• Aucun résultat trouvé

Characterization of the physical state of spray-dried inulin.

N/A
N/A
Protected

Academic year: 2021

Partager "Characterization of the physical state of spray-dried inulin."

Copied!
1
0
0

Texte intégral

(1)

ba

s

ti

e

n

.

R

o

nkartl

.2,

C

l

a

ude D

e

r

oa

nn

e', M

ich

e

l Paqu

o

t

-

,

C

h

ris

ti

a

n

Fo

u

g

n

iesê,

J

ea

n

-C

hri

s

t

o

ph

e

Lambr

e

cht

s", C

h

r

i

sto

ph

e

Bl

ec

k

e

r

!

1Gembloux Agricultural University. DepanmenrofFood Technology (Head: Prof C.Deroanne),URL:httpJ/www.fsagx.ac.belta

2 Gembloux Agricultural University.Department or lndustrial Biological Chemistry (Head: Prof. M.PaqUOC).

Passage des Déportés. 2.B-S030 Oernbloux.Belgium. 3 Cosucra Groupe Warcoing SA.Ruedela sucrerie. 1.8-7740 Warcoing. Belgium

4CERTECH. Analytical Sciences-Microscopy. RueJulesBordet. 1.8-7180, Seneffe. Belgium.

m

cosucra

Groupe Warcoing

Characterization of the physical state of spray-dried inulin

Introduction

l

nu

l

i

n

is a

m

ix

tu

r

e

of

p

o

l

ys

ac

c

har

i

d

es co

m

posed o

f

a

c

h

a

i

n

o

f

fr

ucto

s

e un

i

t

s

w

i

th

ge

n

e

ra

ll

y a

terminal

g

lu

cos

e un

i

t

.

Fo

r n

ow,

c

o

mm

e

r

c

i

a

l in

uli

n

i

s ex

t

r

a

c

t

ed

fr

o

m c

h

ic

o

ry r

oo

t and

is ava

i

l

a

b

l

e

as a s

pr

ay

-

dried p

ow

de

r

p

r

odu

c

t

, w

h

i

c

h h

as

th

e a

d

va

nt

ag

e

o

f

l

ow

pr

od

u

c

ti

o

n

co

s

t

s

c

o

mpared

t

o o

t

he

r

d

r

y

i

n

g

t

e

c

hn

i

q

u

e

s

(e

.

g

.

,

f

r

ee

z

e d

r

yi

n

g

)

.

Sp

r

ay-

dryi

n

g

p

r

oduce

s

p

o

wde

r

b

y a

t

o

m

i

zin

g

a

so

lu

t

i

o

n

o

r

s

l

u

rr

y

(

n

a

m

e

d f

ee

d

)

a

n

d e

v

ap

o

r

a

ti

ng

m

o

i

s

t

u

r

e

fr

o

m th

e

r

esu

lti

n

g

dr

o

p

l

e

t

s

b

y s

u

s

p

e

n

din

g

them

in h

o

t

g

a

s.

W

hi

l

e

m

ov

i

n

g

i

n

t

hi

s

h

o

t

m

e

di

um

,

t

he drople

t

s

ar

e

d

r

i

ed i

n

t

o

i

n

d

i

v

i

du

a

l

o

r

agg

l

o

m

erate pow

d

er pa

rti

c

l

e

s.

Sp

r

a

y

-dr

y

i

n

g

t

ri

a

l

s

r

e

rn

ain ve

r

y

co

mp

l

i

ca

t

ed a

nd

e

x

pen

s

i

v

e un

d

e

r

i

ndu

s

tr

i

a

l

c

o

n

d

i

t

i

o

n

s

.

F

o

r th

i

s

r

e

a

so

n

,

pi

l

o

t

sca

l

e

s

pr

ay

-dri

er

s a

re i

n

te

r

e

s

tin

g

t

o

o

l

s

f

o

r

i

n

v

e

s

t

iga

t

i

n

g

the

i

nf

l

u

e

n

ce o

f

fee

d

c

h

arac

t

e

ri

s

ti

c

s o

r d

r

y

i

n

g

p

ara

m

eter

s

o

n

t

h

e

ph

ys

ic

a

l pr

ope

rt

ie

s o

f

t

h

e powder

s,

w

h

ic

h h

a

v

e

a direct i

mp

a

c

t

o

n t

h

e

te

c

h

n

o

fu

n

c

t

i

o

n

a

l

proper

t

ie

s

(

s

ol

u

bi

l

it

y o

r

d

i

s

pe

r

s

i

bi

li

t

y

in

wa

t

er

, s

t

a

b

il

i

t

y

duri

n

g s

tor

ag

e

.

.

.

)

l

n

thi

s s

t

u

d

y,

w

e

i

n

v

e

s

t

iga

t

e

d th

e imp

o

rt

a

n

c

e

o

f

th

e

f

e

e

d te

mp

e

ra

tur

e

(4

0

-

95

°

C

)

a

nd the in

l

e

t

a

ir t

e

mp

e

r

at

ure

of

the

s

pr

a

y

-dri

e

r (

1

2

0

-

2

3

0

°

C) o

n th

e p

h

ys

ica

l

and morp

h

o

lo

g

i

ca

l

p

r

o

p

e

r

t

i

e

s o

f

s

p

r

a

y

-

d

ried p

o

w

d

e

r

.

The ph

y

s

i

c

a

l p

r

o

per

tie

s

e

s

tim

a

t

ed were

th

e g

l

ass

tr

a

n

s

iti

o

n temp

e

r

a

t

u

r

e (

T

g

) a

nd th

e c

r

y

s

t

a

ll

init

y

ind

e

x,

in

v

es

ti

ga

t

e

d b

y

m

o

du

l

ate

d di

ffe

rential

s

ca

nn

i

n

g ca

l

ori

m

e

t

r

y

(

M

DS

C

) a

n

d

w

id

e a

n

g

l

e

x

-

r

a

y

sca

tt

er

in

g

(

W A

XS)

,

r

e

s

p

ec

t

i

v

e

l

y

.

ln

a

dditi

o

n

,

en

v

ir

o

nment

a

l

s

c

a

nnin

g

e

l

ec

tr

o

n mi

c

r

os

c

o

p

y

(

ESE

M)

wa

s

u

s

e

d f

o

r

t

h

e

s

u

r

f

ac

e

a

n

d

p

a

rt

ie

l

e s

h

a

p

e c

h

a

r

a

ct

e

ri

z

a

ti

o

n

o

f t

h

e

p

ow

de

r

.

W

id

e A

n

g

le

X

-R

ay Sca

tt

e

rin

g (W AXS)

...

.

.

1

.,-

./

\

.

,

---

-.

. \

lit

~

)(

.

.

-~

-

\

:

::;

.

/

.

-The:WAXS eparerus was aPW3710 Philips Analytical X-ray B.V.

with

an

anodedevieeoperating al

t

OkV

and30mA

O

.

'

"'

1.54178 Â)in conjunction withapeœonionnal detecterinthe4<29<300 range.

I

n

l

et air

t

e

m

perat

u

re:

1

20

0

e

14 24

Diffraction angle (29)

Oiffmctograms in the4°<29<300rangepresent eitherabread halo pattern. ordiffraction pcaks, characteristic of anarnorphousor ascrm -crystaulne sample,rcspectivety.

AnIrcreascin thefeedtemperature induced a highcr sctubilizauon of inulinandthusincreased the amorphous index.

120 140 160 180 200

Temperature(De)

MDSC total beatflow curves presented one or Iwo cndothc:nnic peaks labeled Tml (lcwer melting peak) and Tm2 (highcr mclting peak).

Tml shifted to a highe:rtemperature asthe fecdtemperature increased. butTm2 did notshift.

The maindifferences bcrwcenparticJe morphologies were observed

for the various fccd temperatures, and wereprobably due toa difference in the metting of crystals present in Ihedispersion. Increasmg thetemperature of thefeed 100toasmoother powder surface, probably due10thespray drying ofasolution rathertitana dispersion. Thedrying ofadispersion containing undissolved solid particJcs (Tfccd<800

e

)

.

led10powders withroughsurfaces.

120 140 160 180 200

Temperature("q

MDSC total heatIlow curvespresented one or IwO endolhennic pcaks

60 80 100 labelcd Tml (lower melting peak) andTm2 (higher melting peak).

1

-

T_e_m_pe_'_atu_"'_(O_Cl

-

f

=~'::=n~~~~:::~~i~a~~t~=~ture Increesedasalso

Conclusions

T

h

e

f

ee

d temper

a

tu

r

e and

t

h

e

i

nl

et temp

e

r

atu

r

e w

e

r

e

fo

un

d t

o

h

a

ve

significant

eff

ec

t

s

00

th

e

p

h

ysica

l

a

n

d

m

o

r

ph

o

l

ogi

ca

l

pr

o

pert

i

es o

f

s

p

r

a

y-

d

r

i

ed

i

nu

l

i

n

.

A

n

in

cr

eas

e

in

t

he

f

ee

d te

m

pe

r

a

tu

r

e o

r

t

o

a

l

e

sse

r

e

x

t

e

nt

,

t

h

e

in

l

e

t ai

r

t

e

mp

e

r

a

ture

r

es

ult

e

d i

n

a

n in

c

r

e

as

e o

f th

e

a

m

o

r

p

h

o

u

s co

n

t

e

n

t

i

n th

e

s

pr

a

y

-

dr

ied

pr

o

du

ct

s.

B

y s

e

l

e

c

tin

g

a

pp

ro

p

r

i

a

t

e

f

e

ed

o

r

in

l

e

t

a

i

r

t

e

m

pe

r

at

ur

e

s,

we were a

b

l

e

t

o

pr

o

d

u

ce

spray-dried

inulin

wi

th th

e

d

e

s

i

r

ed

ph

ys

i

ca

l

properties.

Su

c

h

properties

a

r

e of c

ruci

a

l imp

o

rt

a

n

ce

t

o

th

e

h

yg

r

o

sc

op

i

c

p

r

o

p

e

r

tie

s a

nd thu

s

ca

n

affec

t th

e

s

ta

bil

i

t

y o

f th

e

pr

od

u

c

t

in m

a

n

y

domains

l

i

k

e

f

oo

d t

ec

h

no

l

og

y

o

r

ph

a

rm

ace

uti

c

a

l

s

.

A

s

il

i

s

e

s

t

a

b

l

i

s

h

ed

th

a

t

a

m

o

rph

o

u

s

p

ro

duct

s

a

re m

o

r

e

h

y

g

r

o

s

co

pi

c

t

h

a

n

t

h

e

ir

c

r

y

s

tallin

e c

o

unt

e

r

p

a

rt

s,

t

hi

s

co

u

l

d ine

v

i

tabl

y

h

a

ve a

n

i

mp

act o

n

their

b

e

h

a

v

i

o

r durin

g s

t

o

r

age

.

F

o

r t

h

i

s

r

ea

s

o

n

,

the imp

a

ct

o

f

storage

co

nd

i

ti

o

n

s

o

n b

o

th

s

t

a

b

i

li

t

y a

nd

p

r

o

du

c

t

q

u

a

l

it

y

o

f

a

m

or

ph

o

u

s a

nd

s

e

mi

-c

r

ys

t

a

llin

e

i

nu

l

in

w

i

l

l b

e eva

l

u

a

t

e

d

a

nd

d

i

sc

u

ss

e

d in fu

r

th

e

r

s

tud

ie

s.

Experimentation

and resuIts

S

pra

y

dr

y

in

g

lnulin (Fibrulinc XL coraincd fromCosucra Groupe Warcoing SA) dispersions were spray dricd into amistby atwo-fluid nozzlebymeansofcompressed air.Thenozzle was situated in the middle of the drying chamber spraying upwards. whereas the hot air was simultaneously introduced through anannular opening in thedryingchamber ceiling. The Iiquid feed ûow and thenoule pressure air Ilcw wcre 21 b-' and 2 bars. respectively. Two inlct airtemperatures of 120 and 230°C were rested, which corresponded to an outlct air

temperature of65-67 and 120 -125°e. respectivety.

Mo

dulat

e

d Diff

e

renti

a

i

Sc

annin

g

C

alorimetr

y

(M

D

SC)

....

0

,

.;-_-The MDSC measurements were reatizedby using a OSC 2920CE TAInstrument in nonhermetic aluminium pans. Heating rate was of 1.5°C.mÎn·1 and the OSC œil was purged with70cmê.min-'dr)' nitrogen.

Inlel air temperature:

BO

o

e

.

o+

-

----__ ---- __ ----~

"

80 00 F•• dl.fT1)ef.luf.("C) '00 14 24 Diffrllction angle (28)

Theamorphous content incrcased Oltaninletairtemperature of 230°e. Dcspüe theresidence timeofdried inulin being rclauvely

short inthe spray-dricr. wccanner toraüyexclude thatasmall proportion could havehcatcd alatemperature abovethemetting

pointand thushave ahigher amorphous content.

! .,.1 t,11'1"1..: 11It(,.. -+<, l

1

I •..~Jtcntp •..r,lm, -,"'l

/

Tbe feed temperature affectcd the

sclubility. but also the chemical composition ofthe soluble fraction.

The average degree ofpolymenzauon of this fraction. reüecüng the molecular weight of the amorphous pan of the spray-dried product.

increascd with the feedtemperature.

This augmentation of the molecular

weighrledtc ahigher Tg.High inlet

air temperature alsc induced an increasc: of the Tg. probably from sorne meltcdcrystafs.

Ouring theatcrmzarion ofthefced inthespraydrying chamber. the undissolved solid particles can fuse togetber. probably by the presence ofsclnbilized mutinon their surface. The incrcascof the inlet air temperature induccd a blow ouiof theparticles.

Acknowledgments

Financial support wasprcvidedbytheWalloon Region ofBclgium (DGTRE) andCosucra Groupe Warcoing SA.Theauthors aregratcfultcMrs LynnDoranfor technical assistance.

e

:

152

t

I-i

i'"

j

0'<0

::

t

~

Références

Documents relatifs

By using the Global Sensitivity Analysis (GSA) method [ 10 , 12 ] to investigate the in fluence of the different boundary condi- tions on the combustion parameters between the two

In complement to the chemical investigation, the colloidal characterization is used to study the entities dispersion of heavy fractions, such as asphaltenes for example, as

used for the calculation of temperature correction for a 7.6 lm thermocouple diameter: “U reference” a time resolved estimation based on PIV measurements in the location of the

Nos résultats ont montré que la plante est riche en polyphénols totaux (21,8%) contenant l‟acide gallique, l‟acide caféique, la rutine et la vanilline, avec une activité

discharge coefficient seems to reach a maximum limit value when the Reynolds number rises to infinity. For higher pressure differences up to 180 MPa, this limit value is

Si cette population reste une cible majeure pour les politiques touristiques qui aspirent à développer la vocation touristique des nuits urbaines, ces

As well as enhancing epitaxial alignment, we find another advan- tage that the solid catalysts provide for Si and Ge epitaxy: the growth process takes place at lower

First, we can see that all agents (irrespective of their dataset size) benefit from private collaborative learning, in the sense that their final accuracy is larger than that of