MAIN CONCLUSIONS AND RESEARCH PERSPECTIVES

Dans le document Carboniferous carbonate platforms and coral reefs: New insights from southern China (Page 163-197)

This study added new information on the demise of coral reefs and their recovery during the Carboniferous.

• The numerous examples of small Viséan coralliferous bioconstructions suggest a gradual re-covery, occurring during the Mississippian (Fig. 1a). Therefore, the duration of the metazoan

‘reefless lag time’ is reduced to a short time-window, the Tournaisian. However, at the latest Viséan, a subordinate decline can be defined, associated to the onset of the Mid-Carboniferous glacial event.

• The geographical distribution of Mississippian coralliferous bioconstructions suggests a mi-gration of coral communities (Fig.1a, b), led by climate changes and oceanic currents. On the one hand, during climate warming (e.g. Viséan), corals extend from equatorial to subequato-rial latitudes, whereas during climate cooling (e.g. Latest Viséan-Serpukhovian), coral reefs are concentrated in equatorial position. On the other hand, the upwelling areas (e.g. western America, Viséan), providing cold waters rich in nutrient, appear as inhibiting locally coral reef growth. These environmental factors can partly explain the reef distribution worldwide.

• In spite of the onset of the Mid-Carboniferous glaciation, several Late Viséan-Serpukhovian coral reefs continued to grow like at Langping (Guangxi, southern China), which can be ex-plained by the persistence of warm oceanic currents in equatorial position, producing refugia.

• During the Late Pennsylvanian climate warming, the coral reefs suffer from the harsh condi-tions, due to the seawater chemistry and biological competition. However, the Late Pennsyl-vanian metazoan ‘reefless lag time’ can be rather attributed to the major Mid-Carboniferous glaciation than the Late Devonian extinction events. The existence of the large Bianping coral reef in southern China, as well as a few additional examples of Pennsylvanian coralliferous

bioconstructions, provides evidence that coral communities were able to endure the Late Pa-leozoic fluctuating paleoenvironmental conditions in specific settings. One of such settings appears to have been the deep shelf margin, where low light levels decreased competition with the phylloid algal community.

In addition, the study raised new issues:

• The Viséan-Serpukhovian coincides with the closure of the Rheic Ocean and the collision and formation of major mountain chains, in equatorial position. The uplift induce the increase of sediment influx towards the surrounding basins. What is the impact of this process on reef distribution? Does it contribute to the reef collapse occuring during the Latest Viséan?

• Considering the decline of present shallow-water coral reef systems driven by global warming and rising sea levels, understanding the survival strategy of coral communities to resist to harsh environmental conditions could provide information on suitable refugia conditions for modern coral reefs. Therefore, could recent coral reefs survive global climate warming by escaping to deep-water refugia? Could ocean currents protect them, in specific settings? Could coral migration in higher latitudes be a possible strategy for survival? The last question has recently been investigated by Price et al. (2019) who revealed that modern coral recruitement shifted polarward, from equatorial to subequatorial latitudes, since 1974.

• Finally, it could be interesting to compare the coral genus assemblage from southern China with the assemblages of the scarce coralliferous reefs developed in the western Paleo-Tethys Ocean. Recent studies, in modern coral reefs, demonstrated that some species are more resis-tant than others (e.g. temperature changes, Krueger et al., 2017). Therefore, the study could highlight some coral genus, more resistant, which could be adapted to the environmental conditions of the Carboniferous (future project, in collaboration with Dr Sergio Rodriguez).

References

Adabi, M.H., 2004. A re-evaluation of aragonite versus calcite seas. Carbonates and Evaporites 19, 2, 133-141.

Adams, A.E., 1984. Development of algal-foraminiferal-coral reefs in the Lower Carboniferous of Furness, northwest England. Lethaia 17, 233–249.

Ahern, J.P., Fielding, C.R., 2019. Onset of the Late Paleozoic glacioeustatic signal: a stratigraphic record from the pa-leotropical, oil-shale-bearing Big Snowy Trough of Central Montana, U.S.A. Journal of Sedimentary Research 89, 761–783.

Ahr, W.M., 1989. Sedimentary and tectonic controls on the development of an Early Mississippian carbonate ramp, Sacramento Mountains area, New Mexico. In: Crevello, P.D., Wilson, J.L., Sarg, J.F., Read, J.F. (Eds.), Controls of Carbonate Platform and Basin Development. SEPM, Special Publication 44, pp. 203-212.

Ahr, W.M., Stanton, R.J.J., 1996. Constituent composition of Early Mississippian carbonate buildups and their level-bot-tom, Sacramento Mountains, New Mexico. In: Strogen, P., Somerville, I.D., Jones, G.L. (Eds.), Recent Advances in Lower Carboniferous Geology. Geological Society Special Publication 107, pp. 97-110.

Altermann, W., 2008. Accretion, trapping and binding of sediment in Archean stromatolites—Morphological expression of the antiquity of life. Space Science Reviews 135, 55-79.

Alroy, J., 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences 105, 1, 11536-11542.

Anderson, E.J., 1971. Environmental models for Paleozoic communities. Lethaia 4, 287-302.

Anderson, T.F., Arthur, M.A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. Unknow Journal.

Aretz, M., Herbig, H.G., 2003. Coral-rich bioconstructions in the Viséan (Late Mississippian) of southern Wales (Gower Peninsula, UK). Facies 49, 1, 221-242.

Aretz, M., Herbig, H.G., 2008. Microbial-sponge and microbial-metazoan buildups in the Late Viséan basin-fill sequence of the Jerada Massif (Carboniferous, NE Morocco). Geological Journal 43, 307-336.

Aretz, M., Chevalier, E., 2007. After the collapse of stromatoporid-coral reefs – the Famennian and Dinantian reefs of Belgium: much more than Waulsortian mounds. In: Alvaro, J.J., Aretz, M., Boulvain, F., Munnecke, A., Vachard, D., Vennin E. (Eds.), Paleozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls. Geological Society, London, Special Publication 275, pp. 163-188.

Aretz, M., Herbig, H.G., Somerville, I.D., Cózar, P., 2010. Rugose coral biostromes in the late Viséan (Mississippian) of NW Ireland: bioevents on an extensive carbonate platform. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 488-506.

Assereto, R., Folk, R.L., 1976. Brick-like texture and radial rays in Triassic pisolites of Lombardy, Italy: a clue to dis-tinguish ancient aragonitic pisolites. Sedimentary Geology 16, 205-222.

Assereto, R.L.A.M., Kendall, C.G.S.C., 1977. Nature, origin and classification of peritidal tepee structures and related breccias. Sedimentology 24, 153-210.

Ausich, W.I., 1997. Regional encrinites: a vanished lithofacies. In: Brett, C.E. (Ed.), Paleontological Events: Stratigraphic, Ecologic and Evolutionary Implications. Columbia University Press, pp. 509-519.

Bachtel, S.L., Dorobek, S.L., 1998. Mississippian carbonate ramp-to-basin transitions in South-Central New Mexico:

sequence stratigraphic response to progressively steepening outer-ramp profiles. Sedimentary Research 68, 6, 1189-1200.

Bahamonde, J.R., Colmenero, J.R., Vera, C., 1997. Growth and demise of Late Carboniferous carbonate platforms in the eastern Cantabrian Zone, Asturias, northwestern Spain. Sedimentary Geology 110, 99–122.

Bahamonde, J.R., Kenter, J.A.M., Della Porta, G., Keim, L., Immenhauser, A., Reijmer, J.J.G., 2004. Lithofacies and depositional processes on a high, steep-margined Carboniferous (Bashkirian-Moscovian) carbonate platform slope, Sierra del Cuera, NW Spain. Sedimentary Geology 166, 145–156.

Bahamonde, J.R., Merino-Tomé, O.A., Heredia, N., 2007. A Pennsylvanian microbial boundstone-dominated carbonate shelf in a distal foreland margin (Picos de Europa Province, NW Spain). Sedimentary Geology 198, 167-193.

Bahamonde, J.R., Kenter, J.A.M., Della Porta, G., van Hoeflaken, F., 2008. Facies belts of a Carboniferous carbonate plat-form (San Antolin-La Huelga section, NE Cantabrian Zone, Northern Spain). Trabajos de Geología 28, 69–86.

Bahamonde, J.R., Merino-Tomé, O., Della Porta, G., Villa, E., 2015. Pennsylvanian carbonate platforms adjacent to deltaic systems in an active marine foreland basin (Escalada Fm., Cantabrian Zone, NW Spain). Basin Research 27, 208-229.

Bahamonde, J.R., Della Porta, G., Merino-Tomé, O.A., 2017. Lateral variability of shallow-water facies and high-fre-quency cycles in foreland basin carbonate platforms (Pennsylvanian, NW Spain). Facies 63, 6.

Baker, A.C., Glynn, P.W., Riegl, B., 2008. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science 80, 435-471.

Barash, M.S., 2017. Environmental conditions as the cause of the great mass extinction of marine organisms in the Late Devonian. Doklady Earth Sciences, 475, 2, 845-848.

Barnes, J., Bellamy, D.J., Jones, D.J., Whitton, B.A., Drew, E.A., Kenyon, L., Lythgoe, J.N., Rosen, B.R., 1971. Mor-phology and ecology of the reef front of Aldabra. In: Stoddart, D.R., Yonge, M. (Eds.), Regional Variation in Indian Ocean Coral Reefs. Zoological Society of London 28, pp. 87-114.

Barnett, A.J., Wright, V.P., 2008. A sedimentological and cyclostratigraphic evaluation of the completeness of the Mis-sissippian–Pennsylvanian (Mid‐Carboniferous) global stratotype section and point, Arrow Canyon, Nevada, USA. Geological Society 165, 4, 859–873.

Bathurst, R.G.C., 1966. Boring algae, micrite envelopes and lithification of molluscan biosparites. Geological Journal 5, 1, 15-32.

Beauchamp, B., Davies, G.R., Nassichuk, W.W., 1989. Upper Carboniferous to Lower Permian Palaeoaplysina-phylloid algal buildups, Canadian Arctic Archipelago. In: Geldsetzer, H.H.J., James, N.P., Tebbutt, G.E. (Eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir 13, pp. 590-599.

Becker, M.J., Dodd, J.R., 1994. Depositional history of a Mississippian crinoidal mound on the east flank of the Illinois basin. Carbonates Evaporites 9, 1, 76-88.

Berra, F., 2007. Sedimentation in shallow to deep water carbonate environments across a sequence boundary: effects of a fall in sea-level on the evolution of a carbonate system (Ladinian–Carnian, eastern Lombardy, Italy). Sedi-mentology 54, 721-735.

Bishop, J.W., Montañez, I.P., Gulbranson, E.L., Brenckle, P.L., 2009. The onset of mid-Carboniferous glacio-eustasy:

sedimentologic and diagenetic constraints, Arrow Canyon, Nevada. Palaeogeography, Palaeoclimatology, Pa-laeoecology 276, 217-243.

Bishop, J.W., Montañez, I.P., Osleger, D.A., 2010. Dynamic Carboniferous climate change, Arrow Canyon, Nevada.

Geosphere 6, 1-34.

Blake, B.M., Beuthin, J.D., 2008. Deciphering the mid‐Carboniferous eustatic event in the central Appalachian foreland basin, southern West Virginia, USA. Geological Society of America Special Paper 441, 249–260.

Blakey, R.C., 2003. Carboniferous-Permian paleogeography of the assembly of Pangea. In: Wong, T.E. (Ed.), Proceed-ings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, the Netherlands,

pp. 443-456.

Blakey, R., 2006. Mollewide Plate Tectonic Maps of Phanerozoic World Wide. http://jan.ucc.nau.edu/~rcb7/.

Blomeier, D.P.G., Reijmer, J.J.G., 2002. Facies architecture of an early Jurassic carbonate platform slope (Jbel Bou Dahar, High Atlas, Morocco). Sedimentary Research 72, 462-475.

Bonorino, G.G., 1992. Carboniferous glaciation in Gondwana. Evidence for grounded marine ice and continental glaci-ation in southwestern Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 91, 363-375.

Brand, U., 1989. Global climatic changes during the Devonian-Mississippian: stable isotope biogeochemistry of bra-chiopods. Palaeogeography, Palaeoclimatology, Palaeoecology 75, 4, 311-329.

Brand, U., 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies. Chemical Geology 204, 23-44.

Brand, U., Veizer, J., 1981. Chemical diagenesis of a multicomponent carbonate system: 1, stable isotopes. Sedimentary Research 51, 3, 987-997.

Brand, U., Logan, A., Hiller, N., Richardson, J., 2003. Geochemistry of modern brachiopods: applications and implica-tions for oceanography and paleoceanography. Geology 198, 3-4, 305-334.

Bolton, J.C., 1990. Sedimentologic data indicate a greater range of water depths for Costistricklandia lirata in the south-ern Appalachians. Palaios 5, 371-374.

Bongaerts, P., Ridgway, T., Sampayo, E.M., Hoegh-Guldberg, O., 2010. Assessing the ‘deep reef refugia’ hypothesis:

focus on Caribbean reefs. Coral reefs 29, 309-327.

Bourque, P.A., Amyot, G., Desrochers, A., Gignac, H., Gosselin, C., Lachambre, G., Laliberté, J.Y., 1986. Silurian and lower Devonian reef and carbonate complexes of the Gaspé Basin, Quebec – a summary. Bulletin of Canadian Petroleum Geology 34, 4, 452-489.

Bourque, P.A., Boulvain, F., 1993. A model for the origin and petrogenesis of the red stromatactis limestone of Paleozoic carbonate mounds. Sedimentary Research 63, 4, 607-619.

Bourque, P.A., Madi, A., Mamet, B.L., 1995. Waulsortian-type bioherm development and response to sea-level fluctua-tions, Upper Visean of Béchar Basin, western Algeria. Sedimentary Research 65, 1b, 80-95.

Brand, U., 1981. Mineralogy and chemistry of the Lower Pennsylvanian Kendrick fauna, eastern Kentucky. Chemical Geology 32,1-16.

Brand, U., 1989. Global climatic changes during the Devonian-Mississippian: stable isotope biogeochemistry of bra-chiopods. Palaeogeography, Palaeoclimatology, Palaeoecology 75, 4, 311-329.

Brett, C.E, Boucot, A.J., Jones, B., 1993. Absolute depths of Silurian benthic assemblages. Lethaia 26, 25-40.

Brezinski, D.K., Cecil, C.B., Skema, V.W., Stamm, R., 2008. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 143-151.

Bruckschen, P., Veizer, J., 1997. Oxygen and carbon isotopic composition of Dinantian brachiopods: paleoenvironmental implications for the Lower Carboniferous of Western Europe. Palaeogeography, Palaeoclimatology, Palaeoecol-ogy 132, 1-4, 243-264.

Bruckschen, P., Oesmann, S., Veizer, J., 1999. Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chemical Geology 161, 127-163.

Buggisch, W., 1991. The global Frasnian-Famennian “Kellwasser Event”. Geologische Rundschau 80, 1, 49-72.

Buggisch, W., Joachimski, M.M., Sevastopulo, G., Morrow, J.R., 2008. Mississippian δ13C and conodont apatite δ18O

records – Their relation to the Late Palaeozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 3-4, 273-292.

Buggisch, W., Wang, X., Alekseev, A.S., Joachimski, M.M., 2011. Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeo-geography, Palaeoclimatology, Palaeoecology 301, 1-4, 18-38.

Burchette, T.P., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology 79, 1-4, 3-57.

Cain, J.D.B., 1968. Aspects of the depositional environment and palaeoecology of crinoidal limestones. Scottish Journal of Geology 4, 191-208.

Campion, A., Maloof, A., Schoene, B., Oleynik, S., Sanz-López, J., Blanco-Ferrera, S., Merino-Tomé, O., Bahamonde, J.R., Fernández, L.P., 2018. Constraining the timing and amplitude of early Serpukhovian glacioeustasy with a continuous carbonate record in Northern Spain. Geochemistry Geophysics Geosystems 19, 2647-2660.

Caputo, M.V., Melo, J.H.G., Streel, M., Isbell, J.L., 2008. Late Devonian and Early Carboniferous glacial records of South America. In: Fielding, C.R., Frank, T.D., Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper 441, pp. 161-173.

Casier, J.G., Mamet, B., Préat, A., Sandberg, C.A., 2004. Sedimentology, conodonts and ostracods of the Devonian-Car-boniferous strate of the Anseremme railway bridge section, Dinant Basin, Belgium. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 74, 45-68.

Chappell, J., 1980. Coral morphology, diversity and reef growth. Nature 286, 249-252.

Chang, H.L., Dong, X.M., Gong, E.P., Guan, C.Q., Zhang, Y.L., Sun, B.L., Yang, L.L., Li, J.M., 2008. Research on coral reef ecosystem of the late Carboniferous in the southern of Guizhou. Acta Sedimentologica Sinica 26, 904-912.

Chen, J., Chough, S.K., Han, Z., Lee, J.H., 2011. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong Province, China:

Sequence-stratigraphic implications. Sedimentary Geology 233, 129-149.

Chen, X.H., Gong, E.P., Wang, T.H., Guan, C.Q., Zhang, Y.L., Yang, D.Y., Wang, H.M., 2013. The basic characteristics of Early Carboniferous coral reef at Xiadong village in Tianlin, Guangxi, and its sedimentary environment.

Acta Geologica Sinica 87, 597-608.

Chen, J., Montañez, I.P., Qi, Y., Wang, X., Wang, Q., Lin, W., 2016. Coupled sedimentary and δ13C records of late Missis-sippian platform-to-slope successions from South China: insight into δ13C chemostratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology 448, 162-178.

Chen, J., Sheng, Q., Hu, K., Yao, L., Lin, W., Montañez, I.P., Tian, X., Qi, Y., Wang, X., 2018. Late Mississippian gla-cio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China). Palaeogeography, Palaeoclimatology, Palaeoecology 531, 108873.

Chesnel, V., Samankassou, E., Merino-Tomé, O., Fernández, L.P., Villa, E., 2015. Facies, geometry and growth phases of the Valdorria carbonate platform (Pennsylvanian, northern Spain). Sedimentology 63, 1, 60-104.

Clifton, H.E., 1988. Sedimentologic approaches to paleobathymetry with applications in Merced Formation of central California. Palaios 3, 507-522.

Connolly, W.M., Lambert, L., Stanton, R.J., 1989. Paleoecology of Lower and Middle Pennsylvanian (Middle Carbon-iferous) Chaetetes in North America. Facies 20, 139-168.

Cook, H.E., Zhemchuzhnikov, V.G., Buvtshkin, V.M., Golub, L.Y., Gatovsky, Y.A., Zorin, A.Y., 1994. Devonian and Carboniferous passive-margin carbonate platform of southern Kazakhstan: Summary of depositional and strati-graphic models to assist in the exploration and production of coeval giant carbonate platform oil and gas fields in the North Caspian Basin, western Kazakhstan. In: Embry, A.F., Beauchamp, B., Glass, D.J. (Eds.), Pangea:

Global Environments and Ressources. Canadian Society of Petroleum Geologists, Memoir 17, pp. 1-47.

Cook, H.E., Zhemchuzhnikov, V.G., Zempolich, W.G., Zhaimina, V.Y., Buvtyshkin, V.M., Kotova, E.A., Golub, L.Y., Zorin, A.Y., Lehmann, P.J., Alexeiev, D.V., Giovannelli, A., Viaggi, M., Fretwell, N., Lapointe, P., Corboy, J.J., 2002. Devonian and Carboniferous carbonate platform facies in the Bolshoi Karatau, southern Kazakhstan:

outcrop analogs for coeval carbonate oil and gas fields in the North Caspian Basin, western Kazakhstan. In:

Zempolich, W.G., Cook, H.E. (Eds.), Paleozoic Carbonates of the Commonwealth of Independent States (CIS):

Subsurface Reservoirs and Outcrop Analogs. SEPM, Special Publication 74, pp. 81–122.

Copper, P., 1986. Frasnian/Famennian mass extinction and cold-water oceans. Geology 14, 835–840.

Copper, P., 2002a. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography, Palaeocli-matology, Palaeoecology 181, 27–65.

Copper, P., 2002b. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. SEPM, Special Publication 72, 181-238.

Copper, P., Scotese, C.R., 2003. Megareefs in Middle Devonian supergreehouse climates. In: Chan MA, Archer AW (eds) Extreme depositional environments: Mega end members in geologic time: Boulder, Colorado. Geological Society, Special Paper 370, 209-230.

Cózar, P., Somerville, I.D., 2004. New algal-foraminiferal evidence for the recognition of the Asbian-Brigantian boundary in northern England. Proceedings of the Yorkshire Geological Society 55, 1, 43-65.

Cózar, P., Vachard, D., Somerville, I.D., Medina-Varea, P., Rodríguez, S., Said, I., 2014. The Tindouf Basin, a marine refuge during the Serpukhovian (Carboniferous) mass extinction in the northwestern Gondwana platform. Pa-laeogeography, Palaeoclimatology, Palaeoecology 394, 12-28.

Crowell, J.C., 1999. Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America, Memoir 192.

Crowley, T.J., Yip, K.J.J., Baum, S.K., Moore, S.B., 1996. Modeling Carboniferous coal formation. Paleoclimates 2, 159-177.

Dahlstrom, C.D.A., 1969. Balanced cross sections. Canadian Journal of Earth Sciences 6, 4, 743-757.

Dalrymple, R.W., Choi, K., 2007. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth Science Reviews 81, 135-174.

Davydov, V.I., Crowley, J.L., Schmitz, M.D., Poletaev, V.I., 2010. High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems 11, 1.

Davydov, V., Korn, D., Schmitz, M.D., 2012. The Carboniferous Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The Geologic Time Scale 2012. Elsevier 2, pp. 603–651.

Dawson, O., Racey, A., 1993. Fusuline-calcareous algal biofacies of the Permian Ratburi Limestone, Saraburi, Central Thailand. Journal of Southeast Asian Earth Sciences 8, 1-4, 49-65.

Della Porta, G., Kenter, J.A.M., Bahamonde, J.R., 2002a. Microfacies and paleoenvironment of Donezella accumulations across an Upper Carboniferous high-rising carbonate platform (Asturias, NW Spain). Facies 46, 149–168.

Della Porta, G., Kenter, J.A.M., Immenhauser, A., Bahamonde, J.R., 2002b. Lithofacies character and architecture across a Pennsylvanian inner-platform transect (Sierra del Cuera, Asturias, Spain). Sedimentary Research 72, 898–916.

Della Porta, G., Kenter, J.A.M., Bahamonde, J.R., Immenhauser, A., Villa, E., 2003. Microbial boundstone dominated carbonate slope (Upper Carboniferous, N Spain): Microfacies, lithofacies distribution and stratal geometry.

Facies 49, 175–207.

Della Porta, G., Kenter, J.A.M., Bahamonde, J.R., 2004. Depositional facies and stratal geometry of an Upper Carbonifer-ous prograding and aggrading high-relief carbonate platform (Cantabrian Mountains, N Spain). Sedimentology

51, 267–295.

Devleeschouwer, X., Herbosch, A., Préat, A., 2002. Microfacies, sequence stratigraphy and clay mineralogy of a con-densed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany). Palaeo-geography, Palaeoclimatology, Palaeoecology 181, 171-193.

Dingle, P.S., Bader, B., Hensen, C., Minten, B., Schafer, P., 1993. Sedimentology and paleoecology of Upper Carbon-iferous shallow-water carbonate complexes of the Carmenes Syncline (Cantabrian Mts., N-Spain). Zeitschrift der Deutschen Geologischen Gesellschaft 144, 370-395.

Dunham, R.J., 1962. Classification of carbonate rocks according to depositional textures. In: Ham, W.E. (Ed.), Classifica-tion of Carbonate Rocks - A Symposium. American AssociaClassifica-tion of Petroleum Geologists Memoir 1, pp. 108–121.

Dupraz, C., Strasser, A., 2002. Nutritional modes in coral-microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change. Palaios 17, 449-471.

Dvorjanin, E.S., Samoyluk, A.P., Egurnova, M.G., Zaykovsky, N.Y., Podladchikov, Y.Y., Belt, F.J.G.V.D., Boer, P.L.D., 1996. Sedimentary cycles and paleogeography of the Dnieper Donets Basin during the late Visean - Serpukho-vian based on multiscale analysis of well logs. Tectonophysics 268, 169-187.

Dyer, B., Maloof, A.C., Higgins, J.A., 2015. Glacioeustasy, meteoric diagenesis, and the carbon cycle during the Middle Carboniferous. Geochemistry, Geophysics, Geosystems 16, 1-17.

Egenhoff, S.O., Peterhänsel, A., Bechstädt, T., Zühlke, R., Grötsch, J., 1999. Facies architecture of an isolated carbonate platform: tracing the cycles of the Latemàr (middle Triassic, northern Italy). Sedimentology 46, 893-912.

Einor, O.L., 1996. The former USSR. In: Wagner, R.H., Winkler Prins, C.F., Granados, L.F. (Eds.), The Carboniferous of the World III, The Former USSR, Mongolia, Middle Eastern Platform, Afghanistan, & Iran. Instituto Tecnológico Geominero de España, Madrid and Nationaal Natuurhistorisch Museum, Leiden, pp. 13–407.

Elrick, M., Read, J.F., 1991. Cyclic ramp-to-basin carbonate deposits, Lower Mississippian, Wyoming and Montana: a combined field and computer modeling study. Sedimentary Petrology 61, 7, 1194-1224.

Embry, A.F., Klovan, J.E., 1971. A late Devonian reef tract on Northeastern Banks Island, NWT. Canadian Petroleum Geology Bulletin 19, 730-781.

Erfani, S., Adabi, M.H., Majidifard, M.R., Ghadimvand, N.K., 2016. Facies interpretation, depositional environment and sequence stratigraphy of the Gachal Formation in the Madbeiki section, Kalmard Block, East Central Iran.

Open Journal of Geology 6, 439-458.

Fabricius, F.H., 1977. Origin of marine ooids and grapestones. In: Fuchtbauer, H., Lisitzyn, A.P., Milliman, J.D., Seibold, E. (Eds.), Contribution to Sedimentology, 7. Schweizebart’sche Verlagsbuchhandlung, Stuttgart, pp. 1-113.

Fagerstrom, J.A., 1987. The Evolution of Reef Communities. John Wiley and Sons, New York.

Fan, S.X., Rigby, J.K., 1994. Upper Carboniferous phylloid algal mounds in South Guizhou, China. In: Kowallis, B.J., Seely, K. (Eds.), Brigham Young University Geology Studies. Brigham Young University Press 40, Provo, pp.

17-24.

Fang, S.X., Hou, F.H., 1986. The Carboniferous sedimentary environments and the bryozoan-coral patch reef of the Datang age of the Langping carbonate platform in Tianlin County, Guangxi Province. Acta Sedimentologica Sinica 4, 30-42 (in Chinese, with English abstract).

Fedorowski, J., Bamber, E.W., Baranova, D.V., 2012. An unusual occurrence of Bashkirian (Pennsylvanian) rugose corals from the Sverdrup Basin, Arctic Canada. Palaeontology 86, 979-995.

Feng, Z.Z., Yang, Y.Q., Bao, Z.D., 1998. Lithofacies paleogeography of the Carboniferous in South China. Palaeogeog-raphy 1, 75–86 (in Chinese, with English abstract).

Feng, Z.Z., Yang, Y.Q., Bao, Z.D., Jin, Z.K., Zhang, H.Q., Wu, X.H., Qi, D.L., 1998. Microfacies paleogeography of the

Carboniferous in South China. Geological Publishing House, Beijing (in Chinese).

Fielding, C.R., Frank, T.D., 2015. Onset of the glacioeustatic signal recording late Palaeozoic Gondwanan ice growth: new data from palaeotropical East Fife, Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 426, 121-138.

Fielding, C.R., Frank, T.D., Isbell, J.L., 2008a. The Late Paleozoic ice age —A review of current understanding and syn-thesis of global climate patterns. In: Fielding, C.R., Frank, T.D., Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper 441, pp. 343-354.

Fielding, C.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T., Roberts, J., 2008b. Stratigraphic record and facies associations of the Late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Field-ing, C.R., Frank, T.D., Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper 441, pp. 41-57.

Fielding, C.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T., Roberts, J., 2008c. Stratigraphic imprint of the late Paleozoic ice age in eastern Australia: a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society 165, 129-140.

Flügel, 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer.

Föllmi, K.B., Weissert, H., Bisping, M., Funk, H., 1994. Phosphogenesis, carbon-isotope stratigraphy, and carbonate-plat-form evolution along the Lower Cretaceous northern Tethyan margin. Geological Society of America Bulletin 106, 729-746.

Frade, P.R., Bongaerts, P., Englebert, N., Rogers, A., Gonzalez-Rivero, M., Hoegh-Guldberg, O., 2018. Deep reefs of

Frade, P.R., Bongaerts, P., Englebert, N., Rogers, A., Gonzalez-Rivero, M., Hoegh-Guldberg, O., 2018. Deep reefs of

Dans le document Carboniferous carbonate platforms and coral reefs: New insights from southern China (Page 163-197)