• Aucun résultat trouvé

Effect of farmland heterogeneity on multiple ES spatial variability and trade-offs

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of farmland heterogeneity on multiple ES spatial variability and trade-offs"

Copied!
18
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/17488

To cite this version:

Sirami, Clélia and Gauffre, Bertrand Effect of farmland

heterogeneity on multiple ES spatial variability and trade-offs.

(2016) In: 5. International EcoSummit 2016. Ecological Sustainability: Engineering Change, 29 August 2016 - 1 September 2016 (Montpellier, France).

(2)

Effect of farmland heterogeneity

on multiple ES spatial variability and trade-offs

Clélia Sirami, Bertrand Gauffre, The FarmLand consortium

1

www.farmland-biodiversity.org

(3)

The role of agricultural landscape heterogeneity

Species di ver si ty % of semi-natural habitats

Proportion of

semi-natural habitats

Role studied/known

(4)

Role studied/known

Implementation not always feasible

Proportion of

few semi-natural habitats

The role of agricultural landscape heterogeneity:

a paradox

Heterogeneity of the

large « farmland matrix »

Role ?

(5)

Farmland heterogeneity

farmland configurational heterogeneity Fahrig et al. 2011 Semi-natural habitats Agricultural habitats

(6)

Farmland heterogeneity

far mland compo sitio nal he ter og ene ity farmland configurational heterogeneity Fahrig et al. 2011 Semi-natural habitats Agricultural habitats

(7)

Lleida Coteaux Camargue Goettingen PVDS East Anglia Armorique

A multi-region, multi-taxa, multi-ES project

Biodiversity (7 taxa)

Biological control

Pollination

Production

(8)

2. Sampling site selection  1 x 1 km  2 independent gradients  60-90% semi-natural habitat  30-90 landscapes/region Total: 435 landscapes  3 representative fields (cereal, corn, grassland) Total: 1305 fields

Common protocols across regions

1. Landscape selection

Shannon diversity index of agricultural habitats

Tot al len gth of fi eld b or d er s 25 m 3. ES measures Total: 2795 species, 78000 aphids glued,…

(9)

Farmland heterogeneity gradients

HCONFIG

Total length of field borders (m)

HC OMPO Sha nn on div er sity i nd ex of ag ri cult ur al hab it ats

(10)

Testing the effect of farmland heterogeneity

Landscape selection:

435 landscapes

2 uncorrelated gradients across/among regions

limited variations in % semi-natural habitat within each region

Mixed model:

(11)

Farmland heterogeneity effects

-0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2 biodiversity biological control pollination production Es timate (95 % CI)

Farmland compositional heterogeneity

-0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 biodiversity biological control pollination production Es tim at e (9 5% C I)

Farmland configurational heterogeneity

-0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 biodiversity biological control pollination production Es timate (95 % CI)

Farmland compositional heterogeneity

-0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 biodiversity biological control pollination production Es timate (95 % CI)

Farmland configurational heterogeneity

ES average

(12)

True effect of configurational heterogeneity?

1 km 1 km HCONFIG Linear SN habitats Coteaux de Gascogne

Effect

?

(13)

Testing the true effect of farmland heterogeneity

Landscape selection:

selection of a subset of 274 landscapes

correlations between explanatory var. across/among regions <0.4

Model 2:

(14)

Farmland true heterogeneity effects

ES average ES spatial variability -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 biodiversity biological control pollination production Es timat e (95 % CI)

Farmland compositional heterogeneity

-0,4 -0,2 0 0,2 0,4 0,6 0,8 biodiversity biological control pollination production Es timate (95 % CI)

Farmland configurational heterogeneity

-0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 biodiversity biological control pollination production Es timate (95 % CI)

Farmland compositional heterogeneity

-0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 biodiversity biological control pollination production Es timate (95 % CI)

(15)

Response variations between taxa

Farmland true heterogeneity effects

-1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3 Es timat e (95 % CI)

Farmland compositional heterogeneity

-1 -0,5 0 0,5 1 1,5 2 2,5 Es timate (95 % CI)

Farmland configurational heterogeneity

ALL TAXA

(16)

Multiple interactions

Bir d div er sity Bir d div er sity HCOMPO

(17)

Take-home messages

 Farmland heterogeneity has a true positive effect on biodiversity - in particular bee, bird, plant, spider

 Positive effect on biological control - due to linear semi-natural elements. No effect on pollination and production.  Complex interactions :

Farmland heterogeneitySemi-natural % Practices

 Agricultural policies should start considering field

configuration while maintaining semi-natural habitats and agrochemical reduction

(18)

Références

Documents relatifs

In our case, the aggressiveness and the activity observed in the Adélie penguin colony may reflect the individuals’ habitat use at sea (e.g. foraging range/distance reflected

The peculiar fan-shaped leaf arrangement of the young stages of this form is adapted to light intensity of these forest gaps, higher than in the understory.. The adult crown

Nous avons mis en évidence, dans le cadre de ce travail, que l'hétérogénéité spatiale et temporelle des paysages agricoles - et notamment la taille moyenne du

exponent versus dissolution rate constant (pinning particles fixed at 5%); b) Growth exponent 661. versus amount of pinning particles (dissolution rate constant fixed at k= 0.5);

Floral resource availability in different landscape contexts has been linked to colony growth or productiv- ity and variation in nutritional variables in both bumble bees 23–25

This work highlights the potential of multi-spectral remote sensing observations to quantify the landscape spatial heterogeneity. It shows that direct and cross variograms modeled

The goal of our study was to assess whether the variability in crop colonization levels by mirids (Macrolophus spp. and Dicyphus spp.) is related to local landscape

What Proposition 3.5 says is that, during the first phase of integration, the market expansion effect dominates the mar- ket crowding effect for the large country as it does when φ =