• Aucun résultat trouvé

The importance of local thermal non-equilibrium in the modeling of a fractured hot dry rock reservoir

N/A
N/A
Protected

Academic year: 2021

Partager "The importance of local thermal non-equilibrium in the modeling of a fractured hot dry rock reservoir"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01079184

https://hal.archives-ouvertes.fr/hal-01079184

Submitted on 31 Oct 2014

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

The importance of local thermal non-equilibrium in the

modeling of a fractured hot dry rock reservoir

Rachel Gelet, Benjamin Loret

To cite this version:

Rachel Gelet, Benjamin Loret. The importance of local thermal non-equilibrium in the modeling of a

fractured hot dry rock reservoir. Deep Goethermal Days, Apr 2014, Paris, France. �hal-01079184�

(2)

The importance of local thermal

non-equilibrium in the modeling of

a fractured hot dry rock reservoir

Rachel Gelet

(1)

, Benjamin Loret

(2)

THM coupled Results:

relative temperature outlet versus time along the production well:

The constitutive model

uses a two-phase

mixture and accounts for:

Characteristic times

Abstract

Thermal recovery from a HDR reservoir, viewed as a deformable fractured medium, is investigated with a focus on the assumption of local thermal non-equilibrium. The numerical model is used to investigate the coupled thermo-hydro-mechanical behavior of the Fenton Hill site. The time profile of the outlet fluid temperature displays a double-step pattern, a feature which is interpreted as characteristic of established local thermal non-equilibrium.

Summary

(1) Laboratoire GeM, Université de Nantes, ECN, CNRS, BP 92101, 44321 Nantes Cedex 3, France

(2) Laboratoire Sols, Solides, Structures – Risques, Université de Grenoble, B.P. 53X, 38041 Grenoble Cedex, France rachel.gelet@univ-nantes.fr • Numerical results compare well with experimental ones • The thermal drawdown curve is characterized by three stages, characteristic of local thermal non-equilibrium

Perspectives

Start experimental CHM and THM measures on real samples (ANR project in development) ≠

The significant contribution is the local thermal non-equilibrium Generalized diffusion - Hydraulic (Darcy) - Thermal (Fourier) Thermal convection Heat transfer Deformable Solid phase Fracture fluid phase

FE Simulation tools

• SUPG method

• Non-linear analysis treated with a Newton-Raphson algorithm • Fortran language

Site: Fenton Hill (US)

Compared with experimental

data

Unknown preferential flow path

Numerical setup

tFourier,frac. < tFourier,solid < tConvection,frac. < tDarcy,frac. 10 000 years < 1 500 years < [2 days – 7 years] < 1 hour

• Large difference in characteristic times between thermal diffusion in the solid phase and convection in the fluid phase Local thermal non-equilibrium is required to accurately represent the overall thermo-hydro-mechanical behavior The thermally induced effective stress will trigger thermal shrinkage across the body of the reservoir that may lead to permeability change and fluid loss

Inflow Outflow

• Three parameters of the model are calibrated, namely the permeability kf = 8.0 mD, the

porosity nf= 0.005 and the specific

inter-phase heat transfer coefficient κsf = 33.0

mW/m3.K

• Three stages characteristic of local thermal non-equilibrium are identified

• Local thermal non-equilibrium is characterized by a double step curve, while local thermal equilibrium is recognized by a single-step pattern Solid blocks 100 101 102 103 104 0 0.2 0.4 0.6 0.8 1 κ sf= 22.5 mW/m3.K κ sf = 33.0 mW/m3.K κ sf = 48.0 mW/m3.K Local thermal equilibrium

1ststage 2ndstage 3rdstage

Heat transfer Final depletion of the mixture Convection dominance of the fluid Time [days] D im ens ionl es s out le t te m pe ra tur e 2b Fracture fluid kf Injection well xE Production well

Références

Documents relatifs

Thermal diffusion is, however, important in the thermosphere where helium and hydrogen diffuse through a region with high temperature gradients.. For

Résumé. - Nous exposons le principe d'une nouvelle technique optique permettant de mesurer simultanément, de façon rapide et précise, le coefficient de diffusion thermique et

After a general overview of the thermal evolution of the active region and in particular of the pulsating loop bundle, we now focus on the catastrophic cooling of the plasma during

In this paper we derive such a theory, and we obtain a closed-form explicit expression for the most general problem of the force and heat transfer between two arbitrary bodies at

From a formal point of view, this mode is characte- rized by changes of the phase of the complex order parameter and by the fact, that the non-equilibrium increment 6n of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’étude des caractéristiques spermatiques des béliers de race Ouled Djellal nous a montré que :  L’effet quantitatif est plus significatif chez les béliers supplémentés,

Thermo-hydro-mechanical study of deformable porous media with double porosity in local thermal non-equilibrium.. Université de Grenoble; University of New South