebeenshowntoproduceaQ−3behaviour

[36].Thedifferenceinscatteringintensitybetweenthethreecold rollingreductionscanthereforebeattributedtothedifferencein thedensityofdislocations,twinsandstackingfaultsintroducedby theplasticstrain.

3.2.3. EffectofHchargingonthefullhardsample(sampleB) WehaveevaluatedtheeffectofHchargingonthescattered intensityfromfullhard samplescoldrolledto50%reduction(V insolidsolution).Fig.5showsthecomparisonatsmallscattering vectorsofthescatteringintensityfromtheuncharged(B)sample

(6)

0.1 1 10 100 0.04 0.03 0.02 0.01 0.008 Uncharged (1.9 ppm H) Charged (2.5 ppm H) Outgassed (0.8 ppm H)

In

te

n

si

ty

(

cm

-1

)

Q (Å-1)

V in solid solution - 50% rolling

Fig.5. IversusQ.EffectofHconcentrationonscatteringfromcrystaldefectsofthe sample(B).

(measuredHcontent: 1.9ppmwt.),inthesamesampleafterH charging(measuredHcontent:2.5ppmwt.)andaftercharging fol-lowedbyoutgassingbyannealingundervacuumfor24hat260◦C

(measuredHcontent:0.8ppmwt.).

Whenthefullhardsample(B)ishydrogenchargedthe scatter-ingintensitydecreases,whilethesamepowerlawexponentisstill observed.Outgassingreversesthischange:theoutgassedsample showsthesamescatteringintensityastheunchargedsample.This changeofintensityoccurringafterHchargingislikelyduetothe segregationofmobileHtodefectsthatresultsinadecreaseofthe associatedstrainfieldsandthereforetothescatteringintensitythat isrelatedtothemagnitudeofthisstrainfield.Duetoitslarge par-tialmolarvolume,atomicHisknowntobesensitivetolocalstress fields[37].Thecompletereversibilityoftheintensitychangewith outgassingimpliesthatthistreatmentremovesmostorallofthe Hsegregatedtocrystallinedefects.

Thefactthatthenuclearscatteringintensitydecreaseswiththe additionofHisnotexpectedfromtheexistingliterature,e.g.Ross etal.[20].Theseauthorsmeasuredthatthescatteringintensity, associatedwithH-dislocationinteractionsinpalladium,increases withHanddecreaseswithD.However,besidesthelarge differ-enceintheHsolubilityinPdandFe–Mn–CTWIPsteel,different typesofdefectsmaybepresentineachexperiment.Moreovertheir calculationsdonotincludetheinfluenceoftheeffectofstress relax-ationduetotrappedH[38].InourcasetheFe–Mn–CTWIPsteels arestronglytwinnedandhavelowstackingfaultenergy.Thislow energyinducesalargenumberofstackingfaultsduetothe disso-ciationofdislocations.AccordingtotheobservationofHtrapping on«martensite[25],itisanticipatedthatHsegregationonthese stackingfaultsalsooccurs.

Atlargescatteringvectors, noeffectofHisobserved.Thisis quitereasonablebecauseatlargeQthecrystallinedefectsdonot contributemuchtothescatteredintensity.

3.2.4. InteractionbetweenHandtheVCprecipitates(sampleC) WehaveevaluatedtheeffectofHchargingonsample(C) con-tainingVCprecipitates.Inthiscaseastrongchargingprocedure wasfollowed,resultingin72ppmwt.ofHinthechargedsample. Afteroutgassingfor16hat150◦CtheremainingHconcentration

was11.5ppmwt.

Fig.6showsthecomparisonofthescatteringintensityofthe threesamples,namelyunchargedspecimen(C),specimen(C)after Hchargingandspecimen(C)afterHchargingandoutgassing.At lowscatteringvectors,itisobservedthatthescatteringintensity decreaseswiththeadditionofH,andincreaseswithoutgassing. Thisbehaviourissimilartothatobservedinthefullhardsample,

0.001 0.01 0.1 1 10 0.1 0.01 Uncharged (0.7 ppm H) Charged (72 ppm H) Outgassed (11.5 ppm H)

Intensity (cm

-1

)

Q (Å

-1

)

VC containing alloy

Fig.6. IversusQforsamples(C)withVCprecipitatesatdifferentconcentrationsof H.

anditcanbeassumedthatitisrepresentativeoftheinteraction betweenHandthecrystallinedefectsremaininginthesample. Actually,whenthesampleis outgassedat150◦C thescattering

intensityatlowQincreasestovaluesthataresignificantlyhigher thanthereferencesample.Thisislogicalifweassumethatthereis strongoutgassingofHreversiblytrappedatcrystallinedefectsbut notfromtheresidualHtrappedbytheVCprecipitates.

Atlargerscatteringvectors,wheremostofthesignalrelatesto theVCprecipitates,theoppositebehaviourisfound,namelythe scatteringintensityincreaseswiththeadditionofHanddecreases againwithoutgassing.

TheintensityvariationscanbemoreeasilyobservedinaKratky plotofI·Q2versusQ[35](seeFig.7).Onthisplotthescattering

vectorattheintensitymaximumattheshoulderisinversely pro-portionaltotheaverageprecipitateradiusandtheareabelowthe curveistheintegratedintensitythatdependsontheprecipitate volumefractionandthescatteringcontrastbetweenthe precipi-tatesandmatrix.ThisplotshowsthattheadditionofHstrongly increasesthescatteringintensity(byapproximately25%). More-over,thisincreaseofintensityisclosetoamultiplicationfactorin therangeofscatteringvectorswheretheintensityisdominated bythesignalofprecipitates,sincetheshapeofthesignalisnot muchaffected.Whenthesampleisoutgassedat150◦C,the

inten-sityisobservedtodecrease,butstayssignificantlyhigherthanthat ofthereferencesample,whichisconsistentwiththeremainingH concentrationmeasuredafterdegassing(11ppmvs.0.7ppminthe unchargedsample).

Fig.7.KratkyplotofIQ2versusQforsamples(C)withVCprecipitatesatdifferent concentrationsofH.

(7)

3.2.5. QuantitativeassessmentoftheinteractionbetweenVC precipitatesandH

ThechangeinneutronscatteringintensitywithHchargingand outgassingobservedinsample(C)demonstratesthatan interac-tionexistsbetweenH present inthealloy andVCprecipitates. TheincreaseinneutronscatteringintensitywithHcharging cor-respondstoanincreaseofthecontrastinscatteringlengthdensity betweentheprecipitatesandmatrix.Sincethecoherentnuclear cross-sectionofHisnegativeandtheprecipitatescatteringlength densityissmallerthanthatofthematrix,thiscontrast enhance-mentcorrespondstoHtrappingbytheprecipitates.Wehaveseen that theincrease of intensitymeasuredin the H-charged sam-plecorrespondednearlytoa simplemultiplicationfactorofthe reference(uncharged)samplesignal.Thisexperimentaldatais con-sistentwithahomogeneoustrappingofHinsidetheprecipitates, althoughitisnotpossibletoruleoutaheterogeneoustrappingof Hinthevicinityoftheprecipitate–matrixinterface.Htrappingof TiCparticlesinbccsteelshasbeenshowntooccurbothatthe parti-cle/matrixinterfaceandinthebulkandtodependonthecoherency oftheprecipitate/matrixinterface[39].MoreoverHtrappinginthe bulkofsemi-coherentandincoherentg′(Ni

3Al)precipitatesinfcc

Nibasesuperalloyshasbeenevidencedbytritiumautoradiography

[40].AtomisticcalculationshaveshownthatsuchaHsegregationin Ni3AlprecipitatesistheresultofalargerHsolubilityintheNi3Al

phasethaninNibasematrix[41].SimilareffectsmayexplainH trappinginthebulkofVCprecipitates.

Within this hypothesis, we can evaluate the relationship betweenthetrappedHcontentintheprecipitatesandthechange inneutronscatteringintensity.

Foratwo-phasesystem,theneutronscatteringintensityI(Q) isproportionaltothesquareofthecontrastinnuclearscattering density[35]:

I(Q)∝(p−m)2

TheeffectofHonthenuclearscatteringlengthofthematrixcan beneglectedsincetheHconcentrationisverylowsothat: m∼= 4bFe+bMn

5˝m

TocalculatetheeffectofHintakeintheprecipitates,wewilluse theapproximationthatthelatticeparameteroftheVCprecipitates isnotchangedsignificantlybythepresenceofH.Wewilldefine thefractionXpHofHinsidetheprecipitatesastheratiobetween

thenumberofHatomsandhalfthenumberof(V+C)atoms: XpH∼= 2nH

nV+nC

Then the nuclear scattering length density of the precipitates becomes:

p∼= (1/2)bV

+(1/2)bC+XpHbH ˝p

ThefractionofH in theprecipitatesXpH canbetranslatedinto

theoverallconcentrationofHinthesamplethatistrappedinthe precipitates(XtotHinatomicfraction):

XtotH=fv˝m

˝pXpH

And finally the overall concentrationof H in thesample CtotH

trappedintheprecipitatescanbeexpressedinppmwt.: CtotH=

106 55.4XtotH

Withtheabove equations wecan relatethe relativechange in scatteringintensity1I/ItotheamountofHtrappedinsidethe pre-cipitates(expressedasanoverallHconcentrationinthesample).

0 20 40 60 80 100 12 10 8 6 4 2 0 0.2% Volume fraction 0.3% Volume fraction 0.4% Volume fraction ∆ I / I (% )

H concentration trapped in the precipitates (ppm wt) Fig.8.1I/IversusconcentrationofHtrappedintheVCprecipitates.

Fig.8showsaplotofthisrelativevariationofintensityfordifferent valuesoftheprecipitatevolumefraction.

Experimentally,itisdifficulttoobtainaprecisioninintensity calibration that is betterthan 10–15% in SANS data, sothat it isunlikelythat,fortheprecipitatevolumefractionsinvestigated inthis work,H trappingquantitiescorrespondingtoan overall concentrationofless than 2ppm wt.canbe detectedwiththis technique.

Therelativeincreaseinneutronscatteringintensityobserved afterstrongHcharginginalloy(C)(seeFig.7)isabout25%. There-forethereshouldbeabout∼5ppmwt. ofHtrapped insidethe precipitates(assuming0.3%volumefractionofVC).Thevast major-ity (67ppm wt. H) must therefore be segregated tocrystalline defectsandgrainboundariesorhomogeneouslydistributedinthe matrix.35ppmwt.ofHtrappedinavolumefractionofabout0.3% correspondstoanatomicfractionofHintheprecipitatesofabout 10%.Aftervacuumoutgassing at150◦C thescatteringintensity

decreases.1I/Iisabout12%morethanthereferencesamplewhich suggeststhatthereremains∼3ppmwt.ofHtrappedinthe pre-cipitatesafteroutgassing.Thus,itappearsthattheVCprecipitates arereasonablyeffectiveirreversibleHtrappingsitesfor moder-ateHconcentrations,uptoafewppmwt.Fromthedataanalysis carriedoutinthepresentwork,theHtrappingappearstooccur homogeneouslywithintheprecipitates.

4. Conclusion

InthisworkwehavestudiedtheinteractionbetweenHand an austenitic Fe–Mn–C TWIP steel containing V with different microstructuresusingTEMandSANS.Themainconclusionsthat canbedrawnfromthisexperimentalstudyarethefollowing: -No interaction between H and V in solid solution has been

detected.

-AsignificantinteractionbetweenHandstructuraldefects intro-ducedbyplasticdeformation(coldrolling)hasbeenmeasured. Namely,theneutronscatteringintensityrelatedtothese struc-turaldefectswasloweredbytheintroductionofHinthesamples. Thisispossiblyduetoareductioninthestrainfieldofthepartial dislocationsduetothesegregationofH.Thiseffectwasreversible uponoutgassing.

-AsignificantinteractionbetweenHandVCprecipitateshasbeen measured.Namely,anincreaseoftheneutronscattering inten-sityisobservedwhenthesamplesarechargedwithH.Fromthe

3NosignsofdamageormacroscopicH

(8)

intensity increase this is consistent with the homogeneous trappingofHwithintheprecipitatesratherthanatthe precip-itate/matrixinterface.Inthestudiedconditions,wehaveshown thatapproximately5ppmwt.ofHcouldbetrappedinthisway. Thiseffectwasnotcompletelyreversibleuponsampleoutgassing at150◦C,showingthattheVCprecipitatesaremoderatelystable

Htrappingsites. Acknowledgements

TheauthorswouldliketothankC.DewhurstandD.Bowyeron D11atILL,A.RadulescuonKWS-2attheJulichNeutronCentre fortheirinstrumentalhelpsandG.PetitgandandP.Bargesfrom ArcelorMittalfortheirexperimentalworks.Wealsoacknowledge VANITECfortheirfinancialcontribution.

References

[1]C.Scott,S.Allain,M.Faral,N.Guelton,Rev.Metall.103(2006)293.

[2]J.K.Kim,L.Chen,H.S.Kim,S.K.Kim,Y.Estrin,B.C.DeCooman,Metall.Mater. Trans.A40A(2009)3147.

[3] G.Frommeyer,U.Brüx,P.Neumann,ISIJInt.43(2003)438.

[4]H.Idrissi,K.Renard,L.Ryelandt,D.Schryvers,P.J.Jacques,ActaMater.58(2010) 2464.

[5]O.Grässel,L.Krüger,G.Frommeyer,L.W.Meyer,Int.J.Plast.16(2000)1391. [6] A.Dumay,J.Chateau,S.Allain,S.Migot,O.Bouaziz,Mater.Sci.Eng.A483–484

(2008)184.

[7]A.Zinbi,A.Bouchou,Mater.Design31(8)(2010)3989. [8]S.Yamasaki,T.Takahashi,Tetsu-to-Hagane83(7)(1997)454.

[9]C.Scott,B.Remy,J.-L.Collet,A.Cael,C.Bao,F.Danoix,B.Malard,C.Curfs,Int.J. Mater.Res.(formerlyZ.Metallkd.)102(2011)5.

[10]K.Takai,H.Shoda,H.Suzuki,M.Nagumo,ActaMater.56(2008)5158. [11]T.Ohmisawa,S.Uchiyama,M.Nagumo,J.AlloysCompd.356–357(2003)290. [12]E.Tal-Gutelmacher,D.Eliezer,E.Abramov,Mater.Sci.Eng.A445–446(2007)

625.

[13]K.Ebihara,T.Suzudo,H.Kaburaki,K.Takai,S.Takebayashi,ISIJInt.47(2007) 1131.

[14]Y.Su,Y.Tomota,J.Suzuki,M.Ohnuma,ISIJInt.51(9)(2011)1534–1538.

[15]A.Oudriss,S.Frappart,I.Legrand,J.Bouhattate,J.Creus,C.Savall,X. Feau-gas,in:L.Duprez(Ed.),SteelyHydrogenConferenceProceedings,OCAS,Ghent, Belgium,28–29September,2011.

[16]J.Chêne,in:L.Duprez(Ed.),SteelyHydrogenConferenceProceedings,OCAS, Ghent,Belgium,28–29September,2011.

[17]Y.Nishiyama,P.Langan,H.Chanzy,J.Am.Chem.Soc.124(31)(2002)9074. [18]H.Sakaguchi,A.Kohzai,K.Hatakeyama,S.Fujine,K.Yoneda,K.Kanda,T.Esaka,

Int.J.HydrogenEnergy25(12)(2000)1205.

[19]M.Zanarini,P.Chirco,M.Rossi,G.Baldazzi,G.Guidi,E.Querzola,M.G. Scan-navini,F.Casali,A.Garagnani,A.Festinesi,NuclearSci.42(4)(1995)580. [20]D.K.Ross,K.L.Stefanopoulos,K.S.Forcey,I.Iordanova,Z.Phys.Chem.183(1994)

29.

[21]M.Maxelon,A.Pundt,W.Pycknout-Hintzen,J.Barker,R.Kirchheim,ActaMater. 49(2001)2625.

[22]C.Kluthe,T.Al-Kassab,J.Barker,W.Pycknout-Hintzen,R.Kirchheim,Acta Mater.52(2004)2701.

[23]A.Ulbricht,J.Böhmart,M.Uhlemann,G.Müller,J.Nucl.Mater.336(2005)90. [24] M.Ohnuma,J.Suzuki,F.Wei,K.Tsuzaki,ScriptaMater.58(2008)142. [25]J.Chêne,J.OvejeroGarcia,C.PaesdeOliveira,M.Aucouturier,P.Lacombe,J.

Microsc.Spectros.Electron.4(1979)37.

[26] A.M.Brass,J.Chêne,in:T.Magnin(Ed.),2ndInt.Conf.onCorrosion–Def. Inter-actions,vol.21,TheInst.ofMater.fortheEur.Fed.ofCorrosion,Nice,France, 1996,p.196.

[27]P.Bastien,P.Azou,C.R.Acad.Sci.232(1951)1845. [28]J.A.Donovan,Metall.Trans.A7A(1976)1677. [29]A.M.Brass,J.Chêne,Mater.Sci.Eng.A242(1998)210. [30]J.Chêne,A.M.Brass,ScriptaMater.40(1999)537.

[31]F.Lecoester,J.Chêne,D.Noel,Mater.Sci.Eng.A262(1999)173.

[32]A.Dumay,Ph.D. attheInstitutNationalPolytechnique deLorraine,2008,

http://pegase.scd.inpl-nancy.fr/theses/2008DUMAYA.pdf. [33]C.Sykes,H.H.Burton,C.C.Gegg,J.IronSteelInst.156(1947)155.

[34] T.Dieudonné,L.Marchetti,F.Jomard,M.Wery,J.Chêne,C.Allely,P.Cugy,C. Scott,JJC,PressesdesMines,2011,p.17.

[35]O.Glatter,O.Kratky,SmallAngleX-rayScattering,AcademicPressInc.,London Ltd.,1982.

[36] J.E.Epperson,B.A.Loomis,J.S.Lin,J.Nucl.Mater.108(1982)476. [37]A.-M.Brass,J.Chêne,J.Phys.IVFrance09(1999)4.

[38]M.CanUslu,D.Canadinc,J.Mater.Sci.45(2010)1683. [39]F.G.Wei,K.Tsuzaki,Metall.Mater.Trans.A37(2)(2006)331.

[40] D.Roux,J.Chêne,A.-M.Brass,in:A.W.Thompson,N.R.Moody(Eds.),Hydrogen EffectsinMaterials,TMS,Warrendale,PA,1996,p.923.

[41]M.I.Baskes,J.E.Angelo,N.R.Moody,in:A.W.Thompson,N.R.Moody(Eds.), HydrogenEffectsinMaterials,TMS,Warrendale,PA,1996,p.77.

Figure

Fig. 1. Microstructural observations of sample (C). (a) Bright field TEM micrograph showing the partially recrystallised grain structure
Fig. 3 shows the scattered intensities in a log–log plot for the three initial (uncharged) microstructures.
Fig. 5. I versus Q. Effect of H concentration on scattering from crystal defects of the sample (B).
Fig. 8. 1I/I versus concentration of H trapped in the VC precipitates.

Références

Documents relatifs

On the high temperature side of the Ti minimum, the logarithmic frequency dependence, typical for 2-d diffusion is observed. On the low temperature side, T, is well

Hydrogen bond dynamics in water studied by depolarized Rayleigh

To study the spin dynamics in the ordered and paramagnetic region we performed neutron scattering measurements with energy analysis (TOF [I] and 3-axis method) on TmSe and

The irduced current method, performed in a scanning electron microscope (SEM/EBIC) , has been used to characterize the electrically active defects in undoped n type, annealed

Abstract.- Secondary recrystallization id grain-oriented silicon steel is studied by the high-temperature background damping. Abnormal grain growth involves an abrupt drop of

The recently proposed method [16] to determine the spin-wave stiffness in the helical magnets based on DM interaction in the FP state, using polarized small-angle neutron

temperature is an intrinsic property of the ~NH) mode or is related to the temperature evolution of librational modes of the methyl group. In order to estimate the intrinsic

2014 An intensity peak in small angle neutron scattering in a polyelectrolyte solution is found above a characteristic concentration c0 of the polyelectrolyte.. This is