• Aucun résultat trouvé

Constraints on Cosmological Parameters from the Analysis of the Cosmic Lens All Sky Survey Radio-Selected Gravitational Lens Statistics

N/A
N/A
Protected

Academic year: 2021

Partager "Constraints on Cosmological Parameters from the Analysis of the Cosmic Lens All Sky Survey Radio-Selected Gravitational Lens Statistics"

Copied!
4
0
0

Texte intégral

(1)

Sky Survey Radio-Sele ted Gravitational Lens Statisti s K.-H. Chae, 1 A.D. Biggs, 1 R.D. Blandford, 2 I.W.A. Browne, 1 A.G. de Bruyn, 3 C.D. Fassna ht, 4 P. Helbig, 1 N.J. Ja kson, 1 L.J. King, 5 L.V.E.Ko opmans, 2 S.Mao, 1 D.R. Marlow, 6 J.P. M Kean, 1 S.T.Myers, 7 M.Norbury, 1 T.J. Pearson, 2 P.M. Phillips, 1 A.C.S. Readhead, 2 D.Rusin, 8 C.M. Sykes, 1 P.N.Wilkinson, 1 E. Xanthop oulos, 1 andT. York 1 1

Universityof Man hester,JodrellBank Observatory,Ma les eld,Cheshire,SK119DL, UK

2

California Institute of Te hnology, Pasadena, CA 91125

3

NFRA, Postbus 2, 7990 A A Dwingeloo, The Netherlands

4

Spa eTeles ope S ien eInstitute,3700 SanMartin Drive,Baltimore, MD 21218

5

University of Bonn, Auf dem Hugel, 69, D-53121 Bonn, Germany

6

Dept.ofPhysi sandAstronomy,UniversityofPennsylvania,209S.33rd StreetPhiladelphia,PA 19104

7

NationalRadio Astronomy Observatory, P.O. Box 0, So oro,NM 87801

8

Harvard-SmithsonianCenter for Astrophysi s,60GardenSt., MS-51,Cambridge, MA02138

(Dated: January15,2005)

Wederive onstraintson osmologi al parametersandtheprop ertiesofthelensinggalaxies from

gravitationallensstatisti sbasedonthe nalCosmi LensAllSkySurvey(CLASS)data. Fora at

universewitha lassi al osmologi al onstant,we ndthatthepresentmatterfra tionofthe riti al

density is m =0:31 +0:27 0:14 (68%) +0:12 0:10

(systemati ). Fora atuniverse witha onstantequation of

statefordarkenergyw=p

x (pressure )= x (energydensity),we ndw< 0:55 +0:18 0:11 (68%).

PACSnumb ers:98.80.-k,98.80.Es,98.80.Cq,98.62.Py

Gravitational lensing, in whi h a ba kground sour e

b ehind a foreground obje t is seen as distorted and

(de)magni ed image(s), is well-understo o d by the

sim-ple physi s of light de e tions in a weak gravitational

eld. Hen e, the analysis of lens statisti s an provide

ate hnique[1℄ for onstraining osmologi alparameters

thatisb othp owerfuland omplementarytoother

meth-o ds[2℄. However,forlensstatisti stob euseful,itisvital

to havean unbiasedstatisti alsample ofsour es thatis

omplete withinwell-de ned observational sele tion

ri-teria[3℄ andto prop erlytake intoa ount allfa torsin

astatisti allensingmo del[4℄. Thestatisti alprop erties

ofgravitationallensing inasamplearethetotallensing

rate,theimageseparations,thelensredshifts,thesour e

redshifts, andtheimagemultipli ities. Theseprop erties

dep end notonlyon osmologi alparameters butalsoon

the prop erties of the lensing galaxies and the

distribu-tionsof the sour es in redshift (z) and inluminosityin

theobservationalsele tionwaveband(e.g.radiohere)[4℄.

Re entadvan esinobservationsp ermitusto doa

re-liable analysis of lens statisti s to obtain limits on

os-mologi alparameters. First, the largest radio-sele ted

gala ti mass-s ale gravitational lens sear h proje t to

date,theCosmi LensAllSkySurvey(CLASS),hasnow

b een ompleted,resultinginthelargestsample suitable

for statisti al analyses [3℄. Se ond, urrently available

indep endent data setson thedistributionsof ( at sp

e -trum) radio sour es in ux density and in redshift are

on ordant[3, 4℄. Third, re ent large-s aleobservations

of galaxies, in parti ular the Two Degree Field Galaxy

Redshift Survey (2dFGRS) and the Sloan Digital Sky

totalgalaxyluminosityfun tion(LF;i.e.,distributionof

galaxy numb er density in luminosity), and there exist

fairlyreliableobservationalresultsthat p ermitusto

ex-tra tfromthetotalLFmorphologi altyp e-sp e i LFs,

i.e.,anearly-typ e(i.e.ellipti alsandS0galaxies)LFand

alate-typ e(i.e.spiralsandothers) LF[4,5℄. Inthis

Let-ter, we rep ort the main results on osmologi al

param-eters from a likeliho o d analysis of lens statisti s based

onthese ru ialsets ofdata. Thedetailed pro edure of

the analysis will b e des rib ed in a later publi ation [4℄

inwhi hextendedanalyseswillb epresentedforbroader

rangeofparametersandwithanemphasisontheglobal

prop ertiesofgalaxyp opulations.

TheCLASSstatisti alsamplesuitableforouranalysis

ontains8958radio sour es outof whi h 13 sour es are

multiply-imaged[3℄.Thelenssear hlo okedfor

multiple-lensingimage omp onents of the entral ompa t radio

ore in the ba kground sour es. The CLASS

statisti- al sample is de ned so as to meet the following

ob-servational sele tion riteria [3℄: (1) the sp e tral index

b etween 1.4 GHz and 5 GHz is atter than 0:5, i.e.

 0:5 with S  /  where S 

is ux density

mea-suredinmilli-jansky(mJy;1mJy10 29 Wm 2 Hz 1 );

(2) the total ux density of ea h sour e is  30 mJy

at 5 GHz; (3) the total ux density of ea h sour e is

20mJyat8.4GHz;(4)theimage omp onentsinlens

systemsmusthaveseparations0:3ar se andtheratio

of the ux densities of the fainter to the brighter

om-p onentindouble-imagesystemsmustb e0:1. Numb er

ounts for sour es at  = 5 GHz are onsistent with a

(2)

rela-TABLE I: Gravitational lens systems in the well-de ned

CLASSstatisti alsample. zs andzlaresour eandlens

red-shifts,resp e tively;forsour eswithunmeasuredredshifts,we

takez

s

=2,whi histhe meansour e redshift fortheentire

sample of CLASS lenses. The maximum image separation

( ) is given in ar se . Image multipli i ty is listed under

N

im

. When the image splitting is due to multiple galaxies,

theimageseparationandtheimagemultipli ityarenotused

in our mo del tting. The image separation of 2045+265 is

notusedb e auseofun ertaintiesinthenatureofthelensing

s enario. Probable lensgalaxytyp eidenti ati on(G-typ e)is

o dedas: eforanearly-typ eandsforaspiral-typ e.

Sour e zs zl  Nim G-typ e

0218+357 0.96 0.68 0.334 2 s 0445+123 - - 1.33 2 -0631+519 - - 1.16 2 -0712+472 1.34 0.41 1.27 4 e 0850+054 - - 0.68 2 -1152+199 1.019 0.439 1.56 2 -1359+154 3.235 - 1.65 6 -(3Gs) 1422+231 3.62 0.34 1.28 4 e 1608+656 1.39 0.64 2.08 4 e(2Gs) 1933+503 2.62 0.755 1.17 4 e? 2045+265 - 0.867 1.86 4 -2114+022 - 0.32/0.59 2.57 2? e(2Gs) 2319+051 - 0.624 1.36 2 e /(S=S 0 )  with=2:070:02(1:970:14)forSS 0 (S  S 0 ) and S 0

= 30 mJy. These results are

onsis-tentwiththepredi tionoftheDunlop&Pea o k(1990)

free-formmo delnumb er5radioluminosityfun tionthat

is onsistent with redshift data at S > 1 mJy [3, 4℄.

Redshiftmeasurementsforarepresentative CLASS

sub-sampleandthepredi tionoftheaforementionedDunlop

& Pea o k (1990) mo del onsistently suggest that the

redshiftdistributionfortheCLASSunlensedsour es an

b eadequatelydes rib edbyaGaussianmo delwithmean

redshift,hzi=1:27anddisp ersion0.95[3,4℄. The

prop-ertiesofthe13multiply-imagedsour es aresummarized

inTable1.

The luminosityfun tion of galaxies is assumed to b e

well-des rib edbyaS he hter fun tion[5℄oftheform

dn d(L=L  ) =n   L L   exp ( L=L  ); (1)

where is a faint-end slop e and n

 and L



are

har-a teristi numb er density and hara teristi luminosity,

resp e tively. FromEq.(1)anintegratedluminosity

den-sity j is givenbyj = R 1 0 dLL(dn=dL)=n  L  ( +2).

The luminosity of a galaxy is orrelated with its

line-of-sightstellar velo ity disp ersion ( ) via the empiri al

relations, L L  10 0:4(M M) =      ; (2) where M  and  

are resp e tively hara teristi

ab-sion, and orresp onds to the Fab er-Ja kson

(Tully-Fisher) exp onent for an early-typ e (late-typ e) p

opula-tion [6℄; throughout we take

Fab er Ja kson

= 4:0 and

Tully Fish er

=2:9[6℄. The2dFGRSteamandtheSDSS

teamindep endentlydeterminetheS he hter parameters

for galaxies at z <



0:2 summedover all gala ti typ es

andtheirresultsare onsistentwithea hother[5℄. The

onvergingresult anb eexpressedintheb

J photometri systemasM  5log 10 h= 19:690:04(hereafter his

theHubble onstantH

0 inunits of100kms 1 Mp 1 ), = 1:220:02,andn  =(1:710:07)10 2 h 3 Mp 3 ,

whi h gives an integrated luminosity density of j =

(2:020:15)10 8 h L Mp 3

. From the total LF

we extra tthetyp e-sp e i LFs based onmeasured

rel-ativetyp e-sp e i LFskeeping thetotalluminosity

den-sity xed. The typ e-sp e i LFs are required b e ause

theearly-typ eandthelate-typ ep opulationsare

dynam-i ally di erent and ontribute to the multiple imaging

in distin tively di erent ways, namely that the

early-typ ep opulation ontributesmoretothetotallensingrate

andonaveragegenerates largerimagesplittings[4℄. We

use the relative LFs obtained from the Se ond

South-ern Sky Redshift Survey (SSRS2), whi h is based on

5404 lo al (z  0:05) galaxies. We obtain the

follow-ingearly-typ e(e)andlate-typ e(s)LFsexpressed inthe

b

J

photometri system: for the early-typ e p opulation,

M (e)  5log 10 h= 19:63 +0:10 0:11 , (e) = 1:000:09,and n (e)  =(0:640:19)10 2 h 3 Mp 3

; forthe late-typ e

p opulation, (s) = 1:220:02,M (s)  = 19:690:04, and n (s)  = (1:200:11)10 2 h 3 Mp 3 . To break

adegenera y we have hosen (s) = and M (s)  =M 

sin ethetotalLFisdominatedbylate-typ egalaxies.For

alternativetyp e-sp e i LFsobtainedfromthe2dFGRS,

thereaderisreferredto[4,5℄. Whenthealternativetyp

e-sp e i LFsareused, ourderivedlimitson osmologi al

parametersareessentiallyun hanged.

The multiple imaging ross se tion of a galaxy an

b e related to and al ulated from the line-of-sight

ve-lo itydisp ersion of thegalaxy. However,the relationis

notuniquebutdep endsonthemasspro leandintrinsi

shap eof the galaxy. This dep enden e willb e absorb ed

intoa\dynami alnormalization"fa tor(f)b elow. Itis

knownthatproje tedsurfa edensitiesoftheinner

ylin-dri alregions of galaxies along the line-of-sight prob ed

bygravitationallensingarewellapproximatedbya

sin-gularisothermalmasspro leorapro lesimilartoit[4℄.

Inthis Letter, we adopt a singularisothermal ellipsoid

(SIE) as a galaxy lens mo del, whose proje ted density

anb e expressed inunits oflensing riti alsurfa e

den-sity r = 2 D OS =(4 GD OL D LS )as (x;y )= r r 2 p f(f) p x 2 +f 2 y 2 ; (3)

(3)

mo del,and r r =4    2 D OL D LS D OS (4)

isthe riti alradius forf =1. D

OL , D LS andD OS are

angular diameter distan es b etween observer (O),

lens-ing galaxy(L), and sour e (S). Cal ulationsof

dynami- alnormalizationsforaxisymmetri ases(i.e.oblateand

prolate) anb e foundin[4℄. Forthe ase ofequal

num-b ersofoblatesandprolates,j(f) 1j <



0:06forf >0:4.

Lets

m

(f)b ethelensing rossse tionforimage

multi-pli ity m (= 2;4) due to the surfa e density given by

equation (3) in units of r 2

r

(Eq. 4). Then, we have

s m (f)=[(f)℄ 2 ^ s m (f)wheres^ m

(f) anb eevaluated

nu-meri ally [4℄. The di erential probability for a sour e

withredshiftz

s

and uxdensityStob emultiply-imaged

with image multipli itym and image separation  to

+d( ),duetoadistributionofinterveninggalaxies

oftyp eg (g=e,s)atz toz+dzmo deledbySIEsand

des rib ed byatyp e-sp e i S he hter LF,isgivenby

d 2 p (g ) m dzd( ) = s m (f)8 2 dt dz (1+z) 3  D OL D LS D OS  2 n      4 1        ( + +2)=2 exp "      =2 # B m (z s ;S); (5) where B m (z s

;S) is amagni ation bias fa tor (i.e., an

over-representation of multiply-imaged sour es b e ause

of uxampli ations)whi hdep ends onamagni ation

probabilitydistribution and jdN =dSj and an b e

al u-lated numeri ally[4℄. InEq. (5),



isa hara teristi

image(angular)separationgivenby

  =(f)8 D LS D OS     2 : (6)

Thedi erentialprobabilitywith  to +d( ) an

b e obtainedfromEq.(5):

dp (g ) m d( ) = Z z s 0 d 2 p (g ) m dzd( ) dz: (7)

Thedi erentialprobabilitywithany>

min dueto galaxiesat ztoz+dz isgivenby dp (g ) m dz = s m (f)16 2  +1+ 4  dt dz (1+z) 3 n      4  D OL D LS D OS  2 B m (z s ;S) Z  min d 2 p (g ) m dzd( ) d( ): (8)

Finally,theintegratedprobabilityisgivenby

p (g ) m = Z zs 0 dp (g ) m dz dz: (9)

For the sample of CLASS sour es ontaining N

L

multiply-imaged sour es and N

U

unlensed sour es, the

likeliho o dLofobservingthenumb erandtheprop erties

of themultiply-imaged sour es (Table1) and the

num-b er of theunlensed sour es giventhe statisti al lensing

mo del,isde ned by lnL= NU X i=1 ln " 1 X m=2;4 p (all) m (i) # + NL X k =1 lnÆp (one) m (k ); (10)

where the integrated probability (Eq. 9) p (all) m (i) = p (e) m (i)+p (s) m

(i) and the di erential probability (Eqs. 5,

7,or8) Æp (one) m (k )isgivenby Æp (one) m (k )=w (e) (k )Æp (e) m (k )+w (s) (k )Æp (s) m (k ) (11) with w (e) (k )+w (s)

(k ) = 1. If the k -th lensing galaxy

typ eisknowntob eanearly-typ e(late-typ e),w (e)

(k )=1

(w (s)

(k )=1). Ifthek -thlensinggalaxytyp eisunknown,

weusew (g ) (k )=Æp (g ) m (k )=[Æp (e) m (k )+Æp (s) m (k )℄ifthelens

redshiftisknown,andweusew (e)

(k )=0:8andw (s)

(k )=

0:2otherwise. FromEq.(10),a\ 2 "isde nedas  2 = 2lnL: (12) We al ulate the  2

(Eq.12) over gridsof the mo del

free parameters (see b elow; inea h gridp ointthe 2

is

minimizedoverthenuisan e parameters)anddetermine

theb est- tvalues anderrorsofthefreeparameters. We

allow most of the riti al parameters to b e free while

we x the parameters that are well-determined by

ob-servations or to whi h the  2

is insensitive. The free

parameters to b e determined by minimizingthe  2

are

as follows: present matter density

m

, present va uum

density



or darkenergy density

x

(all expressed as

fra tionsofthepresent riti aldensity)withits onstant

equation of state w = p x = x (where p x and  x are its

isotropi pressure and uniform energy density),

early-typ eandlate-typ e hara teristi velo itydisp ersions (e)



and (s)



, and the meanapparent axialratioof galaxies



f. A riti albut xedparameteris theearly-typ e

har-a teristi numb er density n (e)



. However, whi hever of

the presently available hoi es of typ e-sp e i LFs we

use,thederived onstraintson osmologi alparameters

turnout tob e virtually thesame. One key assumption

wemakeisthatthe(relatively)lo allydetermined

early-typ enumb erdensityn (e)



along withthefaint-endslop e

(e)

have notevolvedsin e z 1. This app earsto b e a

valid assumptionbased on urrent eviden e and

under-standing[7℄. However,ifthereisanysigni antredu tion

(4)

FIG.1: Con den elimits inthe

m

- plane.

with the present ep o h, our presently determined

mat-ter density (dark energy density) will b e overestimated

(underestimated).

Wepresentourresults based onthetyp e-sp e i LFs

derivedusingtheSSRS2LFsandadynami al

normaliza-tionassumingequalfrequen ies of oblatesand prolates.

Figure 1 shows likeliho o dregions ina matter plus

va -uum osmology: we ndthe ombination

 1:2 m = 0:40 +0:33 0:56 (68%)( +0:52 1:57

at95%).Figure2showsthe

likeli-ho o dinthew

-m

planewiththepriorthattheuniverse

is at; we nd w < 0:55 +0:18

0:11

(68%). This limitis in

agreement with other re ent results [8℄. For a at

uni-verse witha osmologi al onstant(i.e. forw= 1),we

nd m = 0:31 +0:27 0:14 (68%) ( +0:75 0:23 at 95%) +0:12 0:10

(sys-temati ). Theidenti ed systemati s aredue to the

un- ertainties in theredshift distribution and the

di eren-tialnumb er- uxdensity relationofthesour es. For the

at w = 1 ase, other tted values of theparameters

are:  (e)  =198 +53 37 kms 1 ,  (s)  =117 +45 31 kms 1 , and  f <0:83,allat 95%.

In on lusion,thelikeliho o dfun tion(or, 2

;Eq. 12)

of the CLASS data has well-de ned on den e regions

intheparameterspa e de nedby our osmologi aland

gala ti parameters. Our onstraintinthe

m

- plane

based solely on lens statisti s agrees with that from

Typ e Ia sup ernovae observations [2℄. Our determined

value of

m

in at osmologies is also in go o d

agree-mentwithseveralre entindep endentdeterminations[2℄.

Comparedwithprevious works inlensstatisti s [4℄,our

results imply not only p ositive but higher dark energy

density. Therefore, ourresults, whi h are based on

dif-ferent physi s, assumptions and astronomi al relations,

and indep endent sets ofdata, add tothe eviden e fora

universe with low matter density and high dark-energy

density.

FIG.2: Con den elimits inthew

-m

planein at

osmolo-gies.

[1℄E.L. Turner, Astrophys. J. Lett., 365, L43 (1990);

M.FukugitaandE.L.Turner,Mon.Not.R.Astron.So .,

253,99(1991).

[2℄See,e.g.,A.G.Riess,etal.,Astron.J.,116,1009(1998);

S.Perlmutter,etal.,1999,Astrophys.J.,517,565(1999)

(Typ e IaSup ernovae); A. Ja e, etal., Phys.Rev. Lett.,

86,3475(2001)(CMB);W.J.Per ival,etal.,Mon.Not.R.

Astron. So ., 327, 1297 (2001); astro-ph/0206256

(mat-ter p ower sp e tra); S.M. Molnar, M. Birkinshaw and

R.F.Mushotzky,Astrophys.J.,570,1(2002)(S-Z).

[3℄S.T.Myers, etal., (to b epublished ); I.W.A. Browne, et

al., (tob e published); For thedistribution s ofsour es in

redshift and in ux density, seeD.R. Marlow, etal.,

As-tron. J., 119, 2629 (2000); J.P. M Kean, et al., (to b e

published); I. Waddington, et al., Mon. Not.R. Astron.

So ., 328, 882(2001); J.S.Dunlop, J.A.Pea o k, Mon.

Not.R.Astron.So .,247,19(1990).

[4℄K.-H.Chae,(to b epublished) and referen estherein; in

parti ular, P.Helbig, etal., Astron.Astrophys.(Suppl.),

136,297(1999)(asubsampleofCLASS);C.S.Ko hanek,

Astrophys. J., 466, 638 (1996) (primarily

opti ally-sele ted sample).

[5℄For total LFs, seeP. Norb erg, etal., Mon. Not. R.

As-tron. So ., 328, 64 (2002) (2dFGRS); M. Blanton, et

al., Astron.J., 121, 2358 (2001); N. Yasuda, etal.,

As-tron.J.,122,1104(2001)(SDSS). Fortyp e-sp e i LFs,

see R.O.Marzke, et al., Astrophys. J., 503, 617 (1998)

(SSRS2); D.S. Madgwi k, et al., Mon. Not. R. Astron.

So .,333,133(2002)(2dFGRS).

[6℄G.de Vau ouleurs and D.W. Olson, Astrophys.J.,256,

346(1982);M.Bernardi,etal.,astro-ph/0110344 (SDSS)

(Fab er-Ja kson); R.B.Tully andM.J.Pier e,Astrophys.

J.,533,744(2000)(Tully-Fisher).

[7℄See,e.g.,P.J.E.Peebles,astro-ph/0201015,andreferen es.

[8℄See,e.g.,S.Perlmutter,M.S.Turner,andM.White,Phys.

Figure

TABLE I: Gravitational lens systems in the well-dened
Figure 1 shows likeliho o d regions in a matter plus va-

Références

Documents relatifs

Theorem 11.1 gives also an upper bound on the number of perfect lat- tices since convex hulls of minimal vectors of perfect lattices are obviously symmetric lattice polytopes

[ - &#34; ﻲﻌﺴﻟﺍﻭ ﻢﻬﻗﻮﻘﺣ ﻦﻋ ﻉﺎﻓﺪﻠﻟ ﺩﺍﺮﻓﻷﺍ ﻦﻣ ﺔﻋﻮﻤﳎ ﻦﻣ ﺔﻧﻮﻜﻣ ﺔﻤﻈﻨﻣ ﻲﻫ ﺔﻴﻟﺎﻤﻌﻟﺍ ﺔﺑﺎﻘﻨﻟﺍ ﻢﻬﺒﻟﺎﻄﻣ ﻖﻴﻘﺤﺘﻟ ] &#34; Ferderic Delacourt, 2001, PP 154-155 .[

Current players in the travel and expense automation market can be classified in three categories: Prominent T&amp;E vendors, Mid-market T&amp;E vendors, and travel

It can be proved in several very different ways (see e.g. [5], [2]), and it plays an important role in the proof of the Macdonald identities. Moreover, using the modular properties

[r]

Les symboles de la Saint-Patrick sont : la couleur verte, le trèfle, le lutin (leprechaun) muni de son chaudron rempli de pièces d’or (pour trouver le trésor, il suffit de se rendre

En 2003, dans les entreprises de 10 salariés ou plus du secteur concur- rentiel, la rémunération mensuelle brute moyenne d'un salarié à temps complet s'élevait à 2 490 euros, soit

ser.2:t.27 (1869): http://www.biodiversitylibrary.org/item/28490 Article/Chapter Title: Roches usées avec cannelures de la vallée de la Grande-Geete. Author(s):