• Aucun résultat trouvé

GABA, glutamine (GLN), and aspartate (ASP) release, content and total amino acid amounts [pmol]

6.11 Islet cell isolation

Islet cells were isolated by FACS analysis [36]. For this purpose, isolated islets were washed twice in PBS w/o Ca2+ and Mg2+. Washed islets were resuspended in 5ml dispersion buffer composed of 2ml 0.05% trypsin/EDTA, 5ml PBS w/o Ca2+ and Mg2+ and 5.25µl DNaseI (10mg/ml) and transferred into a non-adherent 6cm petri dish. Islets were dispersed mechanically by pipetting. The dispersed cells were filtered through a nylon cell

resuspended in ~1ml KRBH buffer and transferred into a pre-rinsed FACS tube. Cells were dissociated into beta and non-beta cells (α-cells) by autofluorescence-activated cell sorting using FACStar+. An argon laser illuminated the cells at 488nm, so that the emission at 510-550nm could be taken as a parameter for their flavin adenine dinucleotide (FAD) content. At 2.5mM glucose (in KRBH) single beta-cells display a 3-fold higher FAD fluorescence than non-beta cells. Selection of appropriate windows allowed the simultaneous isolation of single beta- and non-beta cells.

Sorted cells were centrifuged at 1600rpm for 10min. Pelleted cells were resuspended in RPMI-1640 medium containing 2.5mM glucose and seeded onto polyornithine-coated 24-well plates (10’000cells/24-well). Cells were cultured at 37°C overnight before performing a hormone assay. Details of the islet cell hormone assay are described in the submitted article.

CHAPTER 7- REFERENCES

1. Moldovan S, Brunicardi FC. (2001) Endocrine pancreas: summary of observations generated by surgical fellows. World J Surg, 25, 468-73.

2. Orci L. (1976) The microanatomy of the islets of Langerhans. Metabolism, 25, 1303-13.

3. Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F. (2004) Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem, 52, 301-10.

4. Baetens D, Malaisse-Lagae F, Perrelet A, Orci L. (1979) Endocrine pancreas:

three-dimensional reconstruction shows two types of islets of langerhans. Science, 206, 1323-5.

5. Broca C, Brennan L, Petit P, Newsholme P, Maechler P. (2003) Mitochondria-derived glutamate at the interplay between branched-chain amino acid and glucose-induced insulin secretion. FEBS Lett, 545, 167-72.

6. Bardeesy N, DePinho RA. (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer, 2, 897-909.

7. Brunicardi FC, Sun YS, Druck P, Goulet RJ, Elahi D, Andersen DK. (1987) Splanchnic neural regulation of insulin and glucagon secretion in the isolated perfused human pancreas. Am J Surg, 153, 34-40.

8. Brunicardi FC, Druck P, Sun YS, Elahi D, Gingerich RL, Andersen DK. (1988) Regulation of pancreatic polypeptide secretion in the isolated perfused human pancreas. Am J Surg, 155, 63-9.

9. Brunicardi FC, Druck P, Seymour NE, Sun YS, Elahi D, Andersen DK. (1990) Selective neurohormonal interactions in islet cell secretion in the isolated perfused human pancreas. J Surg Res, 48, 273-8.

10. Samols E, Stagner JI. (1988) Intra-islet regulation. Am J Med, 85, 31-5.

11. Kleinman R, Gingerich R, Wong H, Walsh J, Lloyd K, Ohning G, De Giorgio R, Sternini C, Brunicardi FC. (1994) Use of the Fab fragment for

immunoneutralization of somatostatin in the isolated perfused human pancreas.

Am J Surg, 167, 114-9.

12. Kleinman R, Ohning G, Wong H, Watt P, Walsh J, Brunicardi FC. (1994) Regulatory role of intraislet somatostatin on insulin secretion in the isolated perfused human pancreas. Pancreas, 9, 172-8.

13. Salehi A, Dornonville de la Cour C, Hakanson R, Lundquist I. (2004) Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regul Pept, 118, 143-50.

14. Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, Kojima M, Kangawa K, Arima T, Matsuo H, Yada T, Matsukura S. (2002) Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion.

Diabetes, 51, 124-9.

15. Dezaki K, Hosoda H, Kakei M, Hashiguchi S, Watanabe M, Kangawa K, Yada T.

(2004) Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in beta-cells: implication in the glycemic control in rodents. Diabetes, 53, 3142-51.

16. Bertrand G, Gross R, Puech R, Loubatieres-Mariani MM, Bockaert J. (1992) Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Br J Pharmacol, 106, 354-9.

17. Bertrand G, Puech R, Loubatieres-Mariani MM, Bockaert J. (1995) Glutamate stimulates insulin secretion and improves glucose tolerance in rats. Am J Physiol, 269, E551-6.

18. Gonoi T, Mizuno N, Inagaki N, Kuromi H, Seino Y, Miyazaki J, Seino S. (1994) Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem, 269, 16989-92.

19. Inagaki N, Kuromi H, Gonoi T, Okamoto Y, Ishida H, Seino Y, Kaneko T, Iwanaga T, Seino S. (1995) Expression and role of ionotropic glutamate receptors in pancreatic islet cells. Faseb J, 9, 686-91.

20. Weaver CD, Gundersen V, Verdoorn TA. (1998) A high affinity

glutamate/aspartate transport system in pancreatic islets of Langerhans modulates glucose-stimulated insulin secretion. J Biol Chem, 273, 1647-53.

21. Ballian N, Brunicardi FC. (2007) Islet vasculature as a regulator of endocrine pancreas function. World J Surg, 31, 705-14.

22. Brunicardi FC. (2001) Pancreatic surgery and glucose regulation: introduction.

World J Surg, 25, 451.

23. Samols E, Stagner JI, Ewart RB, Marks V. (1988) The order of islet microvascular cellular perfusion is B----A----D in the perfused rat pancreas. J Clin Invest, 82, 350-3.

24. Stagner JI, Samols E. (1986) Retrograde perfusion as a model for testing the relative effects of glucose versus insulin on the A cell. J Clin Invest, 77, 1034-7.

25. Stagner JI, Samols E. (1992) The vascular order of islet cellular perfusion in the human pancreas. Diabetes, 41, 93-7.

26. Stagner JI, Samols E, Bonner-Weir S. (1988) beta----alpha----delta pancreatic islet cellular perfusion in dogs. Diabetes, 37, 1715-21.

27. Stagner JI, Samols E, Koerker DJ, Goodner CJ. (1992) Perfusion with anti-insulin gamma globulin indicates a B to A to D cellular perfusion sequence in the

pancreas of the rhesus monkey, Macaca mulatta. Pancreas, 7, 26-9.

28. Murakami T, Fujita T, Miyake T, Ohtsuka A, Taguchi T, Kikuta A. (1993) The insulo-acinar portal and insulo-venous drainage systems in the pancreas of the mouse, dog, monkey and certain other animals: a scanning electron microscopic study of corrosion casts. Arch Histol Cytol, 56, 127-47.

29. Orci L, Baetens D, Ravazzola M, Stefan Y, Malaisse-Lagae F. (1976) [Pancreatic polypeptide islets and glucagon islets : distinct topographic distribution in rat pancreas]. C R Acad Sci Hebd Seances Acad Sci D, 283, 1213-6.

30. Orci L, Malaisse-Lagae F, Ravazzola M, Rouiller D, Renold AE, Perrelet A, Unger R.

(1975) A morphological basis for intercellular communication between alpha- and beta-cells in the endocrine pancreas. J Clin Invest, 56, 1066-70.

31. Aharinejad S, MacDonald IC, MacKay CE, Mason-Savas A. (1993) New aspects of microvascular corrosion casting: a scanning, transmission electron, and high-resolution intravital video microscopic study. Microsc Res Tech, 26, 473-88.

32. Liu YM, Guth PH, Kaneko K, Livingston EH, Brunicardi FC. (1993) Dynamic in vivo observation of rat islet microcirculation. Pancreas, 8, 15-21.

33. McCuskey RS. (1971) Sphincters in the microvascular system. Microvasc Res, 3, 428-33.

34. Moldovan S, Livingston E, Zhang RS, Kleinman R, Guth P, Brunicardi FC. (1996) Glucose-induced islet hyperemia is mediated by nitric oxide. Am J Surg, 171, 16-20.

35. Kleinman R, Gingerich R, Ohning G, Wong H, Olthoff K, Walsh J, Brunicardi FC.

(1995) The influence of somatostatin on glucagon and pancreatic polypeptide secretion in the isolated perfused human pancreas. Int J Pancreatol, 18, 51-7.

36. Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB. (2005) Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes, 54, 1808-15.

37. Gromada J, Franklin I, Wollheim CB. (2007) Alpha-cells of the endocrine

pancreas: 35 years of research but the enigma remains. Endocr Rev, 28, 84-116.

38. Halban PA, Wollheim CB, Blondel B, Meda P, Niesor EN, Mintz DH. (1982) The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology, 111, 86-94.

39. Jaques F, Jousset H, Tomas A, Prost AL, Wollheim CB, Irminger JC, Demaurex N, Halban PA. (2008) Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion. Endocrinology, 149, 2494-505.

40. Charollais A, Gjinovci A, Huarte J, Bauquis J, Nadal A, Martin F, Andreu E, Sanchez-Andres JV, Calabrese A, Bosco D, Soria B, Wollheim CB, Herrera PL, Meda P. (2000) Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J Clin Invest, 106, 235-43.

41. Meda P. (2003) Cx36 involvement in insulin secretion: characteristics and mechanism. Cell Commun Adhes, 10, 431-5.

42. Wild S, Roglic G, Green A, Sicree R, King H. (2004) Global prevalence of diabetes:

estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047-53.

43. Baillie K. (2008) Health implications of transition from a planned to a free-market economy--an overview. Obes Rev, 9 Suppl 1, 146-50.

44. Florez JC. (2008) The genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab, 93, 4633-42.

45. Murphy R, Ellard S, Hattersley AT. (2008) Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab, 4, 200-13.

46. Khan A, Ling ZC, Landau BR. (1996) Quantifying the carboxylation of pyruvate in pancreatic islets. J Biol Chem, 271, 2539-42.

47. Lu D, Mulder H, Zhao P, Burgess SC, Jensen MV, Kamzolova S, Newgard CB, Sherry AD. (2002) 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci U S A, 99, 2708-13.

48. MacDonald MJ. (1993) Glucose enters mitochondrial metabolism via both carboxylation and decarboxylation of pyruvate in pancreatic islets. Metabolism, 42, 1229-31.

49. MacDonald MJ. (1993) Estimates of glycolysis, pyruvate (de)carboxylation, pentose phosphate pathway, and methyl succinate metabolism in incapacitated pancreatic islets. Arch Biochem Biophys, 305, 205-14.

50. Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, Prentki M. (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem, 272, 18572-9.

51. Owen OE, Kalhan SC, Hanson RW. (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem, 277, 30409-12.

52. Curry DL, Bennett LL, Grodsky GM. (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology, 83, 572-84.

53. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. (2003) Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest, 33, 742-50.

54. Straub SG, Sharp GW. (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev, 18, 451-63.

55. Newgard CB, McGarry JD. (1995) Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem, 64, 689-719.

56. Cook DL, Hales CN. (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature, 311, 271-3.

57. Maechler P, Wollheim CB. (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature, 402, 685-9.

58. Maechler P, Wollheim CB. (2000) Mitochondrial signal in glucose-stimulated insulin secretion in the beta cell. J Physiol, 529, 49-56.

59. Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S. (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A, 95, 10402-6.

60. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. (2000) Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem, 275, 9270-7.

61. Gembal M, Gilon P, Henquin JC. (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest, 89, 1288-95.

62. Komatsu M, Yajima H, Yamada S, Kaneko T, Sato Y, Yamauchi K, Hashizume K, Aizawa T. (1999) Augmentation of Ca2+-stimulated insulin release by glucose and long-chain fatty acids in rat pancreatic islets: free fatty acids mimic ATP-sensitive K+ channel-independent insulinotropic action of glucose. Diabetes, 48, 1543-9.

63. Maechler P, Wollheim CB. (2001) Mitochondrial function in normal and diabetic beta-cells. Nature, 414, 807-12.

64. Vallar L, Biden TJ, Wollheim CB. (1987) Guanine nucleotides induce

Ca2+-independent insulin secretion from permeabilized RINm5F cells. J Biol Chem, 262, 5049-56.

65. Takahashi N, Kadowaki T, Yazaki Y, Ellis-Davies GC, Miyashita Y, Kasai H. (1999) Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic beta cells. Proc Natl Acad Sci U S A, 96, 760-5.

66. Gembal M, Detimary P, Gilon P, Gao ZY, Henquin JC. (1993) Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest, 91, 871-80.

67. Detimary P, Van den Berghe G, Henquin JC. (1996) Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in

68. Wollheim CB, Ullrich S, Meda P, Vallar L. (1987) Regulation of exocytosis in electrically permeabilized insulin-secreting cells. Evidence for Ca2+ dependent and independent secretion. Biosci Rep, 7, 443-54.

69. Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI.

(2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab, 5, 253-64.

70. Proks P, Eliasson L, Ammala C, Rorsman P, Ashcroft FM. (1996) Ca(2+)- and GTP-dependent exocytosis in mouse pancreatic beta-cells involves both common and distinct steps. J Physiol, 496 ( Pt 1), 255-64.

71. Lang J. (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem, 259, 3-17.

72. Komatsu M, Noda M, Sharp GW. (1998) Nutrient augmentation of Ca2+-dependent and Ca2+-inCa2+-dependent pathways in stimulus-coupling to insulin secretion can be distinguished by their guanosine triphosphate requirements:

studies on rat pancreatic islets. Endocrinology, 139, 1172-83.

73. Komatsu M, Sharp GW, Aizawa T, Hashizume K. (1997) Glucose stimulation of insulin release without an increase in cytosolic free Ca2+ concentration: a possible involvement of GTP. Jpn J Physiol, 47 Suppl 1, S22-4.

74. Iezzi M, Regazzi R, Wollheim CB. (2000) The Rab3-interacting molecule RIM is expressed in pancreatic beta-cells and is implicated in insulin exocytosis. FEBS Lett, 474, 66-70.

75. Gromada J, Holst JJ, Rorsman P. (1998) Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch, 435, 583-94.

76. Schuit FC, Huypens P, Heimberg H, Pipeleers DG. (2001) Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes, 50, 1-11.

77. Seino S, Shibasaki T. (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev, 85, 1303-42.

78. Beguin P, Nagashima K, Nishimura M, Gonoi T, Seino S. (1999) PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. Embo J, 18, 4722-32.

79. Ammala C, Ashcroft FM, Rorsman P. (1993) Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells. Nature, 363, 356-8.

80. Thorens B, Deriaz N, Bosco D, DeVos A, Pipeleers D, Schuit F, Meda P, Porret A.

(1996) Protein kinase A-dependent phosphorylation of GLUT2 in pancreatic beta cells. J Biol Chem, 271, 8075-81.

81. Gromada J, Jorgensen TD, Dissing S. (1995) The release of intracellular Ca2+ in lacrimal acinar cells by alpha-, beta-adrenergic and muscarinic cholinergic

stimulation: the roles of inositol triphosphate and cyclic ADP-ribose. Pflugers Arch, 429, 751-61.

82. Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF. (1999) cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem, 274, 14147-56.

83. Leech CA, Habener JF. (1997) Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem, 272, 17987-93.

84. Hisatomi M, Hidaka H, Niki I. (1996) Ca2+/calmodulin and cyclic 3,5' adenosine monophosphate control movement of secretory granules through protein

phosphorylation/dephosphorylation in the pancreatic beta-cell. Endocrinology, 137, 4644-9.

85. Takuma T, Ichida T. (1994) Evidence for the involvement of protein

phosphorylation in cyclic AMP-mediated amylase exocytosis from parotid acinar cells. FEBS Lett, 340, 29-33.

86. Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S. (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol, 2, 805-11.

87. Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S. (2002) Piccolo, a Ca2+ sensor in pancreatic beta-cells.

Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis.

J Biol Chem, 277, 50497-502.

88. Watkins DT, Moore M. (1977) Uptake of NADPH by islet secretion granule membranes. Endocrinology, 100, 1461-7.

89. Pralong WF, Bartley C, Wollheim CB. (1990) Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and

secretion. Embo J, 9, 53-60.

90. Wollheim CB, Pozzan T. (1984) Correlation between cytosolic free Ca2+ and insulin release in an insulin-secreting cell line. J Biol Chem, 259, 2262-7.

91. Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in 't Veld P, Renstrom E, Schuit FC. (2005) Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes, 54, 2132-42.

92. Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D, Stevens RD, Becker

involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem, 281, 30593-602.

93. Patterson GH, Knobel SM, Arkhammar P, Thastrup O, Piston DW. (2000) Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci U S A, 97, 5203-7.

94. Joseph JW, Jensen MV, Ilkayeva O, Palmieri F, Alarcon C, Rhodes CJ, Newgard CB.

(2006) The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J Biol Chem, 281, 35624-32.

95. Ronnebaum SM, Jensen MV, Hohmeier HE, Burgess SC, Zhou YP, Qian S, MacNeil D, Howard A, Thornberry N, Ilkayeva O, Lu D, Sherry AD, Newgard CB. (2008) Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets. J Biol Chem, 283, 28909-17.

96. MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA. (2005) Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab, 288, E1-15.

97. MacDonald PE, Joseph JW, Rorsman P. (2005) Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci, 360, 2211-25.

98. MacDonald PE, Wheeler MB. (2003) Voltage-dependent K(+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets.

Diabetologia, 46, 1046-62.

99. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R. (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol, 583, 9-24.

100. Brun T, Roche E, Assimacopoulos-Jeannet F, Corkey BE, Kim KH, Prentki M.

(1996) Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell nutrient signaling. Diabetes, 45, 190-8.

101. Boucher A, Lu D, Burgess SC, Telemaque-Potts S, Jensen MV, Mulder H, Wang MY, Unger RH, Sherry AD, Newgard CB. (2004) Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. J Biol Chem, 279, 27263-71.

102. Cline GW, Lepine RL, Papas KK, Kibbey RG, Shulman GI. (2004) 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells. J Biol Chem, 279, 44370-5.

103. Jensen MV, Joseph JW, Ilkayeva O, Burgess S, Lu D, Ronnebaum SM, Odegaard M, Becker TC, Sherry AD, Newgard CB. (2006) Compensatory responses to

pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion. J Biol Chem, 281, 22342-51.

104. Farfari S, Schulz V, Corkey B, Prentki M. (2000) Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes, 49, 718-26.

105. Macdonald MJ. (2003) Export of metabolites from pancreatic islet mitochondria as a means to study anaplerosis in insulin secretion. Metabolism, 52, 993-8.

106. Guay C, Madiraju SR, Aumais A, Joly E, Prentki M. (2007) A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J Biol Chem, 282, 35657-65.

107. Pongratz RL, Kibbey RG, Shulman GI, Cline GW. (2007) Cytosolic and

mitochondrial malic enzyme isoforms differentially control insulin secretion. J Biol Chem, 282, 200-7.

108. Corkey BE, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M. (1989) A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal

pancreatic beta-cells. J Biol Chem, 264, 21608-12.

109. Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE. (1992) Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem, 267, 5802-10.

110. Branstrom R, Aspinwall CA, Valimaki S, Ostensson CG, Tibell A, Eckhard M, Brandhorst H, Corkey BE, Berggren PO, Larsson O. (2004) Long-chain CoA esters activate human pancreatic beta-cell KATP channels: potential role in Type 2 diabetes. Diabetologia, 47, 277-83.

111. Deeney JT, Gromada J, Hoy M, Olsen HL, Rhodes CJ, Prentki M, Berggren PO, Corkey BE. (2000) Acute stimulation with long chain acyl-CoA enhances

exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem, 275, 9363-8.

112. Antinozzi PA, Segall L, Prentki M, McGarry JD, Newgard CB. (1998) Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. J Biol Chem, 273, 16146-54.

113. Mulder H, Lu D, Finley Jt, An J, Cohen J, Antinozzi PA, McGarry JD, Newgard CB.

(2001) Overexpression of a modified human malonyl-CoA decarboxylase blocks the glucose-induced increase in malonyl-CoA level but has no impact on insulin secretion in INS-1-derived (832/13) beta-cells. J Biol Chem, 276, 6479-84.

114. Roduit R, Nolan C, Alarcon C, Moore P, Barbeau A, Delghingaro-Augusto V, Przybykowski E, Morin J, Masse F, Massie B, Ruderman N, Rhodes C, Poitout V,

signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes, 53, 1007-19.

115. Rabaglia ME, Gray-Keller MP, Frey BL, Shortreed MR, Smith LM, Attie AD. (2005) Alpha-Ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab, 289, E218-24.

116. Maechler P, Kennedy ED, Pozzan T, Wollheim CB. (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells.

Embo J, 16, 3833-41.

117. MacDonald MJ, Fahien LA, Mertz RJ, Rana RS. (1989) Effect of esters of succinic acid and other citric acid cycle intermediates on insulin release and inositol phosphate formation by pancreatic islets. Arch Biochem Biophys, 269, 400-6.

118. Brennan L, Shine A, Hewage C, Malthouse JP, Brindle KM, McClenaghan N, Flatt PR, Newsholme P. (2002) A nuclear magnetic resonance-based demonstration of substantial oxidative L-alanine metabolism and L-alanine-enhanced glucose metabolism in a clonal pancreatic beta-cell line: metabolism of L-alanine is important to the regulation of insulin secretion. Diabetes, 51, 1714-21.

119. Charles S, Henquin JC. (1983) Distinct effects of various amino acids on 45Ca2+

fluxes in rat pancreatic islets. Biochem J, 214, 899-907.

120. Dixon G, Nolan J, McClenaghan N, Flatt PR, Newsholme P. (2003) A comparative study of amino acid consumption by rat islet cells and the clonal beta-cell line BRIN-BD11 - the functional significance of L-alanine. J Endocrinol, 179, 447-54.

121. Sener A, Malaisse WJ. (1980) The stimulus-secretion coupling of amino acid-induced insulin release. II. Sensitivity to K+, NH4+ and H+ of leucine-stimulated islets. Diabete Metab, 6, 97-101.

122. Smith PA, Sakura H, Coles B, Gummerson N, Proks P, Ashcroft FM. (1997) Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol, 499 ( Pt 3), 625-35.

123. Newsholme P, Bender K, Kiely A, Brennan L. (2007) Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans, 35, 1180-6.

124. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M,

124. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M,