• Aucun résultat trouvé

Study of the hot forging of weld cladded work pieces using upsetting tests

N/A
N/A
Protected

Academic year: 2021

Partager "Study of the hot forging of weld cladded work pieces using upsetting tests"

Copied!
16
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/9130

To cite this version :

Jingcai WANG, Laurent LANGLOIS, Muhammad RAFIQ, Régis BIGOT, Hao LU - Study of the hot

forging of weld cladded work pieces using upsetting tests - Journal of Materials Processing

Technology - Vol. 214, n°2, p.365-379 - 2014

Any correspondence concerning this service should be sent to the repository

Administrator :

archiveouverte@ensam.eu

(2)

tests

Jingcai

Wang

a,b

,

Laurent

Langlois

a,∗

,

Muhammad

Rafiq

a

,

Régis

Bigot

a

,

Hao

Lu

b

aLCFC,ParisTech,4rueAugustinFresnel,57070Metz,France

bWeldingEngineeringInstituteofShanghaiJiaoTongUniversity,200240Shanghai,China

Keywords: Multi-material Forgeability Stainlesssteel Weldcladding

a

b

s

t

r

a

c

t

Thispaperfocusesonthehotforgingofmulti-materialcladdedworkpiecesusingupsettingtests.The

casestudycorrespondstogasmetalarcweldingcladdingofaSS316Lonamildsteel(C15).Experimental

testsandsimulationsusingaslabmodelandthefiniteelementmethodwereperformedusingdifferent

temperaturesanddie/billettribologicalconditions.Asaresult,acrackmode,specifictocladbillets,was

observedexperimentallyandcanbepredictedbytheFEmethodusingaLathamandCockcroftcriterion.

ThematerialdistributionwaswellsimulatedbytheFEmethod;inparticular,theeffectsofthefriction

atdie/workpieceinterfaceonthecrackoccurrence,thematerialdistributionand,toalesserextent,

theforgingloadarewellpredicted.However,thelatterwasunderestimated,highlightingthefactthat

theeffectofthedilutionassociatedwiththecladdingprocessonthematerialbehaviorofthecladlayer

cannotbeneglected.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ability to achieve various mechanical and metallurgical propertiesisthemaindrivingforcesintheselectionofmany manu-facturingprocesses.Intheclassicalfabricationofcladdedproducts, hotforgingprocessisnormallyperformedbeforecladdingwhich inducesproblemsoflow efficiencyandbadqualitycontrol.Itis consideredthattheseproblemsmightbereducedbychangingthe orderofthetwoprocesses(seeFig.1)whereasimplepreformis claddedandthenforgedtoobtaina complexshape.Duetothe easeofautomationofthecladdingprocessforsimpleshapes,good controloncladdingqualitycanbeachieved.Thefinalmetallurgical structureofthecladlayeristhentheresultofhotworkinginstead ofsolidification.

Theobjectiveofthisstudyistoanalyzetheabilityofacladded workpieceunderhotforgingtoobtainadefect-freematerial dis-tributionandstructure.However,itmustbeconsideredthatthe forgeability of thebi-material claddedwork piece is heteroge-neous;theductilityof thecladdinglayeris unknownasit is a mixtureofthesubstratemetalandfillermaterialdependingon thedilutionrateandislikelyinfluencedbyconditionsthatexist duringhotforming.

Theinterfacebetweenthesubstrateandthecladlayerdepends onthecladdingprocess.Thecladdingconsideredinthisstudyisthe

∗ Correspondingauthor.Tel.:+33387375456. E-mailaddress:laurent.langlois@ensam.eu(L.Langlois).

gasmetalarcwelding(GMAW)claddingprocesswhich exhibits awavymorphology.Theinterfacedefectsand localgeometrical effectscanalsohaveagreatinfluenceontheductilityofthecladded workpiece.Besides,itcanbedifficulttocontrolthedistributionof materialsduringhotforming.

Due to the difference in rheological properties at different positionsofthecladdedworkpiece,acharacterizationofthe forge-abilityonthreelevelsisproposed(seeFig.2):

Level1:Theintrinsicforgeabilityofthematerialsconstituting thesubstrateandthecladlayer.Theintrinsicforgeabilityconcerns theflowstressdependingonthethermomechanicalparameters (temperature,plasticstrainandplasticstrainrate)andtheductility limit.Thislevelofforgeabilitydependsonthechemical composi-tionandmicrostructureofthematerial.

Level2:Thislevelofforgeabilityconcernstwoaspects:

◦theabilityoftheinterfacebetweenthesubstrateandthecladding to undergo thethermo mechanical loading generated during forming,

◦theinterfacecanexhibitawavymorphologyinthecaseofa step-by-stepcladdingprocesslikelaser cladding(Caoetal.,2008). Tothis morphologycancorrespondaheterogeneouscladding thicknesswithassociatedstressconcentrationleadingtostrain localizationandearlycracking.

Level3:Thislevel offorgeabilityconcerns thedifficultiesto achievetherequiredmaterialdistributionattheendofthe form-ingprocess.Thelocationofthecladdingontheinitialbillethasto

(3)

Preform manufacturing Cladding process Forging process Billet Filler material Cladded workpiece

Fig.1. Studiedmanufacturinglayoutconsistingofacladdingprocessanda subse-quentforgingprocess.

Substrate

Level 1 Level 2 Level3

Cladlayer

Fig.2.Characterizationapproachforbi-materialcladdedworkpiece.

bechosencarefullyinordertoobtainafterformingtherequisite materialdistributionwithinthefinalpart.Duetothedifference betweentheformingbehaviorofthesubstrateandthecladding,it canbedifficult,evenimpossible,tocontrolthematerialdistribution throughouttheformingprocess.

Theobjectiveofthepresentedworkistoevaluatethepotential ofhotupsettingintermsofcharacterizationofhotforgeabilityof claddedworkpiecesaccordingtothethreelevelsdefinedabove. Sofar,therehasbeenlittleactiveresearchontheforgeabilityof bi-materialcladdedworkpiecesgeneratedbyarc welding.This paperpresentsexperimental,analyticalandnumericalstudieson hotupsettingteststodeterminethehotforgeabilityofcladded workpieces.

Firstly,thearticlegivesabriefstateoftheartconcerningthe forgeabilityofcarbonsteelandstainlesssteel,depositingstainless steelonmildsteelandtheformingofmulti-material.Secondly,the experimentalsetupandresultsobtainedintheupsettingtestof claddedbilletsarepresented.Then,twomodelsofupsettingtests areintroducedwherethefirstisbasedontheslabmethodandthe secondonafiniteelementmodeling.Thelastpartisdevotedto studyingthesimulationpredictionsandcomparingthemwiththe experimentalresults.

2. Stateofthearts

2.1. Forgeabilityandrelatedexperimentaltestofmildsteeland stainlesssteel

Onedefinitionof forgeabilityis that it is therelative ability ofamaterialtoflowundercompressiveloadingwithout crack-ing.Mostcarbonand low-alloysteelsareusuallyconsideredto havegoodforgeability,exceptforresulfurizedandrephosphorized gradesasreferredbyVanTyne(2005).Stainlesssteels,basedon forgingpressureandloadrequirements,areconsideredtobemore difficulttoforgethancarbonorlow-alloysteels,primarilybecause ofthegreaterstrengthatelevatedtemperaturesandlimitationson themaximumtemperatureatwhichtheycanbeforgedwithout incurringmicrostructural damageasshownbyMochnal(2005). Forgeabilityorworkabilityisevaluatedinseveralwaysthrough varioustypesoftestsreviewedbyDieter(2005).Thesetestsare commonlyappliedtomono-materialsamplestocharacterizethe flowstressofthematerialinrelationtothetemperature,the plas-tic strain and the plastic strain rate. Tensile tests or upsetting testsarealsoappliedtoassesstheductilitylimit. Theprinciple ofthesetestsconsistsinmeasuringthetestingloadasafunction ofthetesting displacement,measuringtheshapeofthesample andanalyzingtheoccurrenceofcracks.Thesefeaturesarelinked

tothematerialpropertiesthankstomodelsgenerallybased on theassumptionofhomogeneityofthematerial.Asthiscannotbe thecasewhenconsideringamulti-materialsample,therelation betweenthetestingloadanddisplacementandthelocal thermo-mechanicalparametersneedsmorecomplexmodelinglikefinite elementmodeltakingintoaccountthebehaviorofbothmaterials andtheinterface.

2.2. Weldcladdingofstainlesssteelonmildsteelsubstrate

Thetechniqueofweldcladdingrepresentsamethodthatcan beusedtoimpartdifferentsurfacepropertiestoasubstratethat arenotavailablefromthatbasemetal,ortoconserveexpensiveor difficult-to-obtainmaterialsbyusingonlyarelativelythinsurface layeronalessexpensiveorabundantbasematerialasreviewedby Davis(1993).Variousprocesseslikesubmergedarcwelding(SAW), gas tungsten arc welding (GTAW), plasma arc welding (PAW), gasmetalarcwelding(GMAW),universalgasmetalarcwelding (UGMAW),electroslag welding(ESW),stripcladding,explosive welding,frictionwelding,etc.havebeenusedforcladding oper-ationwithanaimtominimizingdilutionwithoutsacrificingthe jointintegrity.Govardhanetal.(2012)havecarriedoutresearchon thecharacterizationofausteniticstainlesssteeldepositedby fric-tionweldingonlowcarbonsteelsubstrates.Selectionofthemost appropriateweldingprocessislargelydependentonfactorssuchas thesizeofthecladarea,accesstotheareatobecladded,alloytype andspecifiedcladthickness,chemicalcompositionlimits, weld-ingpositionand NonDestructiveTestingacceptance standards. Forexample,Brown(2005)hasstudiedthepossibleapplication ofweldoverlaycladdinginthefieldofpumpstoresolvecorrosion problems.

Thestructureofthestainlesssteeldepositedoncarbonor low-alloysteelmayvary fromfull martensitictofullaustenitictoa mixtureofthetwowithferrite.Thisvariationinstructuredepends onlocalcompositionalgradientsanddiffusioneffects.Lippoldand Kotecki(2005)havefoundthatdissimilar metalweldsbetween carbonsteelandstainlesssteelcanexhibitanumberofcrack mech-anismslikesolidificationcrack,claddisbanding,reheatorPWHT (PostWeldHeatTreatment)crackandcreepfailureinHAZ(Heat AffectedZone).

2.3. Theforgeabilityofmulti-material

Insomeapplicationstheforgedpropertiesachievedfroma sin-glepieceofmonolithicbarstockcannotbetailoredtosatisfyallthe designrequirementsthatmayexistatdifferentlocationsinapart. Toresolvethisissue,bi-materialforging,whichhasasubstantial impactontheoperatingefficiencyoftheparts,isperformed.Use ofabi-materialpreformcouldalsominimizematerialcostwhile fulfillingthenecessarydesignrequirements.

Presently, littleworkhasbeencarried outonthe forgingof bi-metal.Thefeasibilityoftheweldedpreformconceptwas pre-viously usedby Domblesky et al. (2006).They studied thehot forgingbehaviorofdifferentmaterialssuchas:copper,aluminum, steeland304stainlesssteel.Sameanddissimilarmetalspreforms producedbyfrictionwelding,consistingoftwocylindrical spec-imensinwhichoneisplacedontopoftheother,areupsetand side-pressedtoassessworkabilityand theresultingmechanical properties(seeFig.3).AsshowninFig.3,inbi-metalpreforms, deformationoccurspreferentiallyinthelowerstrengthspecimen duringupsettingandtensiletestsofside-pressedpreforms. Frac-turewasfoundtobeductile and tooccuraway fromtheweld region.Theintrinsicforgeabilityofallthematerialsinvolvedisgood (forgeabilityofLevel1).Theweldingboundisstrongenoughto resistdeformation(forgeabilityofLevel2).Buttheflowstress dif-ferencesinvariousmaterialscouldleadtoabadglobalforgeability,

(4)

Fig.3.Dissimilarmetalpreformsafterhotcompressionto50%reductionshowingtheeffectof(a)smalldifference(Cu–Al),(b)intermediatedifference(stainlesssteel–steel), (c)largedifference(steel–cu)inflowstressbetweenthebasemetals(Dombleskyetal.,2006)

namelyaninabilitytocontrolthematerialdistribution(forgeability ofLevel3).

Thepreforms studiedabove areassemblagesof two dissim-ilar metals. Essa et al. (2012) have studied the cold upsetting ofbi-metallic ringbillets. Intheirstudy,preforms consistingof anouterringofnon-alloysteelC45E(EN1.1191)surroundinga solidcylinderofnon-alloysteelC15E(EN1.1141)arecompressed withflat platens of alloyed steel.As shown on Fig. 4, there is

nomechanical, welded or metallurgicalbond betweenthetwo materials.Theobjectiveisthentodeterminethescopeforcold forgingofbi-metalpreformswithnopre-processinterfacebond. The studyhasshown that undercertain conditions,bi-metallic ringsmaybeupsetwhilemaintainingagoodinterfacialcontact betweenthetwocomponentswithinarangeofgeometries.The increaseofinterfacefrictioneffectwillincreasethesurface con-tact.

(5)

Table1

Weldingparameters.

Parameters Nozzle-to-bar distance(mm)

Wirefeedspeed (mm/s)

Voltage(V) Weldingspeed (mm/s)

Protectiongas (%involume)

Generator Weldingmachine

Value 16 4.2 22 5.3 Ar96%,CO23%,

H21%

CY385MPR 6-Axes

polyarticularrobot (SCS)

Differentfromthemodelsabove,thespecimenstudiedinthis paperconsistsofaweldedbondbetweentheoutercladdingand innercylinder.Upsettingtestsareperformedtoevaluatethe defor-mationbehavioroftheinterfaceandtheforgingload.

3. Experimental

3.1. Experimentaldetails

Intheupsettingtest,acylindricalworkpieceisupsetbetween two flat dies to a pre-fixed ratio. The cladded specimens are obtainedbycuttingaweldcladdedbar.Amild steelbar(0.15% C,0.45%Mn,0.2%Si,0.023%Pand0.023%S)withadiameterof Ø27mm wascladdedusing astainless steel(0.02% C,1.8% Mn, 0.33%Si, 0.023%P, 0.013%S, 17.5% Cr, 2.55%Moand 12.2%Ni) wireofdiameter1.0mmbyGMAWprocessonrotatingwelding platforms.Thecladbaristhen cutinto45mm-long specimens. ThemainparametersoftheGMAWcladdingprocessareshown inTable1.

Themacrographofthemeridiancrosssectionofacladded bil-letisshowninFig.5.Thecladding/substrateinterfaceexhibitsa wavymorphology.Themeancladdingthicknessisabout3mm.For a45mmlongbillet,thereareabout10beads.Thecladdingis com-posedofjuxtaposedbeadrings(notacoil).Thebeginningofthe beadoverlapstheendofsamebead,whichisresponsibleforthe build-upofthecladlayerthatcouldbeobservedontheleftinFig.5. Theoveralldilutionratebetweenthefillermaterialandthe sub-strateisabout10%.ThisrelativelylowdilutionvalueforGMAW claddingisachievedthankstotheoverlapping.

ThesetupfortheexperimentalupsettingtestisshowninFig.6.A hydraulicpress“LoireACB”havingamaximumloadof6000kNwas used.Thespecimenswereheatedfor15minataconstant temper-atureinanelectricfurnace(seeFig.6(b)andTable2)undernormal atmosphere,whilethedieswerenotpreheated.

Twotypesof flatdies were used:striated and smooth dies. Upsettingtestswereperformedwithsmoothdies(lubricatedand dry)andstriateddies.Thelubricantconsistedofamixtureofoiland graphite(shellfenelloroilfluidF3802G)whichwasdepositedon thesmoothdiewithabrushbeforeeachtest.Regardingthestriated

Fig.5. Macrographofthemeridiancrosssectionofthecladbillet.

Table2

Variablesconsideredinperformedupsettingtests. Tool/temperature(◦C) Cladbillet

750 900 1050

Striateddie Yes Yes Yes

Drysmoothdie Yes – Yes

Lubricatedsmoothdie Yes – Yes

dies,thestriationconsistedofmanyconcentriccirculargrooveson thesurfaceofthedie.Thedistancebetweentwosuccessivegrooves wasabout1mmwithadepthof1mm.Thespecimensweretaken outofthefurnaceandupsetimmediately.Theupsetvelocitywas constantabout30mm/s.Specimenswereupsettovarious upset-tingratioswiththehelpofstopblocksplaced betweenthedie holders.Dependingontheappearanceofthecrack,theupsetratio

(6)

Table3

Cracksoccurrenceintestsperformedusingstriateddie.

Temperature(◦C)/crackoccurrence/%upsetting 50% 60% 63% 65% 67% 70%

750 No No – Longitudinal Longitudinal –

900 – No No Longitudinal Longitudinal Longitudinal

1050 – No – – – Circumferential&longitudinal

Table4

Crackoccurrenceintestsperformedusingsmoothdie.

Die Temperature(◦C)/%upsetting 62% 63% 73% 74%

Lubricatedsmoothdie 750 No – – Longitudinal

1050 – No – No

Smoothdie 750 Longitudinal – Longitudinal –

1050 – No – Longitudinal

ofthenexttrialwasincreasedordecreased.Theupsettingratio,ı, isdefinedasthepercentagereductioninlengthofthebillet(see Eq.(1))

ı=1− h h0

(1)

wherehandh0arerespectivelytheinstantaneousandtheinitial

lengthofthebillet.

Temperatureandfrictionatthedie/workpieceinterfacearethe twovariablesconsideredintheupsettingtests(seeTable2).Tests performedwithastriateddieareconsideredtohaveaveryhigh frictioncoefficientatthedie/workpieceinterface,approximating stickingcondition.Adrysmoothdierepresentsmediumfriction coefficient,whilealubricatedsmoothdierepresentsthelowest frictioncoefficientachievableexperimentally.Threetemperatures werechosen:750◦C,900◦Cand1050◦C.700◦Cisinthe tempera-turerangeofwarmforging.1050◦Cisinthetemperaturerangeof hotforgingofbothmaterials.900◦Cisinthetemperaturerangeof hotforgingofmildsteelbutrepresentsthelowerlimittemperature ofhotforgingforstainlesssteel(Mochnal,2005).

3.2. Experimentalresults

Theresultspresentedinthissectionconcernthreeparts:the ductility limit, theobtainedmaterial distribution and the forg-ingload.Theductilitylimitisdefinedbythemaximumupsetting ratioachievedwithoutcrackforming.Thematerialdistributionwas observedthankstomeridiancrosssectionoftheupsetbilletand

correspondedtosubstrateandcladdingmorphology.Theforging loadwasconsideredthroughouttheupsettingandwasprovided bythesensorofthehydraulicpress.

Forcladbillets,twotypesofcrackswereobservedinthe exper-imentaltests:longitudinalandcircumferentialcracks(seeFig.7). The (longitudinal and circumferential)crackswere observed to occuronlyinthecladlayerand neverpropagatedintothe sub-strate.Thecircumferentialcracksoccurredinthethinnerpartof thecladdingwithadirectionrelativetothebeads.Uptoa70% upsetratio,longitudinalcrackswereobservedtooccurinalltests performedwithasmoothdieorastriateddie,while circumfer-entialcracksoccurredonlyintestsperformedusingastriateddie at1050◦C.

The cracks are detected visually and by dye penetrant test performedafterthespecimenswerecompletelycooledtoroom temperature afterhot upsetting.The temperature,friction con-dition atdie/work pieceinterfaceand upsetting ratio aremain drivingforcesfor crackoccurrenceasshown inTables 3and4. Theductilityincreaseswithincreasingtemperature.Inupsetting testsperformedusingthesamefrictionconditions,cracksoccurred morefrequentlyatlowertemperatureandhigherupsettingratio. Furthermorethefrictionconditionatthedie/workpieceinterface mainlyaffectsthecracktype.

The longitudinal cracks are typical during the upsetting of mono-material.Theycorrespondtoductilecrackswhenthe mate-rial at the surface of the billet reaches its ductility limit. The circumferentialcracksarespecifictotheupsettingofcladbillets. Severalpotentialexplanationsforthecrackingphenomenonare

Fig.7. (a)Positionoflongitudinalandcircumferentialcracksinworkpiecesupsetusingstriateddie,(b)macrographoflongitudinalcracks,aquarteroftransversalsection, at900◦Cand(c)circumferentialcrack,halfofmeridiancrosssection,at1050C.

(7)

Fig.8. Macrographsofmeridiancrosssectionsofworkpieces70%hotupsetat1050◦Cindifferentfrictionconditions(a)striateddie,(b)drysmoothdieand(c)lubricated smoothdie.

proposed.First,theremightbealocaleffectof thediestriation oncrackasitoccurredonlyintestsperformedwithstriateddies. Secondly,thefactthatthecrackoccurredatacertainlocationof thecladlayermightbeduetotheeffectofthebeadorientation relativetothethermalmechanicalloading.Indeed,thewavy mor-phologyoftheinterfacecangeneratestressconcentrationleading tothecircumferentialcracks.Finally,theareacoveredbytheclad layerismoreimportantinthecaseofstriateddiesthaninthecase ofsmoothdies.Thus,withastriateddie,thecladlayerismore stretchedthanintheothercases,whichleadstoearlycracking.

Thecracksneverpropagateintothesubstrate.Onepotential rea-sonforthisphenomenonmaybethattheductilityofmildsteelis betterthanthatofstainlesssteel.Anotherreasoncouldbethatdue tomaterialdiscontinuitythecladlayerismoreloadedthanthe sub-strate.Indeed,theremightbeadiscontinuityofthestressthrough thesubstrate/claddinginterface;theloadingtype(compressionor tensile)canbedifferentindifferentlocationsofthecladdedbillet, especiallyacrosstheinterface.Theinvestigationofthestressacross theinterfaceandtheeffectofweldbeadorientationareamongthe mainobjectivesofthefiniteelementsimulationstudy.

Thematerialdistributionofthecladdedbilletafterbeinghot forgedisobservedvisuallyinthemacrographsofmeridiancross sections.Theworkpieceiscut,polishedandchemicallyetchedfor afewsecondsbyNital2%whichcanetchC15butnotSS316L, allow-ingtodistinguishtheinterfacebetweenthetwomaterials.The macrographsofthemeridiancrosssectionofworkpiecesupsetin differentconditionsareshowninFig.8.Thematerialdistributionis theresultofacombinationofseveralfactors.Thedwelltime(about 5s)betweenplacingthebilletonthelowerdieandthebeginning oftheforging,frictionconditionatthedie/workpieceinterface,the wavymorphologyofsubstrate/claddinginterfaceandtheductility ofmaterialsconstitutingthesubstrateandthecladlayeraremain drivingforcesofmaterialdistributionduringthehotupsettingtest. AccordingtoFig.8,thesubstrateafterupsetiscomposedofa centraltrunksurroundedbyaring-likepart(seeFig.9).Theareaof theupper/lowersurfacecoveredbycladlayerdependsonthe diam-eterofthecentraltrunk.Thediameterofthecentraltrunkmainly dependsonthefrictionconditionatthedie/workpieceinterface.

Forspecimensupsetwithastriateddie,thediameterofthecentral trunkissmallerandthecladlayerismoreelongatedthanforthose upsetwithadryor alubricatedsmoothdie,becausethe mate-rialofthesubstratecanslidemoreeasilyonthem.Thematerial distributionislessinfluencedbytemperature.

Thematerialdistributionisasymmetricbetweentheupperand lowersurface of theupsetbillet. Thisphenomenon isprobably causedbythedwelltimebeforeupsettingduringwhichthe bil-letischilledbythelowerdie.Therefore,thematerialinthelower partofthebilletiscolder,causinggreaterflowstress.This phe-nomenonemphasizestheimportanteffectof heatexchange on thematerial distribution of hot-upsetclad billets.In tests per-formedwithastriateddie,thematerialispreventedfromsliding onthediesurface.Theupperandlowersurfacesofthesubstrate remainnearlyunchanged duringthetest, hencethesymmetric distribution.

Theforgingloadanddisplacementweredirectlyprovidedbythe sensorsinthehydraulicpress.Theforgingloadiscalculatedfrom thepressureinthemaincylinderofthemachine.Fig.10showsthe curvesoftheforgingloadasafunctionoftheupsettingratioofhot upsettingtestsperformedindifferentconditions.

(8)

Table5

Parametersofthehydraulicpress.

Parameters Initialheightofupperdie(mm) Finalheightofupperdie(mm) Direction Speed(mm/s) Initialwaitingtime(s)

Value 46 13.5 −Z 30 5

(a)

(b)

0 400 800 1200 70 60 50 40 30 20 10 0 Forging load (kN) % Upsetting 750°C, striated die 900°C, striated die 1050°C, striated die 0 400 800 1200 70 60 50 40 30 20 10 0 Forging load (kN) % Upsetting 1050°C, lubricated 1050°C, non lubricated 1050°C, striated

Fig.10.Hotupsettingtestsofcladbilletsperformedindifferentconditions(a)at differenttemperaturesand(b)indifferentfrictionconditions.

Theforgingloadincreaseswiththeupsettingratio,temperature andfrictionatthedie/workpieceinterface.Thetemperatureaffects thewholecurve,whilethefrictionismoresensitivetothelatter partoftheupsettingtest.Theseeffectsarethesameashot upset-tingofbothmono-materialbilletasshownbyLin(1995)andclad billet.

4. Modelingandsimulations

Theupsettingtestwasalsostudiedanalyticallyandnumerically andthispartisdevotedtothemodelingandsimulationofthe bi-materialupsettingtest.Itaimstoconstructamodeltoexplainthe crackphenomenoninthecladdedbillet,toestimatematerial dis-tributionandforgingload,andtostudytheeffectoftheprocess parameters.

4.1. Modeling

In theanalytical analysis,theslab methodwasapplied.The parametersofthemodelareshowninFig.11.Valuesofthe param-etersaregiveninTable5.

Thecylindricalsymmetryoftheproblemrequiresavelocityfield inthebarinthefollowingform:



v

(r,z)=

v

r(r,z)−→er+

v

z(r,z)−→ez (2)

Thecladbilletisassumedtoremaincylindricallysymmetricand itsbulgingisneglected.Thetemperatureofthebilletisassumedto beconstantanduniformduringtheupsetting.Thermalexchange withthediesandenergydissipationareneglected.Accordingto theseassumptions,andconsideringtheprincipleofmass conser-vation,thevelocityfieldisobtainedasbelow:



v

(r,z)=−2r.˙h h−→er+z

˙h

h−→ez (3)

(9)

Theplasticstrainεpandtheplasticstrainrate ˙εpareuniformin

thecladbilletandgivenbyEqs.(4)and(5).

εp=

−1 2 0 0 0 −12 0 0 0 1

ln



h h0

(4) ˙εp=

−1 2 0 0 0 −12 0 0 0 1

˙h h

(5)

withhand h0 theinstantaneousand initiallengthofthebillet

respectivelyand ˙htheupsettingvelocity.

VonMisesplasticitycriterionisadopted.Inthatcase,the devia-torystressisparalleltostrainrateandtheequivalentstressisequal totheflowstressofthematerial.Theexpressionofthestresstensor andthedeviatoricstresstensorsaregivenbyEqs.(6)and(7)in thecylindricalcoordinatereference(seeFig.11):

=

rr r rz r  z rz z zz

(6) s=

2 3rr− 1 3(+zz) r rz r 2 3− 1 3(rr+zz) z rz z 2 3zz− 1 3(rr+)

(7)

Theplasticitycriterion,assumingthatsisproportionaltothe plasticstrainratetensor ˙εp,gives:

r=rz=z=0 (8)

and

rr= (9)

ThestresstensorcanbesimplifiedasEq.(9):

=

rr 0 0 0 rr 0 0 0 zz

(10)

Accordingtotheplasticitycriterion,theequivalentstressshould beequaltotheflowstressofthematerial0.Thus,thestresstensor

becomes: =

rr 0 0 0 rr 0 0 0 rr−0

(11)

where0istheflowstressofthematerialandrristhenormal

stressinthedirection −→er.Thisrelationisobtainedby

consider-ingthatthefreelateralsurfaceofthebilletisfree(rr=0)andthe

normalstresszzinthedirection −→ezisnegative.

Thefundamentalprincipleofappliedstaticsisappliedtothe slabboundedby:

r∈[r; r+dr], (12) ∈

−d2; +d2

, (13) z∈[0,h] (14)

Consideringtheequilibriuminthedirection −→er,onecanget:

(rr+drr)(r+dr)·h·d−rr·r·h·d−2rrh·dr·sind2

−2·r·dr·d=0 (15)

whereisthetangentialstressatthetool/workpieceinterface cor-respondingtofriction. isnegativeand opposesthemotionof materialonthedie.Developingtherelationshipoforder2onecan get:

drr=−2

hdr (16)

Coulombfrictionisassumed.Inthiscase,thefrictionalshear stressisrelatedtothenormalpressureofcontactbythefollowing relation:

=−n (17)

withthefrictionfactorandnthenormalpressureonthe

die-materialcontact.

Intheslabmethod,thestressfieldisassumedtobeuniform throughouttheslab.Thestresszzistheoppositeofthecontact

pressure.Onecangetthefollowingrelationforthecomponentsof thestresszzwhichisapplicabletobothsubstrateandcladding:

dzz

zz =−

2

h dr (18)

ThesolutionofEq.(18)isgivenbyEqs.(19)and(20):

r∈[0,R] zz=s·exp



−2s h r

(19) r∈[R,R+e]zz=s·exp



−2r h r

(20)

whereeisthecladlayerthicknessandRtheradiusofthesubstrate cylinder.InEqs.(19)and(20),sandrarethetool/substrateand

tool/cladlayerfrictioncoefficientrespectively.sandraretwo

integrationconstantstocalculate.

The boundary conditions at the external surface and sub-strate/cladlayerinterfacearegivenbyEqs.(21)and(22):

rr(R+e)=0 (21)

rrr=R=0 (22)

whererrr=Risthediscontinuityfunctionofrrthroughthe

sub-strate/cladlayerinterface.

ConsideringEq.(19)toEq.(22),onegets:

r=−0rexp



2 r(R+e) h

(23) s=



0r



1−exp



2 re h

−0s

exp



2 sR h

(24)

where0rand0sarerespectivelytheflowstressinthecladlayer

andinthesubstrate.

Theforgingload,F,canbecalculatedastheintegralofthecontact pressureoverthebillet/diecontactarea:

F=2



R+ 0 −zzrdr=2



R 0 −s·exp



−2s h r

rdr +2



R+ R −r·exp



−2r h r

rdr (25)

(10)

Fig.12.Finiteelementmodeling(a)withcylindricalinterfaceand(b)withwavyinterfacebillet.

Assumingthatthefrictioncoefficientssandrareequalto,

theforgingloadisgivenbyEq.(26):

F= h 22



hs+exp



−2R h

(r+s)(h+2R) −exp



−2R+e h

r(h+2(R+e))



(26)

Randearefunctionsoftheinitialgeometry(h0,e0,R0)ofthe

billetandtheupsettinglength,h.Accordingtotheprincipleofmass conservation: R=R0



h0 h (27) e=e0



h0 h (28)

Duetothefactthatthetemperature,strainandstrainrateare assumedtobeuniformoverthebillet,thesolutionofthe differ-entialEq.(18)isindependentoftheconstitutivelawofthetwo materials.Theintegrationconstantsdefinedbyrelations(23)and (24)canbecalculatedfromtheexpressionofflowstressdefined byasimplifiedHansel–Spittellawthatiswellsuitedtorepresent thehotformingbehaviorofmetals:

0=A·exp(m1T)·εm2· ˙εm3·exp



m 4 ε

(29)

whereεand ˙ε aretheequivalentplasticstrainandequivalent plas-ticstrainraterespectively.

TheSpittellawwithassociatedcoefficientsisonlyvalidfora givenrangeoftemperatures,strainandstrainratedataforeach material.

Theforgingload,calculatedbytheslabmethod,dependsonly on:

-Theinitialgeometryofthecladbillet(h0,e0,R0).

-Thefrictionfactorbetweenthesubstrate/cladlayeranddie. -Theflowstressofthetwomaterials.

4.2. Finiteelementsimulations

The simulation analysis was carried out using Forge2011©. Consideringthesymmetryoftheproblem,a2-Daxisymmetrichot forgingmodulewasadopted.

ThefiniteelementsimulationmodelisshowninFig.12. Consid-eringtheeffectofthesubstrate/claddinginterface,specialattention waspaidtotheinterfacegeometry,there-meshoftheinterface zoneinthesimulationmodelandthecontinuityconditionthrough theinterface.

Twotypesofsubstrate/claddinginterfaceareadoptedand com-pared in the study, a cylindrical one and a sinusoid one. The latterisimplementedinordertoestimatetheeffectofthewavy morphologyof thesubstrate/cladlayerinterface.The geometri-calparametersofthesinusoidinterface(seeFig.13)arecalculated fromthemacrographofFig.5.

Sincethecladlayerisobtainedbywelding,thevelocityand tem-peraturefieldsareassumedtobecontinuousthroughtheinterface, imposingthefollowingboundaryconditions:



v





= 0 (30)



T



=0 (31)

Fig.13.Geometricalparametersofthewavysubstrate/claddinginterfacein simu-lation.

(11)

0 100 200 300 400 500 600 70 60 50 40 30 20 10 0 Forging load (kN) % Upsetting 1050°C,µ=0.3,e=3mm Zone-I Zone-II Zone-III

Fig.14.Evolutionofforgingloadin70%upsettingtestat1050◦Cbasedonslab methodformulation.

where





v



and



T



arerespectivelythediscontinuityvectorof thevelocityandthediscontinuityofthetemperaturethroughthe substratecladlayerinterface.

Inthis study,thesubstrate andthecladlayeraretwo sepa-ratemeshedobjects.Inordertoapproachtheboundaryconditions ofEqs.(30)and (31),a bilateralstickingconditionisappliedat thesubstrate/cladlayerinterface.Ahighheatexchangecoefficient (2×104Wm−2K−1)isappliedinordertoreducethetemperature

discontinuityattheinterfaceregardlessoftheheatflux.Themesh sizeofthecladlayerissmallerthanthatofthesubstrate.Zones closetotheinterfacehavebeenre-meshed(seeFig.12)toimprove thecontinuityofthesubstrate/cladlayerinterface.

Atthedie/billetinterface,heatexchangeisdrivenbyaconstant coefficientwhilefrictionismodeledbyaCoulomblaw.Thedies areconsideredtoberigid.ThepressishydraulicasshowninFig.6. Theforgingoperationiscomposedofadwelltime,duringwhich theworkpieceisplacedonthelowerdie,followedbysubsequent upsetoperation.

Comparedwithananalyticalanalysis,thefiniteelement sim-ulationanalysisconsidersthethermalconductionofmaterials.As fortheslabmethod,theflowstressofthematerialisassumedtobe governedbyHansel–Spittel.Thethermalbehaviorofthematerialis definedbyaconductionfactor,aheatcapacityandthedensityofthe materials.Atthedie/billetinterface,therepartitionoftheenergy producedbythefrictionisgovernedbyaclassicallawincluding thermaldiffusivityofthematerials.Finally,aconstantconvection factorisconsideredattheexternalsurfaceofthecladbillettotake intoaccounttheheatexchangewiththeenvironment.

5. Results

5.1. Slabmethod

Theupsettingtestsofcladbilletsarefirststudiedanalytically withtheslabmethod.Fig.14showstheforgingloadduringthe upsetting test of a mild steel billet(Ø27mm×45mm)cladded withstainless steel(thicknesse=3mm)at 1050◦Cusinga fric-tioncoefficientof=0.3 atthedie/billetinterface.Thevalueof thecoefficientsin Hansel–Spittel law(takenfromFORGE2011®

database)isgiveninTable6.Inthisstudy,theeffectofthe dilu-tionontheflowstressofthecladlayerisnottakenintoaccount. Theflowstressofthecladlayerisassumedtobeclosetothatof pureSS316L.Inthedevelopedslabmethod,thestickingcondition

(a)

(b)

(c)

0 250 500 750 1000 0 10 20 30 40 50 60 70 Forging load (kN) % Upsetting µ=0.1 µ=0.3 µ=0.5 0 200 400 600 800 0 10 20 30 40 50 60 70 Forging load (kN) % Upsetting m3=0.1 m3=0.2 m3=0.5 0 400 800 1200 1600 0 10 20 30 40 50 60 70 Forging load (kN) % Upsetting 750°C 900°C 1050°C

(d)

0

200

400

600

800

0

10

20

30

40

50

60

70

Forging load (kN)

% Upsetting

e=1.5mm

e=3mm

e=4.5mm

Fig.15. Effectofdifferentparametersonforgingload.

couldnotbetakenintoaccount.Therefore,testsperformedwitha striateddiearenotincludedinthispart.

ThecurveofforgingloadversusupsettingratioinFig.14,similar tothatoftheexperimentaltest,couldbedividedintothreezones

(12)

Table6

ValuesofcoefficientsoftheHansel–Spittellaw.

Material CoefficientsofsimplifiedHansel–Spittellaw

A(MPa) m1 m2 m3 m4

Mildsteel 890.4543 −0.00234 −0.12626 0.13938 −0.0477

Stainlesssteel 8905.34 −0.00383 0.01246 0.09912 −0.02413

ingeneral.InZone-I,theforgingloadincreasessharplyduetoa hardeningphenomenon.Zone-IIisatransitionbetweenZone-Iand Zone-III.TheinflexionofZone-IIisthesmallest.In Zone-III,the forgingloadincreasesrapidlyagainwiththeincreaseofupsetting duetoacombinationofthreemainfactors:

-Increaseoftheupperandlowersurfaceofthebillet.

-Increaseofstrainratewiththeincreaseofupsettingratio,the upsettingvelocitybeingconstant.

-An accumulation of tangential friction forces leading to an increaseofhydrostaticpressurewithinthebillet.

Variationsinfrictioncoefficient,temperature,cladding thick-nessandcoefficientsofHansel–SpittelLaw(especiallym3)have

agreateffectontheforgingload(seeFig.15).Variationsinthe friction coefficient and m3 (viscosity coefficient) mainly affect

Zone-IIIoftheforgingload/upsetting ratiocurve(seeFig.15(a) and (b)); the effect of m3 is much weaker than that of

fric-tion. Generally, the value of m3 for steels is less than 0.2.

Temperature and cladding thickness impact the whole curve, theireffectbeinggreateronZone-IIand Zone-III(seeFig.15(c) and(d)).

5.2. Finiteelementmodel

WiththeparametersgiveninTable6,simulationswere con-ductedfortheupsettingtestofacladbilletat1050◦Cwithsticking frictionatthedie/billetinterface.

5.2.1. Materialdistribution

The material distribution varies with variations in param-eters of the upsetting test. Besides, the configuration of the substrate/claddinginterfacealsoaffectsmaterialdistribution,as shown in Fig. 16. The result of simulation with a wavy sub-strate/claddinginterfaceisclosetothatofexperimentaltesting.The deformationofthecladlayerduringtheupsettingtestisnot uni-form.Thefirsttwoorthreecladbeadsclosetotheupperandlower surfaceofthebilletarestretched,thewavyaspectoftheinterface mitigating.Thosein-betweenarecompressedandbended, curva-turesincreasing.Theedgeareasoftheupperandlowersurfaces exhibit thethinnestcladlayer.Thecladlayeris notsymmetric betweenupperandlowersurface.Asmentionedinthepart dedi-catedtotheexperimentalresults,thisphenomenonisattributedto theinitialdwelltime(seeTable5)duringwhichthebilletischilled bythelowerdie.

Fig.16.Materialdistributionobtainedbysimulationsandexperimentsat1050◦Cusingdifferentfrictionconditions(a)and(b)stickingfriction,(c)weakfriction,(d)strong friction,(e)testperformedusingstriateddie,(f)testperformedusinglubricatedsmoothdieand(g)testperformedusingdrysmoothdie.

(13)

Fig.17.LathamandCockcroftcriterionobtainedforsimulationofexperiment per-formedusingstriateddieat1050◦C(a)macrographofhalfmeridiancrosssection, (b)simulationwithcylindricalsubstrate/claddinginterfaceand(c)simulationwith wavysubstrate/claddinginterface.

The configuration of substrate/cladding interface affects the materialdistribution(seeFig.16(a)and(b)).However,theoverall materialdistributioncouldbeobtainedevenwithoutconsidering thewavymorphologyoftheinterface.

5.2.2. Hotductilitycriterion

InForge2011©,itispossibletoestimatetheprobabilityofthe damageofaworkpiecebycalculatingtheLathamandCockcroft coefficientLa.Thisindicatorwasalsousedtopredicttheoccurrence ofcrack.ItsexpressionisgivenbyEq.(32).

La=



ε 0

max

eq dε (32)

wheremaxisthemaximumprincipaltensilestress,otherwiseitis

equaltozero,andeqisthevonMisesequivalentstress.

Withthiscriterion,onecanobservethattheperipheralzoneof theworkpieceissusceptibletorupture(seeZoneAinFig.17(b) and(c)).Thisisclassicalforductilecracksduringupsettingtest.In thecaseofstriateddies,anotherzone(seeZoneBinFig.17(b)and (c))withhighvalueofLaappears.Thiszonecorrespondstothe circumferentialcrackobservedinexperimentsperformedwitha striateddie(seeTable3).Regardlessofthecladding/substrate inter-faceconfiguration,ZoneBappearsinallsimulationswithsticking friction.

ItwasexperimentallyobservedthatthecracksinZoneAandB occurredonlyinthecladdingandneverpropagatedintothe sub-strate.Thiscouldbecausedbytheweakductilityofthecladding materialathightemperature,butinFig.17(b)and(c)onecansee thattheLafactorisnegativeorclosetozerointhesubstrate.The

Fig.18. Distributionofradialstress(rr)obtainedbysimulationperformedat 1050◦Cinstickingfrictioncondition,(a)cylindricalinterfaceand(b)wavyinterface.

distributionoftheradialstressofthesimulationwithawavy sub-strate/claddinginterface(70%upset)isstudied(seeFig.18).Inthe biggrayregion,rr islessthan−200MPa,rr beingtheleading

stressforcracksoccurringinZoneB.rrispositiveinZoneB,but

negativeintheareaofthesubstrateinthevicinityofZoneB.The onlyoccurrenceofcrackinthecladlayerisdueinlargepartto thestressdiscontinuitythroughtheinterfaceasaresultofaglobal bimaterialstructureeffect.Indeed,duringtheupsettingtheclad layerisstretchedandtheinnersubstrateiscompressed.

Theevolution oftheindicatorLa(seeFig.19)helpstobetter understandtheinitiationanddevelopmentofcracksoccurringin ZoneAandB.At1050◦C,inthetestperformedwithastriateddie, thereisarapidincreaseinLainZoneBattheendofupsetting whereasthisphenomenondoesnotexistintestsperformedwith adrysmoothdie(=0.3)oralubricatedsmoothdie(=0.15). Duringupsettingperformedusingsmoothdies,thevalueofLain zoneAisalwaysgreaterthanthatofZoneB.

AccordingtotheLathamandCockcroftcriterion,crackingoccurs whenLagivenbyEq.(32)ishigherthanacriticalvaluedepending onthetemperature.Theupsettingtemperaturehasaslighteffect onthevalueofLaasshowninFig.20.AccordingtoTable3, lon-gitudinalcrackswereobservedonabilletupsetat900◦Cusinga striateddieforanupsetratioofabout65%.Thisvaluecorresponds toavalueofLaof0.55inZoneAand0.4inzoneB(seeFig.20).At 1050◦Cusingastriateddie,longitudinalandcircumferentialcracks wereexperimentallyobservedforanupsetratioof70%.The cor-respondingsimulationspredictedthesimultaneousoccurrenceof bothtypesofcrackforanupsetratioofabout68%withacritical Lavalueof0.6.Thefiniteelementsimulation,usingaLathamand Cockcroftcriterion,isabletopredictthelocationofthecracksand, byinverseanalysis,itispossibletoestimatethecriticalvalueofLa forthetestingtemperatures.

5.2.3. Forgingload/upsettingratio

Similartothatoftheexperimentaltestandtheslabmethod,the forgingload/upsettingratiocurvecouldbedividedintothreezones ingeneral.Besidesthereasonsreferredtoabove,anotherreasonfor therapidincreaseinZone-IIIisthecoolingofthebilletduringupset whichincreasestheflowstressofthematerials.

(14)

(a)

(b)

(c)

0 0.2 0.4 0.6 0.8 1 70 60 50 40 30 20 10 0 La % Upsetting 1050°C,sticking,wavy,Zone A 1050°C,sticking,wavy,Zone B 1050°C,sticking,cylindrical,Zone A 1050°C,sticking,cylindrical,Zone B 0 0.2 0.4 0.6 0.8 1 70 60 50 40 30 20 10 0 La % Upsetting 1050°C,μ=0.3,Zone A 1050°C,μ=0.3, Zone B 0 0.2 0.4 0.6 0.8 1 70 60 50 40 30 20 10 0 La % Upsetting 1050°C,μ=0.15,Zone A 1050°C,μ=0.15,Zone B

Fig.19. Evolutionof the indicator La (a)stickingfriction anddifferent sub-strate/claddinginterface,(b)strongfrictionandwavysubstrate/claddinginterface and(c)weakfrictionandwavysubstrate/calddinginterface.

Theconfigurationofthesubstrate/claddinginterfacehaslittle effectonforgingloadasshowninFig.21,andthesimulationof upsettingfora cladbilletwitha wavysubstrate/cladding inter-face takes more time. If only theprediction of forging load is required,thereisnoneedtoconsidertheconfigurationofthe sub-strate/claddinginterface.

Similarlytotheslabmethod,othereffectiveparameterssuch ascladdingthickness,frictioncoefficientandtemperaturehavea greateffectonforgingload.Besides,theheatexchangecoefficient alsoimpactsforgingload,affectingmainlyZone-III,althoughthe effectisquiteslight.

Fig.22presentsacomparisonbetweenexperimentaland sim-ulatedcurvesobtainedbythefiniteelementmethodandtheslab

(a)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

10

20

30

40

50

60

70

La

% Upsetting

1050°C,sticking,ZoneA

900°C

,sticki

ng,Z

one

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

10

20

30

40

50

60

70

La

% Upsetting

1050°C,sticking,Zone B

900°C

,sticki

ng,Z

one

B

Fig.20.EffectoftemperatureonLa(a)ZoneAand(b)ZoneB.

methodusingdifferentfrictionconditionsandtemperatures.One cannotethattheexperimentalloadinZone-II(SeeFig.14)ishigher thanthatofthesimulationobtainedbythefiniteelementmethod ortheslabmethod.Thisfeatureisnotableforeachexperimental test,thedifferenceappearingmoreimportantatlower tempera-ture.

0

200

400

600

0

10

20

30

40

50

60

70

Forging Load (kN)

% Upsetting

1050°C, wavy interface,sticking

1050°C, cylindrical interface, sticking

Fig.21.Simulatedforgingloadobtainedwithdifferentconfigurationsofthe sub-strate/claddinginterfaceat1050◦C,stickingfrictionatdie/billetinterface.

(15)

Fig.22.Forgingloadversusupsettingratioobtainedexperimentally,byfinite ele-mentsimulationandbyslabmethod(a)smoothdrydie(m=0.5),1050◦C,(b)smooth lubricateddie(m=0.3),1050◦Cand(c)striateddie(sticking),900◦C.

Thisdifferencecannotbeduetotheimplementationofatoolow frictioncoefficientbecausetheeffectoffrictionisnoticeableatthe endoftheupsetting(Zone-IIIofthecurve).However,theSpittellaw parametersforthebehaviorofthecladlayerinthefiniteelement modelortheslabmethodisthatofSS316LintheFORGE2011®

database.Thechemicalcompositionofthecladlayerisdifferent fromthatoffillermaterialbecauseofthedilutionofthesubstrate

occurringduringfusionweldcladding.Thechemicalcomposition andtheinitialmetallurgicalstructureofthecladbilletaredifferent fromthatofarolledbarofSS316Lbecauseofdilutionandduetothe factthatthecladlayerisobtainedbysolidification.Furthermore, duringthetransferofthebilletfromthefurnacetothedies, ther-malexchangebetweenthecladbilletanditsenvironmentcanlead tothecoolingofthecladlayer.AsshownonFig.15,theeffectof temperatureandflowstressofthecladdedmaterialisnoticeablein Zone-IIoftheformingcurve.Thiscoolingcanbetakenintoaccount inthefiniteelementmodelbyintroducingatthebeginningofthe simulationastageduringwhichthereisthermalexchangewiththe environmentbutnocontactbetweenthedieandthebillet.

6. Conclusion

Theresearchproposestoevaluatethecharacterizationofthe forgeabilityofweldcladbilletbyupsettingtest.Theexperiments, thefiniteelementsimulationandtheslabmethodweredeveloped andcomparedintermsofductilitylimit,materialdistributionand forgingload.

Theexperimentalupsettingtestshighlightaspecificcracktype thatlimitstheglobalductilityofthebi-materialcladbillet.Thiskind ofcrackistheresultoftheglobalmechanicalinteractionbetween thesubstrateandthecladlayer.Thesubstratedoesnotpresentfree surfaceduringtheforgingprocess;itiscladdedandisincontact withthediesatitstopandbottomsurfaces.Eveniftheflowstress ofthesubstrateislowerthanthatofthecladlayer,theincreasein hydrostaticpressurewithinthesubstrateisabletogeneratestress inthecladlayerleadingtoelongationandductilecrackingofthe cladlayer.Theoccurrenceandthelocationofthisspecificcrack canbepredictedbythefiniteelementmethodusinga conven-tionalLathamandCockcroftcriterion.Itisnotnecessarytotakeinto accountthewavymorphologyoftheinterfacebetweentheclad layerandthesubstratetopredictthisphenomenonnumerically.

Thematerialdistributionduringupsettingcanbesimulatedby thefinite element method.In thecase ofupsetting tests, even whenusinganapproximatebehaviorlawforthecladmaterial,the obtainedmaterialdistributioncorrespondswellwiththatof exper-iments.Amongothers,theeffectoffrictioniswellreproduced.Even ifthefiniteelementmethodisabletosimulatetheforgingofclad billetwithmorerealisticinterfacegeometry,thewavymorphology seemstohavealimitedeffectontheglobalmaterialdistribution.It canbeneglectedinordertoreducethedurationofthecalculation. Thematerialofthecladlayerisamixtureofthefillermaterial andthesubstrate.Thedilutionphenomenoncanleadtoa consti-tutivematerialofthecladlayerwithahotformingbehaviorvery differentfromthatofthepurefillermaterial.Thisphenomenoncan beresponsibleforthelackofcorrespondencebetween experimen-talandsimulatedresultsconcerningtheevolutionoftheforging load.It canbeexpectedtohavealsogreateffects onthe mate-rialdistributioninthecaseofforgingusingasubstratewithfree surfaces.Thedifferenceofthehotformingbehaviorbetweenthe substrateandthecladlayercannotbeobserveddirectlyviathe upsettingtestofacladbillet.Inversecalculationmethodshaveto beappliedinordertoestimatethecoefficientofthebehaviorlawof thecladlayer.Inordertoimprovetheperformanceofthismethod, afirstcalculationcanbeperformedusingtheslabmethodfollowed byamorepreciseoptimizationusingthefiniteelementmethod.

Acknowledgements

Theauthorswould liketothankRegionLorraineandHECof Pakistanfortheirfinancialsupport.

(16)

References

Brown,A.,2005.Weldoverlaycladding–thesolutiontopumpcorrosion?World Pumps469,50–53.

Cao,X.,Jahazi,M.,Fournier,J.,Alain,M.,2008.Optimizationofbeadspacing dur-inglasercladdingofZE41A-T5magnesiumalloycastings.JournalofMaterial ProcessingTechnology205,322–331.

Davis,J.R.,1993.Hardfacing,weldcladdinganddissimilarmetaljoining,welding, brazingandsoldering.ASMHandbook6,789–829.

Dieter,G.E.,2005.Evaluationofworkabilityforbulkformingprocesses.ASM Hand-book14A,587–614.

Domblesky,J.,Kraft,F.,Druecke,B.,Sims,B.,2006.Weldedpreformsforforging. JournalofMaterialsProcessingTechnology171,141–149.

Essa, K., Kacmarcik, I., Hartley, P., Plancak, M., Vilotic, D., 2012. Upsetting ofbi-metallicringbillers.JournalofMaterialsProcessingTechnology212, 817–824.

Govardhan,D.,Kumar,A.C.S.,Murti,K.G.K.,MadhusudhanReddy,G.,2012. Charac-terizationofausteniticstainlesssteelfrictionsurfaceddepositoverlowcarbon steel.MaterialsandDesign36,206–214.

Lin,S.Y.,1995.Aninvestigationofdie–workpieceinterfacefrictionduringthe upset-tingprocess.JournalofMaterialProcessingTechnology54,239–248. Lippold,J.C.,Kotecki,D.J.,2005.WeldingMetallurgyandWeldabilityofstainless

steels,viii.JohnWilley&SonsInc.,Canada,pp.99–111.

Mochnal,G.,2005.Forgingofstainlesssteels.ASMHandbook14A,261–268. VanTyne,C.J.,2005. Forgingof carbonandalloy steels.ASM Handbook14A,

Figure

Fig. 2. Characterization approach for bi-material cladded workpiece.
Fig. 4. Initial and compressed billet (a) initial and compressed bi-metal ring and (b) meridian cross section of bi-metal ring after compressed (Essa et al., 2012).
Fig. 6. Setup for experimental upsetting test, (a) upsetting setup and (b) furnace.
Fig. 7. (a) Position of longitudinal and circumferential cracks in workpieces upset using striated die, (b) macrograph of longitudinal cracks, a quarter of transversal section, at 900 ◦ C and (c) circumferential crack, half of meridian cross section, at 10
+7

Références

Documents relatifs

Die Resultate der Studie zeigen, dass trotz einem erhöhten Risiko zu psychischen Folgen eines Einsatzes Rettungshelfer Zufriedenheit und Sinn in ihrer Arbeit finden können und

Ein verwandt- schaftliches Empfinden ergab sich vor allem aus dem gemeinsamen Status einer Republik, aber auch aufgrund der ähnliehen politischen Institutionen und

[r]

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Our findings indicate that endovascular AAA repair is associated with a lesser degree of acute phase reaction, peripheral T-cell activation, and release of complement proteins

On the left, (a) and (c), without dwell time, the melt pool is large and deep and the thermal gradient is almost vertical; on the right, (d) and (d), with dwell time, the melt pool

Figure 4: definition of the initial preform of the screw A simulation of the forging of the Philips head is followed by a virtual screwing to evaluate the effectiveness

Family work days with at least a long work day are on the contrary associated with the highest conjugal time: long work days are indeed generally quite