• Aucun résultat trouvé

Comment on “Ultrahigh temperature granulites and magnesian charnockites: Evidence for the Neoarchean accretion along the northern margin of the Kaapvaal craton” by Rajesh et al.

N/A
N/A
Protected

Academic year: 2021

Partager "Comment on “Ultrahigh temperature granulites and magnesian charnockites: Evidence for the Neoarchean accretion along the northern margin of the Kaapvaal craton” by Rajesh et al."

Copied!
4
0
0

Texte intégral

(1)

PrecambrianResearch255(2014)455–458

ContentslistsavailableatScienceDirect

Precambrian

Research

j ou rn a l h o m e pa ge :w w w . e l s e v i e r . c o m / l o c a t e / p r e c a m r e s

Commentary

Comment

on

“Ultrahigh

temperature

granulites

and

magnesian

charnockites:

Evidence

for

the

Neoarchean

accretion

along

the

northern

margin

of

the

Kaapvaal

craton”

by

Rajesh

et

al.

O.

Laurent

a,∗

,

G.

Nicoli

b,c

,

A.

Zeh

a

,

G.

Stevens

b

,

J.-F.

Moyen

c

,

A.

Vezinet

c,b

aInstitutfürGeowissenschaften,FacheinheitMineralogie,JohannWolfgangGoetheUniversität,Altenhöferallee1,D-60438FrankfurtamMain,Germany bCentreforCrustalPetrology,DepartmentofEarthSciences,StellenboschUniversity,PrivateBagX1,Matieland7602,SouthAfrica

cUMR6524-CNRS-IRD,UniversitéJean-Monnet,23rueduDr.Michelon,42023Saint-Étienne,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15May2014 Accepted14July2014 Availableonline25July2014

1. Introduction

Over the years, the Southern Marginal Zone (SMZ) of the Limpopo mobilebelt hasbeenintensively studied,as it poten-tiallyresultsfromoneoftheoldestcontinent-continentcollision onEarth.Indeed,thegeneralconsensusabouttheevolutionofthis terraneisthatitunderwentasingletectono-metamorphiceventat ∼2.7Ga,ascribedtocollisionbetweentheKaapvaalandZimbabwe Cratons(Bartonetal.,2006;EglingtonandArmstrong,2004;Kröner etal.,2000;Kreissigetal.,2001;Roeringetal.,1992;Rigbyetal., 2008;StevensandvanReenen,1992a,b;Zehetal.,2009).Thestudy oftheLimpopobelt,andinparticulartheSMZ,isthereforeof pri-maryinteresttounravelthetectonicregimesthatprevailedback inthelate-ArcheanandtheirevolutionthroughoutEarthhistory.

Inarecentcontribution,Rajeshetal.(2014)proposedanew “out-of-the-box”interpretationofthegeologicalrecordintheSMZ, whichwouldrepresentamicro-continentaccretedtothenorthern marginoftheKaapvaalCratonduringtheNeoarcheanat2.72Ga. Thekeyelementonwhichthisinterpretationisbasedisthespatial andtemporalassociationofultra-hightemperature(UHT) gran-ulitesand magnesian charnockites,which would be a criterion toidentifysubductionandcollisionsettingsinPrecambrian ter-ranes.Todemonstratetheoccurrenceofboth rocktypesinthe SMZ, Rajeshet al.(2014) provide (1) newzirconU–Pb ages of 2.72Ga,obtainedfrommetamorphiczirconovergrowthsin pro-posedUHTmetamorphic rocks, and(2) anewinterpretationof major-elementdatafromthespatially associatedMatokpluton,

∗ Correspondingauthor.Tel.:+496979840133.

E-mailaddresses:laurent@em.uni-frankfurt.de,oscarlaurent86@gmail.com

(O.Laurent).

originallyproducedbyBohlender(1992),toreflectamagmaticarc settingatthetimeofintrusion.

Thisnewinterpretation,however,isinconflictwithprevious modelsandotherpublisheddata,whichstronglysupportthat(1) theSMZunderwentmetamorphismat“normal”granulitefacies temperaturesof850–875◦C,withthepreservationofasubstantial volumeofpeakmetamorphicbiotiteinmostrocks;(2)granitoids oftheMatokplutonwerenotgeneratedwithinanarcsettingbut ratherduringthepost-collisionalstageoftheca.2.72Gaorogeny,as testifiedbyboththeirage(∼2.68Ga)andchemicalcompositions; (3)theSMZrepresentreworkedmaterialoftheadjacentand over-thrustedPieterburgBlock,andthuscannothavebeenanisolated terranepriortoamalgamationwiththeKaapvaalCraton.

2. UHTmetamorphism

AdetailedcommentontheoccurrenceofUHTmetamorphism proposedbyBelyaninetal.(2012)andRajeshetal.(2014)was providedbyNicolietal.(2014);thereaderisreferredtothiswork forfurtherdetails,onlythekeypointsbeingrepeatedhere.The P–TestimatessuggestedbyBelyaninetal.(2012)andRajeshetal. (2014)(i.e.∼1000◦Cand∼12kbar)areinconsistentwithbothfield

observationsandexperimentalstudies.Thedetailedmetamorphic analysisprovidedbyTayloretal.(2014)clearlydemonstratesthat the presence of peak metamorphic biotite in theBandelierkop formationmetapelitesisinconsistentwithpeakmetamorphic tem-peraturesin excessof 900◦C. Thisis inagreementwithearlier metamorphicstudies(e.g.StevensandvanReenen,1992a,b),more recent conclusions from phase equilibrium modelling (Koizumi et al.,2014),as wellasa verylargebody of experimentaldata onpartialmeltingofbiotite-bearingmetasediments(e.g.Montel http://dx.doi.org/10.1016/j.precamres.2014.07.010

(2)

456 O.Laurentetal./PrecambrianResearch255(2014)455–458

andVielzeuf,1997;Pati ˜noDouceandHarris,1998;Pati ˜noDouce andJohnston,1991;PickeringandJohnston,1998;Stevensetal., 1997;VielzeufandHolloway,1988)arguingforatemperaturepeak aroundfluid-absentbiotitebreakdownpartialmeltingconditions, i.e.820–870◦C.

Inadditiontotheseconsiderationsaboutthepeak tempera-tureattainedbytheSMZ,itisimportanttonotethatRajeshetal. (2014)providenometamorphicanalysisforthetwodated sam-ples(i.e.DR-19CandDR-20).Therefore,itisnotclearwhetherthe obtainedmetamorphicagesdocumentedbyRajeshetal.(2014)

actuallyreflectpeakmetamorphism,andifso,ifthedated sam-plesunderwentthesameP–Tconditionsasthesampleusedforthe metamorphicstudy(i.e.DR-19A).

3. GeochemicalsignatureoftheMatokpluton

3.1. Terminologyissues

Rajeshet al. (2014) suggest that the ∼2.68Ga granitoids of theMatokplutonare“magnesiancharnockites”,afamilyofrocks supposedlyformedinsubductionsettings(FrostandFrost,2008; Rajesh,2012),beingcompositionallysimilartoarcmagmas.Inthis context,itmustbenotedthatthe“charnockite”appellationusedby

Rajeshetal.(2014)isincorrect,becauseitshould(strictly speak-ing)onlybeusedfororthopyroxene-bearinggranites(Frostand Frost,2008).However,theMatokplutonisacompositeintrusion, madeupofdifferentmagmaticrockshavingawiderangeof sil-icacontents(SiO2=55–70wt.%;Laurentetal.,2014andFig.5f–g

ofRajeshetal.,2014),i.e.notonlygranites.Thismisuseis confus-ing,asBohlenderetal.(1992)clearlydemonstratedthatthereare atleasttwodifferentgenerationsoforthopyroxene-bearingrocks intheSMZ,namely(1)metamorphiccharnockites(sensustricto), inwhichorthopyroxeneisthedominantmaficphaseandformed attheexpenseofbiotite,presumablyduringdehydrationmelting, forexampleintheBaviaanskloofTTGgneisses;and(2)asuiteof so-called“charnockiticrocks”(jotunites, enderbitesand charno-enderbites),restrictedtotheMatokplutonandigneousinorigin. Theselattercontainorthopyroxeneinplaces,butalwaysmuchless thanclinopyroxene,andbothphasesarecompletelyabsentinthe morefelsicrocks(Bohlender,1992;Laurentetal.,2014;Rapopo,

2010).Therefore,itislikelythatseveral,ifnotmost,ofthe sam-plesplottedbyRajeshetal.(2014)intheirdiscriminationdiagrams arenotcharnockitesatall,andprobablynoteven orthopyroxene-bearing.

3.2. Matokgranitoidsarenotsimilartoarcmagmas

Apartfromtheterminologyissue,thegeochemicalarguments usedbyRajeshetal.(2014)todiscriminatethegeodynamic set-tingofthe“Matokcharnokites”arealsoproblematic.Indeed,the interpretationofmagmaticarcaffinitysolelyreliesontheuseof afewmajor-elementdata.Infact,manypreviousstudiesclearly showed that “subduction signatures” are commonly equivocal, evenwhentraceelementsystematicsareconsidered(e.g.Bédard, 2006;Rollinson,2009;Willboldetal.,2009).The“magnesian” sig-natureusedbyRajesh(2012)andRajeshetal.(2014)asasmoking guntoreflectasubductionoriginisthereforenotunambiguous,and couldalsocharacterizemagmasformedinverydifferent geody-namicenvironments.Tosupportthemagmaticarcsetting,Rajesh etal.(2014)arguethatthe“Matokcharnockites”formedby dehy-drationmeltingofamphibolites,inaroughlysimilarprocesstothat proposedfortheformationofArcheanTTGs(e.g.MoyenandMartin, 2012andreferencestherein).However,ArcheanTTGs,although mostlymagnesianincharacter,canbegeneratedinawiderange ofgeodynamicenvironments(Fig.1),notnecessarilyrequiringa convergentplatemargin(Moyen,2011;MoyenandMartin,2012). Inaddition,themagnesiansignatureoftheMatok “charnock-ites” is not that obvious. It is clear in Fig. 5f of Rajesh et al. (2014)thattheirsamplesarericherinFethantypical charnock-ites from the Northern Marginal Zone (NMZ), several of them straddlingtheboundarybetweenmagnesianandferroangroups definedbyFrostetal.(2001).Moreover,thediagrampresentedin Fig.5hofRajeshetal.(2014)alsoshowsthattheMatok granit-oidsfollowaverydistinctivetrendwithrespecttotheNMZones, characterizedbylowerAl2O3/CaOratios.Thesetwo

characteris-tics(highFeandlowAlcontents)havebeenrecentlyhighlighted byLaurentetal.(2014),whoconductedadetailed petrogenetic studyoftheMatokgranitoidsonthebasisof major-,trace ele-ment andSm–Nd isotopegeochemistryas wellasgeochemical modelling. In contrast tothe suggestionmade by Rajeshet al.

50 55 60 65 70 75

FeO

T

/ (FeO

T

+ MgO)

SiO

2

(wt.%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 55 60 65 70 75

SiO

2

(wt.%)

55 60 65 70 75 80

SiO

2

(wt.%)

High-Pressure TTG

«Hot» subduction zone

Delaminated restites beneath oceanic plateau

Medium-Pressure TTG

Melting a the base of a thick oceanic plateau Delamination at the base of orogenic crust

Low-Pressure TTG

«Intra-oceanic» differentiation Melting at the base of a thin oceanic plateau

Ferroan Magnesian Ferroan Magnesian Ferroan Magnesian

Fig.1. FeOt/(FeOt+MgO)vs.SiO2diagramofFrostetal.(2001)presentingthecompositionofrepresentativesamplesofthethreegroupsofsodicTTGsdefinedbyMoyen (2011).Asspecifiedonthetopofeachplot,thesedifferentgroupscanformincontrastedgeodynamicenvironments,implyingconvergentplatesettings,butalsointraplate orevendivergentones(e.g.intra-oceanicdifferentiationatamid-oceanridge–seeMoyen,2011fordetailsanddiscussion).Morethan90%ofTTGsaremagnesian,regardless thepetrogeneticgrouptheybelongtoandthusthegeodynamicsettinginwhichtheyformed.Thelightgreyfieldrepresentsthefieldof“magnesiancharnockites”defined byRajesh(2012).

(3)

O.Laurentetal./PrecambrianResearch255(2014)455–458 457 0.0 0.1 0.2 0.3 0.4 0.5 1.0 0.8 0.6 0.4 0.2

FeO

T

/ (FeO

T

+ MgO)

Al

2

O

3

/ SiO

2 A-type, ferroan granites Diorite Granodiorite Granite Oceanic arc Continental arc

(Both with SiO2 < 65 wt.%)

Matok pluton :

Modern arc magmas :

0.9 Ga-old HBG Fe-K suite (Southern Norway)

Fig.2. FeOt/(FeOt+MgO) vs. Al2O3/SiO2 diagramwhere thewhole-rock

com-positions of granitoids from the Matok pluton (data from Laurent et al., 2014) are reported, together with that of the Proterozoic “ferro-potassic” Hornblende–Biotite–GranitoidsuiteofsouthernNorway(datafromBogaertsetal., 2003andVanderAuweraetal.,2007)aswellastypicalA-type,Fe-richgranites andmodernsubduction-relatedmagmasfrombothcontinentalandoceanicarcs (>5000samplesfromtheGEOROCdatabase).InaverageandatsimilarSiO2contents

(<65wt.%),rocksfromtheMatokplutonclearlyshowhigherFeOt/(FeOt+MgO)and

lowerAl2O3/SiO2thanarcmagmas.

(2014),Laurentetal.(2014)concludedthattheMatokgranitoids areakin to“ferro-potassic”suites, very commonin Proterozoic terranes (e.g. Duchesne et al., 2010; Ferré et al., 1998; Peucat et al., 2005; Vander Auwera et al., 2011) and intermediate in composition between (1) Al-, Mg-rich sanukitoids and (2) Al-poor,Fe-richanorthosite–mangerite–charnockite–granite(AMCG) suites. This intermediate composition is well illustrated in the FeOt/(FeOt+MgO)vs.Al2O3/SiO2 diagramofFig.2.Thisdiagram

alsoshowsunequivocally thattheMatokgranitoidsareglobally moreferroanandlessaluminousthanmodern,classicalarc mag-masfrombothoceanicandcontinentalconvergentmargins(Fig.2).

4. Geodynamicmodel

ThegeodynamicmodelproposedbyRajeshetal.(2014)isthat theSMZwasamicrocontinent,whichwasaccretedtothenorthern marginoftheKaapvaalCratonby∼2.72Gaatthelatest,aftera periodofnorth-vergingsubduction.Thisinterpretation,however, sufferstwomajorproblems:

(1)This model is in conflictwith thefact that the Matok plu-ton(suggestedtobesubductionrelated)intrudedat∼2.68Ga (U–Pb agedata of Barton etal., 1992; Laurent etal., 2013; Zeh et al., 2009), whereas terrane collision happened at 2.71–2.72Ga,asindicatedbyU–Pbagesofmetamorphic zir-consobtainedfromgranulite-faciesrocksoftheSMZ(Rajesh etal.,2014; Tayloretal.,2014).Furthermore,field observa-tionsandadditionalagedatafromtheHoutRiverShearZone indicatethatupliftandsouthwardthrustingoftheSMZ gran-ulitesoverthePietersburgblockstartedpriortotheintrusion oftheMatokpluton,i.e.around2.70Ga(Kreissigetal.,2001; Laurentetal.,2013).Insummary,theMatokplutonisclearly 10–30Mayoungerthantheinferredageofcollision,suchthatit cannotberelatedtosubductionandratherrepresentsatypical post-collisionalintrusionasrecentlyproposedbyLaurentetal. (2014).

(2)AccretionoftheSMZasanindividualmicroterranetothe north-ernedgeoftheKaapvaalCratonisalsoatoddswithprevious studiesbasedonHf–Sr–Nd–Pbisotopes(e.g.Bartonetal.,1992, 2006;Kreissigetal.,2000;ZehandGerdes,2012;Zehetal., 2009).ThesedataunequivocallyshowthattheSMZandthe adjacentrocksofthePietersburgblockactuallybelongtothe samecrustaldomain.Specifically,theSMZresultsfrominternal reworkingofthePietersburgblockcrustowingtocontinental collisionat2.72Ga(Laurentetal.,2014;Zehetal.,2009,2013), withanorthward-locatedterranethatcouldberepresentedby theCentralZoneoftheLimpopobelt.Internalreworkingisfor instancesupportedbyPbisotopicdataindicatingsimilarlylow ␮-values(238U/204Pb)of≤10forallrocksoftheNorthern

Kaap-vaalCraton(includingtheSMZ),whichareverydifferenttothe high-␮rocksexposedintheCentralZoneoftheLimpopobelt andtheZimbabweCraton,bothhavingvalues≥11.5(Barton etal.,2006).CombinedageandHfisotopedataalsosupport thatallgranitoidsofthenorthernKaapvaalCraton,including theSMZ,formedbyreworkingofasinglecrustalcomponent, whichderivedfromadepletedmantlesourcebetween3.3and 3.0Ga(e.g.ZehandGerdes,2012;Zehetal.,2009,2013). Ortho-andparagneissesfromboththeSMZandthePietersburgblock also showundistinguishableNdmodel ages (2.9–3.2Ga),as wellassimilarmajor-andtrace-elementsystematics(Kreissig etal.,2000).Itisworthwhilenoting,inaddition,thatdetrital zircongrainsinthemetasedimentarysamplesinvestigatedby

Rajeshetal.(2014)yieldagesof∼3.40,∼3.33,3.00–2.95and 2.85–2.75Ga.Theseagesactuallycorrespondtothemain mag-maticepisodesinthePietersburgblock(Laurentetal.,2013; Zehet al.,2009).Theyoungestages(2.85–2.75Ga)are typi-calforgraniteemplacement(Turfloopbatholithandassociated intrusions;Hendersonetal.,2000;Kröneretal.,2000;Laurent etal.,2013;Zehetal.,2009),whereasallages≥2.95Gaarethat ofthePietersburgTTGs(Kröneretal.,2000;Laurentetal.,2013; Zehetal.,2009)andarealsorecordedbydetritalzirconsfrom low-tomediumgrademetasedimentaryrocksofthe Murchi-sonandPietersburggreenstonebelts(ZehandGerdes,2012; Zehetal.,2013).Alllinesofevidencethereforesupportthat rocksoftheSMZandthePietersburgblockbelongtothesame crustaldomain,butunderwentcontrastedP–Tevolutionduring the∼2.72Gacollisionevent.

5. Conclusion

TherecentcontributionbyRajeshetal.(2014)proposesanew geodynamicmodelfortheevolutionoftheSMZoftheLimpopo belt and theKaapvaalCraton in theNeoarchean,implying that bothterraneswereamalgamatedat∼2.72Gaasaresultof north-vergingsubductionandsubsequentcollision.Themainsupporting evidenceforsuchamodelisthespatialandtemporalassociation ofUHTgranulitesinonehand,andsubduction-relatedmagmatic rocksreferredtoas“magnesiancharnockites”ontheotherhand. However,theirargumentstosupportboth(1)UHTmetamorphic conditionsintheSMZ;and(2)asubduction-relatedoriginforthe Matokgranitoids areunreasonable and/orequivocal. Moreover, thisnewgeodynamicmodeldoesnotfitatallwiththeresultsof agreatdealofpreviousstudiesinthearea,andmustthereforebe regardedwithsomecriticism.

Nevertheless,webelievethatthedatapresentedbyRajeshetal. (2014),especially theirnewU–Pb agesondetritalzircons from theSMZ,providevaluable information regarding(1) thetiming ofgranulite-faciesmetamorphismandcontinentalcollisioninthis terrane; and (2) theprovenanceof thestudiedmetasediments. Thesenewdatamustbereconsideredinthescopeofongoingwork

(4)

458 O.Laurentetal./PrecambrianResearch255(2014)455–458

abouttheevolutionofthePietersburgblockandtheSMZduring theNeoarchean.

References

BartonJr.,J.M.,Doig,R.,Smith,C.B.,Bohlender,F.,vanReenen,D.D.,1992.Isotopic andREEcharacteristicsoftheintrusivecharnoenderbiteandenderbite geo-graphicallyassociatedwiththeMatokpluton,Limpopobelt,southernAfrica. PrecambrianRes.55(1–4),451–467.

BartonJr.,J.M.,Klemd,R.,Zeh,A.,2006.TheLimpopobelt:aresultofArcheanto Pro-terozoic,Turkic-typeorogenesis?GeologicalSocietyofAmericaSpecialPaper 405,315–332.

Bédard,J.H.,2006.Acatalyticdelamination-drivenmodelforcoupledgenesisof Archaeancrustandsub-continentallithosphericmantle.Geochim.Cosmochim. Acta70(5),1188–1214.

Belyanin, G.A., Rajesh, H.M., Sajeev, K., van Reenen, D.D., 2012. Ultrahigh-temperature metamorphism from an unusual corundum+orthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, LimpopoComplex,SouthAfrica.Contrib.Mineral.Petrol.164,457–475.

Bogaerts,M.,Scaillet,B.,Liégeois,J.-P.,VanderAuwera,J.,2003.Petrologyand geochemistryoftheLyndgalgranodiorite(SouthernNorway)andtheroleof fractionalcrystallizationinthegenesisofProterozoicferro-potassicA-type granites.PrecambrianRes.124,149–184.

Bohlender,F.,1992.Igneousandmetamorphiccharnockiticrocksassociatedwith theMatokplutonandtheirsignificanceintheLimpopoorogeny.Ph.D.thesis, RandAfrikaansUniversity,Johannesburg,SouthAfrica.

Bohlender,F.,VanReenen,D.D.,BartonJr.,J.M.,1992.Evidenceformetamorphic andigneouscharnockitesintheSouthernMarginalZoneoftheLimpopobelt. PrecambrianRes.55(1–4),429–449.

Duchesne,J.C.,Martin,H.,Baginski,B.,Wiszniewska,J.,VanderAuwera,J.,2010.The originofferroan-potassicA-typegranitoids:thecaseofthehornblende-biotite granitesuiteoftheMesoproterozoicMazurycomplex,northeasternPoland.Can. Mineral.48(4),947–968.

Eglington,B.M.,Armstrong,R.A.,2004.TheKaapvaalCratonandadjacentorogens, southernAfrica:ageochronologicaldatabaseandoverviewofthegeological developmentofthecraton.S.Afr.J.Geol.107,13–32.

Ferré,E.C.,Caby,R.,Peucat,J.J.,Capdevila,R.,Monié,P.,1998.Pan-African, post-collisional,ferro-potassic graniteandquartz–monzoniteplutonsofEastern Nigeria.Lithos45,255–279.

Frost,B.R.,Barnes,C.G.,Collins,W.J.,Arculus,R.J.,Ellis,D.J.,Frost,C.D.,2001.A geo-chemicalclassificationforgraniticrocks.J.Petrol.42,2033–2048.

Frost,B.R.,Frost,C.D.,2008.Oncharnockites.GondwanaRes.13,30–44.

Henderson,D.R.,Long,L.E.,BartonJr.,J.M.,2000.Isotopicagesandchemicaland isotopiccompositionoftheArchaeanTurfloopBatholith,Pietersburg granite-greenstoneterrane,KaapvaalCraton,SouthAfrica.S.Afr.J.Geol.103(1),38–46.

Koizumi,T.,Tsunogae,T.,vanReenen,D.D.,2014.Fluidevolutionofpartially ret-rogressedmetapelitesfromtheSouthernMarginalZoneoftheNeoarchean LimpopoComplex,SouthAfrica:evidencefromphaseequilibriummodelling. PrecambrianRes.,http://dx.doi.org/10.1016/j.precamres.2014.04.017. Kreissig,K.,Holzer,L.,Frei,R.,Villa,I.M.,Kramers,J.D.,Smit,C.A.,vanReenen,D.D.,

2001.GeochronologyoftheHoutRiverShearZoneandthemetamorphismin theSouthernMarginalZoneoftheLimpopobelt,SouthernAfrica.Precambrian Res.109,145–173.

Kreissig,K.,Nagler,T.F.,Kramers,J.D.,VanReenen,D.D.,Smit,C.A.,2000.Anisotopic andgeochemicalstudyoftheKaapvaalCratonandtheSouthernMarginalZone oftheLimpopobelt:aretheyjuxtaposedterranes?Lithos50,1–25.

Kröner,A.,Jaeckel,P.,Brandl,G.,2000.Singlezirconagesforfelsictointermediate rocksfromthePietersburgandGiyanigreenstonebeltsandborderinggranitoid orthogneisses,northernKaapvaalCraton,SouthAfrica.J.Afr.EarthSci.30(4), 773–793.

Laurent,O.,Paquette,J.-L.,Martin,H.,Doucelance,R.,Moyen,J.-F.,2013.LA-ICP-MS datingofzirconsfromMeso-andNeoarcheangranitoidsofthePietersburgblock (SouthAfrica):crustalevolutionatthenorthernmarginoftheKaapvaalcraton. PrecambrianRes.230,209–226.

Laurent,O.,Rapopo,M.,Stevens,G.,Moyen,J.-F.,Martin,H.,Doucelance,R.,Bosq,C., 2014.ContrastingpetrogenesisofMg–KandFe–Kgranitoidsandimplications forpost-collisionalmagmatism:casestudyfromthelate-ArcheanMatokpluton (Pietersburgblock,SouthAfrica).Lithos196,131–149.

Montel,J.M.,Vielzeuf,D.,1997.Partialmeltingofmetagreywackes.2.Compositions ofmineralsandmelts.Contrib.Mineral.Petrol.128,176–196.

Moyen,J.-F.,2011.ThecompositeArchaeangreygneisses:petrologicalsignificance, andevidenceforanon-uniquetectonicsettingforArchaeancrustalgrowth. Lithos123,21–36.

Moyen,J.-F.,Martin,H.,2012.FortyyearsofTTGresearch.Lithos148,312–336.

Nicoli,G.,Stevens,S.,Buick,I.S.,Moyen,J.-F.,2014.Acommenton “Ultrahigh-temperaturemetamorphismfromanusualcorundum+orthopyroxene inter-growthbearingAl-MggranulitefromtheSouthernMarginalZone,Limpopo Complex,SouthAfrica”byBelyaninetal.Contrib.Mineral.Petrol.167,1022,

http://dx.doi.org/10.1007/s00410-014-1022-6.

Pati ˜noDouce,A.E.,Harris,N.,1998.ExperimentalconstraintsonHimalayananatexis. J.Petrol.39,689–710.

Pati ˜noDouce,A.E.,Johnston,A.D.,1991.Phaseequilibriaandmeltproductivityin thepeliticsystem:implicationsfortheoriginofperaluminousgranitoidsand aluminousgranites.Contrib.Mineral.Petrol.107,202–218.

Pickering,J.M.,Johnston,A.D.,1998.Fluid-absentmeltingbehavioroftwo-mica metapelite:experimentalconstraintsontheoriginofBlackHillsgranite.J.Petrol. 39,1797–1894.

Peucat,J.J.,Capdevila,R.,Drareni,A.,Mahdjoub,Y.,Kahouri,M.,2005.TheEglab massifintheWestAfricanCraton(Algeria),anoriginalsegmentoftheEburnean orogenicbelt:petrology,geochemistryandgeochronology.PrecambrianRes. 136,309–352.

Rajesh,H.M.,2012.Ageochemicalperspectiveontheepisodiccharnockite magma-tisminpeninsularIndia.Geosci.Front.3,773–788.

Rajesh,H.M.,Santosh,M.,Wan,Y.,Liu,D.,Liu,S.J.,Belyanin,G.A.,2014.Ultrahigh temperaturegranulitesandmagnesiancharnockites:evidenceforNeoarchean accretionalongthenorthernmarginoftheKaapvaalCraton.PrecambrianRes. 246,150–159.

Rapopo,M.,(MSc.thesis)2010.PetrogenesisoftheMatokpluton,SouthAfrica: implicationsontheheatsourcethatinducedregionalmetamorphisminthe SouthernMarginalZoneoftheLimpopobelt.UniversityofStellenbosch,South Africa.

Rigby,M.,Mouri,H.,Brandl,G.,2008.Areviewofthepressure-temperature-time evolutionoftheLimpopobelt:constraintsforatectonicmodel.J.Afr.EarthSci. 50(2–4),120–132.

Roering,C.,vanReenen,D.D.,Smit,C.A.,Barton,J.M.,deBeer,J.H.,deWit,M.J.,Stettler, E.H.,vanSchalkwyk,J.F.,Stevens,G.,Pretorius,S.,1992.Tectonicmodelforthe evolutionoftheLimpopobelt.PrecambrianRes.55,539–552.

Rollinson,H.,2009.NewmodelsforthegenesisofplagiogranitesintheOman ophi-olite.Lithos112(3–4),603–614.

Stevens,G.,Clemens,J.D.,Droop,G.T.R.,1997.Meltproductionduring granulite-faciesanatexis:experimentaldatafromprimitivemetasedimentaryprotoliths. Contrib.Mineral.Petrol.128,352–370.

Stevens,G.,vanReenen,D.D.,1992a.Partialmeltingandtheoriginofmetapelitic granulitesintheSouthernMarginalzoneoftheLimpopobelt,SouthAfrica. PrecambrianRes.55,303–319.

Stevens,G.,vanReenen,D.D.,1992b.ConstraintsontheformoftheP–Tloopinthe SouthernMarginalzoneoftheLimpopobelt,SouthAfrica.PrecambrianRes.55, 279–296.

Taylor,J.,Nicoli,G.,Stevens,G.,Frei,D.,Moyen,J.-F.,2014.Theprocessesthatcontrol leucosomecompositionsinmetasedimentarygranulites:perspectivesfromthe SouthernMarginalZonemigmatites,Limpopobelt,SouthAfrica.J.Metamorph. Geol.,http://dx.doi.org/10.1111/jmg.12087.

VanderAuwera,J.,Bogaerts,M.,Bolle,O.,Longhi,J.,2007.Genesisof intermedi-ateigneousrocksattheendoftheSveconorwegian(Grenvillian)orogeny(S Norway)andtheircontributiontointracrustaldifferentiation.Contrib.Mineral. Petrol.156,721–743.

VanderAuwera,J.,Bolle,O.,Bingen,B.,Liégeois,J.-P.,Bogaerts,M.,Duchesne,J.-C.,de Waele,B.,Longhi,J.,2011.Sveconorwegianmassif-typeanorthositesandrelated granitoidsresultfrrompost-collisionalmeltingofacontinentalarcroot.Earth Sci.Rev.107,375–397.

Vielzeuf,D.,Holloway,J.R.,1988.Experimentaldeterminationofthefluid-absent meltingreactionsinthepeliticsystem.Contrib.Mineral.Petrol.98,257–276.

Willbold,M.,Hegner,E.,Stracke,A.,Rocholl,A.,2009.Continentalgeochemical sig-naturesindacitesfromIslandandimplicationsformodelsofearlyArchaean crustformation.EarthPlanet.Sci.Lett.279(1–2),44–52.

Zeh,A.,Gerdes,A.,2012.U–PbandHfisotoperecordofdetritalzirconsfrom gold-bearingsedimentsofthePietersburgGreenstonebelt(SouthAfrica)–is thereacommonprovenancewiththeWitwatersrandBasin?PrecambrianRes. 204–205,46–56.

Zeh, A.,Gerdes, A., BartonJr.,J.M., 2009. Archeanaccretion andcrustal evo-lution oftheKalahari Craton–theZircon Ageand HfIsotopeRecordof GraniticRocksfromBarberton/SwazilandtotheFrancistownArc.J.Petrol.50, 933–966.

Zeh,A.,Jaguin,J.,Poujol,M.,Boulvais,P.,Block,S.,Paquette,J.-L.,2013.Juvenile crustformationinthenortheasternKaapvaalCratonat2.97Ga–implicationsfor Archeanterraneaccretion,andthesourceofthePietersburggold.Precambrian Res.233,20–43.

Figure

Fig. 1. FeO t /(FeO t + MgO) vs. SiO 2 diagram of Frost et al. (2001) presenting the composition of representative samples of the three groups of sodic TTGs defined by Moyen (2011)
Fig. 2. FeO t /(FeO t + MgO) vs. Al 2 O 3 /SiO 2 diagram where the whole-rock com- com-positions of granitoids from the Matok pluton (data from Laurent et al., 2014) are reported, together with that of the Proterozoic “ferro-potassic”

Références

Documents relatifs

The tobacco industry is unrelenting in its attempts to draw in new customers, grow its profits and undermine tobacco control efforts.. It monitors our activities and efforts so that

– South Balearic margin, Algerian basin, Seismic reflexion profiles, Gravity models, Magnetic anomalies, Kinematics, Transform

Figure 11: Fields highlighting the four different chondrite normalised REE patterns recognised amongst reconstructed bulk rock compositions of craton margin eclogites and

• The intended outcome of this scheme is a constantly shifting sound-world, with a self-organising structure that moves between order and chaos. • At step 3 balance in the

This fault accounts for the difference in peak metamorphic conditions between the Ketama Unit (200°C–300°C) and the Ait Amrânerunit (where the biotite-bearing upper

At the eastern tip of the Anti-Atlas, the Ougnat Massif shows large outcrops of the folded, low-grade volcaniclastic Saghro Group (SG), beneath the unconformable, Late

Techniques of Coptic scribes writing in Greek were explored by Elizabeth Buchanan in her paper ‘Connecting the Dots: Using Diaeresis as a Source of Information about Scribal

Even if the δ 13 C excursion does not have the same amplitude as the excursions associated with the oceanic anoxic events during the Valanginian, Aptian, and late Cenomanian