• Aucun résultat trouvé

Characterization of deep saline aquifers for CO2 storage in the Bécancour region (Québec).

N/A
N/A
Protected

Academic year: 2021

Partager "Characterization of deep saline aquifers for CO2 storage in the Bécancour region (Québec)."

Copied!
1
0
0

Texte intégral

(1)

Characterization of deep saline aquifers for CO

2

storage in the Bécancour region (Québec)

1

TRAN NGOC Tien Dung ,

1

KONSTANTINOVSKAYA Elena,

1

LEFEBVRE René,

1

MALO Michel &

2

MASSÉ Luc

1

Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Québec, Canada;

tien_dung.tran_ngoc@inrs.ete.ca

2

Junex Inc., Québec, Canada

Goal

Characterize hydrogeological and petrophysical

properties of the deep saline aquifers to assess

the feasibility of the CO

2

sequestration in the

Bécancour

region

by

analyzing

existing

hydrological, chemical and geophysical data.

Geologic context

Structural map of basement (TWT) in the

Bécancour area.

(after Thériault et al., 2005)

Schematic

view of

litho-stratigraphic

units across

the Yamaska

fault.

Hydrostatic pressures

0 500 1000 1500 2000 2500 0 5000 10000 15000 20000 25000 30000 TV D [m] Pressure [kPaa]

Fresh water

Formation water with ρ

min

∆P

1

=10.78

∆P

2

=12.17

∆P

3

=15.60 kPaa/m

ρ

max

Pressure gradient distribution

Measured brine salinity

Brine density and viscosity

 Much

more

lateral

hydraulic

connectivity than vertical one k

h

> 10

2

k

v

 less risk of CO

2

leakage to the surface.

 Covey Hill Formation is the best

permeable unit.

0.01 0.10 1.00 10.00 100.00 1000.00 0.01 0.10 1.00 10.00 100.00 1000.00 V e rti ca l p e rm e ab il ity kv [m D] Horizontal permeability kh90[mD]

k

v

k

h90 Horizontal permeability kh90 [mD] V e rt ca l p e rm e ab ili ty kv [ mD ]

NW-SE seismic line

across the Yamaska

fault.

Effective porosity in the

Potsdam sandstones

 Net pays of the Potsdam Group are

the greatest with respect to other

stratigraphic units.

 Lithostratigraphic units are laterally

continuous in the reservoir.

References :

Konstantinovskaya E., Claprood M., Duchesne M., Giroux B., Malo M. & Lefebvre R. (2010). Le potentiel de stockage du CO2 expérimental dans les aquifères salins profonds de Bécancour : Partie I : Analyse des diagraphies et des profils sismiques. Rapport INRSCO2-2010-V2.1. 50 p.

Castonguay S., Dietrich J., Shinduke R. & Laliberté J-Y. (2006). Nouveau regard sur l’architecture de la Plate-forme du Saint-Laurent et des Appalaches du sud du Québec par le retraitement des profils de sismique réflexion M-2001, M-2002 et M-2003. Geological Survey of Canada. Open file 5328. Thériault R., Laliberté J-Y., Brisebois D. & Rheault M. (2005). Fingerprinting of the Ottawa-Bonnechère and Saguenay grabens under the Saint-Lawrence Lowlands and Québec Appalachians: prime targets for hydrocarbon exploration: Geol. Assoc. Can., Abstract., Halifax, Nova Scotia, 65. Span R. & Wagner W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data , 25 (6), 1509–1596.

Main parameters of the aquifers

Yamaska fault Cap ro ck k # 1 ×10 -4 mD Siltstones Lorraine Group Shales Utica Limestones Trenton Dolostones Beekmantown Group Sandstones Potsdam Group Metamorphic Grenvillian Basement (impervious) Bécancour 23 m (TVD) 695 726 917 1022 1296 Beauharnois + Theresa Formations Cairnside + Covey Hill

Formations

1474 1842

2270

Shallow block Deep block

(D. Cantin-Plante, Junex Inc. modified) Group

500

1000

1500

2000

2500

0

100

200

300

400

TVD

[m

]

Salinity [g/l]

Trenton

Beauharnois

Theresa

Cairnside

Covey Hill

 Agreement between the ∆p

magnitudes and observed artesian

rates (partially overpressurized site).

 The north-east part of the region is

more suitable for CO

2

storage with

regard to buoyancy of CO

2

.

 Non-homogeneity of the reservoir

at the regional scale (presence of

three local pressure gradients).

 Possible

hydraulic

connection

between two reservoir blocks across

the Yamaska fault.

2400 2500 2600 2700 2800 G ro u p /F o rma ti o n Density average [kg/m3] Trenton Beauharnois Theresa Cairnside Covey Hill 1050 1100 1150 1200 Brine density [kg/m3] Trenton Beauharnois Theresa Cairnside Covey Hill

Trenton

Beauharnois

Theresa

Cairnside

Covey Hill

Grain density

Bulk density

0.5 1 1.5 2 G ro u p /F o rma ti o n

Brine dynamic viscosity [mPa.s]

Trenton Beauharnois Theresa Cairnside Covey Hill

1050

1100

1150

1200

Brine density [kg/m

3

]

Trenton

Beauharnois

Theresa

Cairnside

Covey Hill

1050 1100 1150 1200 Brine density [kg/m3] Trenton Beauharnois Theresa Cairnside Covey Hill

Viscosity

Density

Trenton

Beauharnois

Theresa

Cairnside

Covey Hill

0.01 0.10 1.00 10.00 100.00 1000.00 0.01 0.10 1.00 10.00 100.00 1000.00 V er ti ca l p er m ea b ili ty khm ax [m D] Horizontal permeability kh90[mD]

k

h90

k

hmax Horizontal permeability kh90 [mD] Hor iz on ta l p e rm e ab ili ty khm ax [ mD ] 1050 1100 1150 1200 Brine density [kg/m3] Trenton Beauharnois Theresa Cairnside Covey Hill

Net pay

Porosity cutoff determination

Core permeabilities

Predicted supercritical CO

2

state

Conclusion

 The hydrogeological and petrophysical properties of the

Bécancour saline aquifers were identified (see Table).

 The lateral continuity is predominant in the aquifers

due to permeability anisotropy (k

v

much lower than k

h

).

 The Covey Hill sandstone reservoir (at >1 km of depth)

is the best candidate for the CO

2

storage with P≥14 MPa,

T≥35

C, S=109 g/l, k=0.3 mD, n=6% and net pay=188 m.

 The supercritical CO

2

state starts at 1145 m in the Covey

Hill sandstone in the foot wall block of the Yamaska

fault.

500 1000 1500 2000 2500 796 798 800 802 804 806 808 TVD [m ] CO2density [kg/m3] Tr shallow Bh shallow Th shallow Ca shallow CH shallow Tr deep Bh deep Th deep Ca deep CH deep

Shallow block

Deep block

500 1000 1500 2000 2500 796 798 800 802 804 806 808 T VD [ m ] CO2density [kg/m3] Tr shallow Bh shallow Th shallow Ca shallow CH shallow Tr deep Bh deep Th deep Ca deep CH deep 500 1000 1500 2000 2500 796 798 800 802 804 806 808 TVD [ m ] CO2density [kg/m3] Tr shallow Bh shallow Th shallow Ca shallow CH shallow Tr deep Bh deep Th deep Ca deep CH deep

Supercritical state of

CO

2

in

different

formations at the

Bécancour area

Artesian rates

0

100

200

300

400

Grou

p

/F

or

m

ati

on

Salinity average [g/l]

Trenton

Beauharnois

Theresa

Cairnside

Covey Hill

Average salinity

Formation density

 Hydraulic

discontinuity between

the aquifers due their

salinity differences.

 More dissolution of

supercritical CO

2

in

the Covey Hill Fm. due

to

its

low

brine

density.

 Covey Hill Formation

is the best porous unit.

Average brine salinity

CO 2 d e n si ty [kg /m 3] 0 200 400 600 800 1000 1200 0 10 20 30 40 50 60 70 80 De nsi d e CO 2 [kg /m 3] Température [°C] Tr superficiel Bh superficiel Th superficiel Ca superficiel CH superficiel Tr profond Bh profond Th profond Ca profond CH profond Point supercritique Limite supercritique Limite de 2 phases Variation de pressions Temperature [°C]

Porosity/permeability

histogram

Average parameters Trenton Beauharnois Theresa Cairnside Covey Hill

Formation thickness of shallow block [m] 164 51 62 85 141

Formation thickness of deep block [m] 257.0 118.0 84.0 147.0 257.0

Net pay [m] 3.1 2.9 5.0 31.4 187.5

Net pay porosity [%] 9.4 5.5 4.8 3.7 6.0

Net pay permeability [mD] 0.2 0.23 0.15 0.13 0.28

Net pay fluid volume [m3/m2] 0.442 0.409 0.278 1.213 11.597

Pressure gradient [kPaa/m] 12.17 12.17 12.17 12.17 12.17

Temperature gradient [°C/100m] 2.35 2.35 2.35 2.35 2.35

Salinity [g/l] 179.1 173.9 157.0 255.9 108.5

Brine density [kg/m3] 1126 1125 1116 1191 1091

Brine viscosity [mPa.s-1] 1.248 1.040 1.214 1.285 0.875

(after the formula of Span and Wagner, 1996)

The Bécancour saline aquifers are located in the

sedimentary successions of the St. Lawrence

Platform which are separated into two distinct

blocks by the Yamaska normal fault. Their

thicknesses are increasing from the NW to SE

across the Yamaska fault. The area is tectonically

stable.

Acknowledgements:

This research is financed by Ministère du Développement Durable, de l’Environnement et des Pars du Québec.

0 20 40 60 80 100 120 140 0.01 0.1 0.5 1 5 10 Fr eq u en cy Permeability khmax[mD] Trenton Beauharnois Theresa Cairnside Covey Hill

Core

permeability

0.00 0.01 0.10 1.00 10.00 100.00 1000.00 0 2 4 6 8 10 12 14 P er m ea b ili ty [m D] Porosity [%]

Cutoff= 6%

P e rm e ab ili ty khm ax [ mD ]

micro-fracture

k

meannetpay

= 0.3

k

min netpay

= 0.02

Trenton Group

limestones

0.010 0.100 1.000 10.000 100.000 0 2 4 6 8 10 12 14 16 P e rm e ab ili ty [m D] Porosity [%]

k

minnetpay

= 0.04

k

mean netpay

= 0.28

k

max netpay

= 6.6

P e rm e ab ili ty khm ax [ mD ]

Covey Hill

sandstone

Cutoff= 2%

Net pay

Cutoff

A198 Covey Hill

A198 Cairnside

(Geological architecture interpreted by Castonguay et al., 2006) x

Pressure gradient

∆P

1

=10.78 kPaa/m

∆P

2

=12.17

∆P

3

=15.60

Legend ! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13 0.001 0.01 0.1 1 10 100 A198 A223 A239 A241 A246 A247 A250 A262

Fluid volume of net pays per surface [m3/m2]

ca n co u r b or e w e lls Trenton Chazy Beauharnois Theresa Cairnside Covey Hill

Fluid volume of net pays per surface [m3/m2]

Be ca n co u r b or e w e lls

Reservoir temperature

T

surface

# 8°C

0 1 10 100 1000 A198 A223 A239 A241 A247 A246 A250 A262 Net Pay [m] ca n co u r b or ew el ls Trenton Chazy Beauharnois Theresa Cairnside Covey Hill Net pay [m] Be ca n co u r b or e w e lls

Potsdam Group

Cutoff

0 50 100 150 200 250 300 350 400 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Fr eq u en cy Porosity [%] Core porosity

Well logs porosity

Covey Hill

Formation

Net pay

porosity

Legend Socle_twt_LAM_QC Profondeur 0 - 700 701 - 1175 1176 - 1575 1576 - 1925 1926 - 2400 2401 - 3200 Trois-Rivières Basement depth Double time

Bécancour

study area

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

A158 Artesian_well_Q3=13

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13 A239 A198 A246

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13 A247 A250 A260 A196 Q2< 2 Q3=13 Q1=0 Q2=2.6

Flow rate

Q

1

=0 (l/min)

0<Q

2

<10

Q

3

=13

Legend

! ( Non_artesian_well_Q=0 ! Artesian_well_0_Q1_3 ! Artesian_well_Q2=10

!

Artesian_well_Q3=13 x

Contour map (TWT) of the Covey Hill Formation top Q2 low Q2 low Q2= 10 0 500 1000 1500 2000 2500 0 10 20 30 40 50 60 70 TVD [m ] Temperature [°C] DST data Well logs data

∆T=2.35 °C /100m

1000 1050 1100 1150 1200 1250 1300 Trenton Black River Chazy Beauharnois Theresa Cairnside Covey Hill

Average brine density [kg/m3]

Grou p /F or m ati on 500 1000 1500 2000 2500 1000 1050 1100 1150 1200 1250 1300 T VD [m ] Brine density [kg/m3] Trenton Black River Chazy Beauharnois Theresa Cairnside Covey Hill Trenton (measured) Theresa (measured) Cairnside (measured)

T

top formation

°C

#25

0.5 1 1.5 2 Trenton Black River Chazy Beauharnois Theresa Cairnside Covey Hill

Average brine dynamic viscosity [mPa.s]

Grou p /F or m ati on 500 1000 1500 2000 2500 0.5 1 1.5 2 T VD [m ]

Brine dynamic viscosity [mPa.s]

Trenton Black River Chazy Beauharnois Theresa Cairnside Covey Hill Theresa (measured)

#30

#31

#32

#35

Shallow block

Références

Documents relatifs

The immobilization of amines onto a solid support (e.g., porous silica) could have several advantages, such as regeneration costs. Many authors have monitored the CO

The PICOREF project (Pilote pour l’Injection de CO2 dans les Réservoirs géologiques, En France, 2006-2008) aimed, in particular, at (i) developing a methodology of site selection for

Impact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up scaling from experimental re- sults at laboratory scale to near-well region..

A comprehensive approach for estimating the interfacial tension of the brine- CO 2 sc system, based on the theory of electrolytic systems was developed (Leroy et al.,

During this phase of the project, five sites with a 200 Mt CO 2 potential storage capacity were identified:  2 sites in the Keuper aquifer, one site North of Paris and one

We measured the evolution of the local and average liquid saturation in the Moliere

Well injectivity during CO2 storage operations in deep saline aquifers - Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces... 2 Abstract

Primary endpoint: Incidence of biopsy-proven acute rejection (BPAR), graft loss, death, or patient lost to follow-up (FU), in patients receiving anti –T-lymphocyte Ig (ATLG)