• Aucun résultat trouvé

Phospho ERK

6.2 Développement d'un substitut aux Igl

Les présents travaux ont permis de mieux comprendre certains des mécanismes d'actions des IglV sur les lymphocytes B et de proposer de nouvelles cibles afin de développer des substituts. Ainsi, un anticorps dirigé contre les phb pourrait avoir un effet

anti-inflammatoire dans certaines maladies. En plus d'être internalise et d'ainsi compétitionner avec des autoantigènes pour être présentés sur le CMH de classe II, un anticorps dirigé contre le CD91 pourrait induire une signalisation par ce récepteur et reproduire une partie de l'effet des IglV. De plus, des anticorps dirigés contre les phb ou le CD91 pourraient être utilisés à des doses beaucoup plus faibles que les IglV tout en reproduisant le même effet car il est probable que seule une faible fraction des IglV est capable d'interagir avec les phb ou le CD91. fl pourrait être aussi envisageable de cibler ces protéines avec d'autres approches que l'utilisation d'anticorps. Par exemple l'identification de petites molécules chimiques capables d'interagir avec le CD91 et ainsi induire une signalisation similaire à celle induite par les IgPV pourrait être envisagée et pourrait représenter des substituts facilement disponibles en quantité suffisante pour leur utilisation à grande échelle.

Certains substituts ont déjà montré leur efficacité dans des modèles murins de maladies auto-immunes Ainsi, une étude a montré qu'il serait possible d'envisager de procéder au traitement ex vivo des cellules dendritiques par un anticorps dirigé contre PIR-A comme thérapie de remplacement aux IglV chez des patients souffrant d'ITP68. Il a

aussi été démontré que des fragments Fc recombinants sialylés sont capables de reproduire l'effet des IglV dans un modèle murin d'arthrite rhumatoïde205. De plus, un inhibiteur de

Syk a été démontré pour augmenter le niveau des plaquettes sanguines chez 50 % des patients atteints dTTP dans une étude clinique phase II °6.

La complexité des mécanismes d'action des IglV rend difficile l'élaboration d'un substitut capable de reproduire la totalité de leurs effets. Ainsi, bien qu'il semble peu probable de parvenir à développer un substitut aux IglV capable de reproduire la totalité de leurs effets immunomodulateurs, il est pensable de pouvoir parvenir à soutenir la demande continuellement croissante en utilisant une combinaison de plusieurs substituts. Cependant, aucun substitut n'a encore fait ses preuves lors d'essais cliniques phase III et IV. Il est donc important de poursuivre la recherche sur les mécanismes d'action des IglV et le développement de produits substituts.

1. Travers, Walport, Shomchik, Janeway. Immunobiologie (ed 2e): de Boeck; 2003. 2. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301-305. 3. Lichtman, Abbas. Immunology : function and disorders of the immune system (ed 3e):

Saunders Elsevier; 2009.

4. Boissier MC, Assier E, Falgarone G, Bessis N. Shifting the imbalance from Thl/Th2 to Thl7/treg: the changing rheumatoid arthritis paradigm. Joint Bone Spine. 2008;75:373- 375.

5. Singh VK, Mehrotra S, Agarwal SS. The paradigm of Thl and Th2 cytokines: its relevance to autoimmunity and allergy. Immunol Res. 1999;20:147-161.

6. Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol. 2007;7:633-643.

7. Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 2009;9:767-777.

8. Ding C, Yan J. Regulation of autoreactive B cells: checkpoints and activation. Arch Immunol Ther Exp (Warsz). 2007;55:83-89.

9. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature. 2005;435:590-597. 10. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature.

1985;314:537-539.

11. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8:22-33.

12. de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol. 2003;3:962-972.

13. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5:230-242.

14. Tokoyoda K, Hauser AE, Nakayama T, Radbruch A. Organization of immunological memory by bone marrow stroma. Nat Rev Immunol. 2010;10:193-200.

15. Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity. 2005;23:41-51.

16. Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009;10:706-712.

17. Wu Y, Wu W, Wong WM, et al. Human gammadelta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol. 2009;183:5622-5629.

18. Hoeffel G, Ripoche AC, Matheoud D, et al. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity. 2007;27:481-492.

19. Hansen TH, Bouvier M. MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol. 2009;9:503-513.

20. Vascotto F, Le Roux D, Lankar D, et al. Antigen presentation by B lymphocytes: how receptor signaling directs membrane trafficking. Curr Opin Immunol. 2007;19:93-98. 21. Faassen AE, Dalke DP, Berton MT, Warren WD, Pierce SK. CD40-CD40 ligand

22. Ahmadi T, Flies A, Efebera Y, Sherr DH. CD40 Ligand-activated, antigen-specific B cells are comparable to mature dendritic cells in presenting protein antigens and major histocompatibility complex class I- and class Il-binding peptides. Immunology. 2008;124:129-140.

23. Lakey EK, Casten LA, Niebling WL, Margoliash E, Pierce SK. Time dependence ofB cell processing and presentation of peptide and native protein antigens. J Immunol.

1988;140:3309-3314.

24. Shoenfeld Y, Selmi C, Zimlichman E, Gershwin ME. The autoimmunologist: geoepidemiology, a new center of gravity, and prime time for autoimmunity. J Autoimmun. 2008;31:325-330.

25. Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M. Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun. 2009;33:12-16.

26. Breunis WB, van Mirre E, Bruin M, et al. Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura. Blood. 2008;111:1029-1038.

27. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006;312:1669-1672.

28. Muller-Hilke B, Mitchison NA. The role of HLA promoters in autoimmunity. Curr Pharm Des. 2006;12:3743-3752.

29. Bilbao JR, Martin-Pagola A, Perez De Nanclares G, et al. HLA-DRB1 and MICA in autoimmunity: common associated alleles in autoimmune disorders. Ann N Y Acad Sci. 2003;1005:314-318.

30. Binstadt BA, Geha RS, Bonilla FA. IgG Fc receptor polymorphisms in human disease: implications for intravenous immunoglobulin therapy. J Allergy Clin Immunol.

2003;111:697-703.

31. Gershwin ME, Selmi C, Worman HJ, et al. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology. 2005;42:1194-1202.

32. Selmi C, Gershwin ME. The role of environmental factors in primary biliary cirrhosis. Trends Immunol. 2009.

33. Chervonsky AV. Influence of microbial environment on autoimmunity. Nat Immunol; 11:28-35.

34. Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y. Infections and autoimmunity - friends or foes? Trends Immunol. 2009; 30(8):409-14.

35. Stasi R, Provan D. Helicobacter pylori and Chronic FTP. Hematology Am Soc Hematol Educ Program. 2008:206-211.

36. Franceschi F, Christodoulides N, Kroll MH, Genta RM. Helicobacter pylori and idiopathic thrombocytopenic purpura. Ann Intern Med. 2004;140:766-767.

37. Byrne MF, Kerrigan SW, Corcoran PA, et al. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology.

2003;124:1846-1854.

38. Campuzano-Maya G. Proof of an association between Helicobacter pylori and

idiopathic thrombocytopenic purpura in Latin America. Helicobacter. 2007;12:265-273. 39. Stauffer Y, Marguerat S, Meylan F, et al. Interferon-alpha-induced endogenous

superantigen. a model linking environment and autoimmunity. Immunity. 2001; 15:591- 601.

40. Strachan DP. Hay fever, hygiene, and household size. Br Med J. 1989;299:1259-1260. 41. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin

Sci (Lond). 1998;94:557-572.

42. Siegel J. Immune Globulins: Therapeutics, Phamaceutical & Cost Considerations. Pharmacy Pratice News Special Edition. 2005; 15-19.

43. Bumouf T. Modem plasma fractionation. Transfus Med Rev. 2007;21:101-117. 44. Radosevich M, Bumouf T. Intravenous immunoglobulin G: trends in production

methods, quality control and quality assurance. Vox Sang. 2010;98:12-28.

45. Imbach P, Barandun S, d'Apuzzo V, et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet. 1981 ; 1:1228-1231. 46. Leong H, Stachnik J, Bonk ME, Matuszewski KA. Unlabeled uses of intravenous

immune globulin. Am J Health Syst Pharm. 2008; 65:1815-1824.

47. Relkin NR, Szabo P, Adamiak B, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging. 2008; 30(11): 1728-36. 48. Fillit H, Hess G, Hill J, Bonnet P, Toso C. PV immunoglobulin is associated with a

reduced risk of Alzheimer disease and related disorders. Neurology. 2009;73:180-185. 49. Lindkvist A, Eden A, Norstrom MM, et al. Reduction of the HIV-1 reservoir in resting CD4+ T-lymphocytes by high dosage intravenous immunoglobulin treatment: a proof- of-concept study. AIDS Res Ther. 2009;6:15.

50. Hughes RA, Dalakas MC, Comblath DR, Latov N, Weksler ME, Relkin N. Clinical applications of intravenous immunoglobulins in neurology. Clin Exp Immunol. 2009,158 Suppl 1:34-42.

51. Wurster U, Haas J. Passage of intravenous immunoglobulin and interaction with the CNS. J Neurol Neurosurg Psychiatry. 1994;57 Suppl:21-25.

52. Arumugam TV, Tang SC, Lathia JD, et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci U S A . 2007;104:14104-14109.

53. Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem. 2002;81:203-206.

54. Aghaie A, Pourfatollah AA, Bathaie SZ, Moazzeni SM, Khorsand Mohammad Pour H, Sharifi Z. Inactivation of vims in intravenous immunoglobulin G using

solvent/detergent treatment and pasteurization. Hum Antibodies. 2008;17:79-84. 55. Wells MA, Wittek AE, Epstein JS, et al. Inactivation and partition of human T-cell

lymphotrophic virus, type III, during ethanol fractionation of plasma. Transfusion. 1986;26:210-213.

56. Horowitz B, Wiebe ME, Lippin A, Stryker MH. Inactivation of viruses in labile blood derivatives. I. Disruption of lipid-enveloped viruses by tri(n-butyl)phosphate detergent combinations. Transfusion. 1985;25:516-522.

57. Katz U, Achiron A, Sherer Y, Shoenfeld Y. Safety of intravenous immunoglobulin (PVIG) therapy. Autoimmun Rev. 2007;6:257-259.

58. Chapman SA, Gilkerson KL, Davin TD, Pritzker MR. Acute renal failure and

intravenous immune globulin: occurs with sucrose-stabilized, but not with D-sorbitol- stabilized, formulation. Ann Pharmacother. 2004;38:2059-2067.

59. Kahwaji J, Barker E, Pepkowitz S, et al. Acute Hemolysis After High-Dose Intravenous Immunoglobulin Therapy in Highly HLA Sensitized Patients. Clin J Am Soc Nephrol. 2009.

60. Ameratunga R, Sinclair J, Kolbe J. Increased risk of adverse events when changing intravenous immunoglobulin preparations. Clin Exp Immunol. 2004; 136:111-113. 61. Kimberly RP, Salmon JE, Bussel JB, Crow MK, Hilgartner MW. Modulation of

mononuclear phagocyte function by intravenous gamma-globulin. J Immunol. 1984;132:745-750.

62. van Mirre E, Teeling JL, van der Meer JW, Bleeker WK, Hack CE. Monomeric IgG in intravenous Ig preparations is a functional antagonist of FcgammaRII and

FcgammaRIIIb. J Immunol. 2004;173:332-339.

63. Abe J, Jibiki T, Noma S, Nakajima T, Saito H, Terai M. Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol. 2005;174:5837-5845.

64. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med. 2006;203:789-797.

65. Boruchov AM, Heller G, Veri MC, Bonvini E, Ravetch JV, Young JW. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J Clin Invest. 2005;115:2914-2923.

66. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 2001;291:484-486.

67. Nikolova KA, Tchorbanov AI, Djoumerska-Alexieva IK, Nikolova M, Vassilev TL. Intravenous immunoglobulin up-regulates the expression of the inhibitory FcgammallB receptor on B cells. Immunol Cell Biol. 2009.

68. Siragam V, Crow AR, Brine D, Song S, Freedman J, Lazarus AH. Intravenous

immunoglobulin ameliorates FTP via activating Fc gamma receptors on dendritic cells. Nat Med. 2006;12:688-692.

69. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A . 2008;105:19571-19578.

70. Bazin R, Lemieux R, Tremblay T. Reversal of immune thrombocytopenia in mice by cross-linking human immunoglobulin G with a high-affinity monoclonal antibody. Br J Haematol. 2006135(1):97-100.

71. Jacobi C, Claus M, Wildemann B, et al. Exposure of NK cells to intravenous immunoglobulin induces IFNgamma release and degranulation but inhibits their cytotoxic activity. Clin Immunol. 2009; 133(3):393-401.

72. Kwak JY, Kwak FM, Ainbinder SW, Ruiz AM, Beer AE. Elevated peripheral blood natural killer cells are effectively downregulated by immunoglobulin G infusion in women with recurrent spontaneous abortions. Am J Reprod Immunol. 1996;35:363- 369.

73. Finberg RW, Newburger JW, Mikati MA, Heller AH, Bums JC. Effect of high doses of intravenously administered immune globulin on natural killer cell activity in peripheral blood. J Pediatr. 1992;120:376-380.

74. Ichiyama T, Ueno Y, Hasegawa M, Niimi A, Matsubara T, Furukawa S. Intravenous immunoglobulin inhibits NF-kappaB activation and affects Fcgamma receptor expression in monocytes/macrophages. Naunyn Schmiedebergs Arch Pharmacol. 2004;369:428-433.

75. Park-Min KH, Serbina NV, Yang W, et al. FcgammaRDJ-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity. 2007;26:67-78.

76. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715-725.

77. Li N, Zhao M, Hilario-Vargas J, et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest. 2005; 115:3440-3450. 78. DeKeyser F, DeKeyser H, Kazatchkine MD, Rossi F, Dang H, Talal N. Pooled human

immunoglobulins contain anti-idiotypes with reactivity against the SLE-associated 4B4 cross-reactive idiotype. Clin Exp Rheumatol. 1996;14:587-591.

79. Lopez PH, Irazoqui FJ, Nores GA. Normal human plasma contains antibodies that specifically block neuropathy-associated human anti-GMl IgG-antibodies. J Neuroimmunol. 2000;105:179-183.

80. Shoenfeld Y, Rauova L, Gilburd B, et al. Efficacy of IVIG affinity-purified anti- double-stranded DNA anti-idiotypic antibodies in the treatment of an experimental murine model of systemic lupus erythematosus. Int Immunol. 2002;14:1303-1311. 81. Crow AR, Song S, Semple JW, Freedman J, Lazarus AH. PVIg inhibits

reticuloendothelial system function and ameliorates murine passive-immune thrombocytopenia independent of anti-idiotype reactivity. Br J Haematol. 2001;115:679-686.

82. Konrad S, Baumann U, Schmidt RE, Gessner JE. Intravenous immunoglobulin (IVIG)- mediated neutralisation of C5a: a direct mechanism of IVIG in the maintenance of a high Fc gammaRIIB to Fc gammaRIII expression ratio on macrophages. Br J Haematol. 2006;134:345-347.

83. Lutz HU, Spath PJ. Anti-inflammatory effect of intravenous immunoglobulin mediated through modulation of complement activation. Clin Rev Allergy Immunol.

2005;29:207-212.

84. Bayry J, Lacroix-Desmazes S, Donkova-Petrini V, et al. Natural antibodies sustain differentiation and maturation of human dendritic cells. Proc Natl Acad Sci U S A . 2004;101:14210-14215.

85. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29:608-615.

86. Bayry J, Lacroix-Desmazes S, Carbonneil C, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101:758-765. 87. Aubin E, Lemieux R, Bazin R. Indirect inhibition of in vivo and in vitro T-cell

responses by intravenous immunoglobulins due to impaired antigen presentation. Blood. 2010;115:1727-1734.

88. von Gunten S, Schaub A, Vogel M, Stadler BM, Miescher S, Simon HU.

Immunological and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin (IVIg) preparations. Blood. 2006; 108(13):4255-9.

89. von Gunten S, Vogel M, Schaub A, et al. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol. 2007;119:1005-1011. 90. Berkovitch M, Dolinski G, Tauber T, Aladjem M, Kaplinsky C. Neutropenia as a

complication of intravenous immunoglobulin (IVIG) therapy in children with immune thrombocytopenic purpura: common and non-alarming. Int J Immunopharmacol.

89. von Gunten S, Vogel M, Schaub A, et al. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol. 2007; 119:1005-1011. 90. Berkovitch M, Dolinski G, Tauber T, Aladjem M, Kaplinsky C. Neutropenia as a

complication of intravenous immunoglobulin (IVIG) therapy in children with immune thrombocytopenic purpura: common and non-alarming. Int J

Immunopharmacol. 1999;21:411-415.

91. Levy Y, Sherer Y, Ahmed A, et al. Autoantibody level modification in adult patients with idiopathic thrombocytopenic purpura following intravenous immunoglobulin treatment. Nat Immun. 1998;16:207-214.

92. Czemik A, Beutner EH, Bystryn JC. Intravenous immunoglobulin selectively decreases circulating autoantibodies in pemphigus. J Am Acad Dermatol. 2008;58:796-801.

93. Modiano JF, Amran D, Lack G, et al. Posttranscriptional regulation of T-cell IL-2 production by human pooled immunoglobin. Clin Immunol Immunopathol.

1997;83:77-85.

94. Prasad NK, Papoff G, Zeuner A, et al. Therapeutic preparations of normal

polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol.

1998;161:3781-3790.

95. Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental

autoimmune encephalomyelitis. Blood. 2008;111:715-722.

96. Kessel A, Ammuri H, Peri R, et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol. 2007; 179:5571- 5575.

97. Chi LJ, Wang HB, Zhang Y, Wang WZ. Abnormality of circulating CD4(+)CD25(+) regulatory T cell in patients with Guillain-Barre syndrome. J Neuroimmunol.

2007;192:206-214.

98. de Grandmont M J, Racine C, Roy A, Lemieux R, Néron S. Intravenous

immunoglobulins induce the in vitro differentiation of human B lymphocytes and the secretion of IgG. Blood. 2003;101:3065-3073.

99. Zhuang Q, Mazer B. Inhibition of IgE production in vitro by intact and fragmented intravenous immunoglobulin. J Allergy Clin Immunol. 2001;108:229-234.

100. Zhuang Q, Bisotto S, Fixman ED, Mazer B. Suppression of IL-4- and CD40-induced B-lymphocyte activation by intravenous immunoglobulin is not mediated through the inhibitory IgG receptor FcgammaRIIb. J Allergy Clin Immunol. 2002; 110:480-483. 101. Dietrich G, Kaveri SV, Kazatchkine MD. A V region-connected autoreactive

subfraction of normal human serum immunoglobulin G. Eur J Immunol. 1992;22:1701-1706.

102. Dussault N, Ducas E, Racine C, et al. Immunomodulation of human B cells following treatment with intravenous immunoglobulins involves increased phosphorylation of extracellular signal-regulated kinases 1 and 2. Int Immunol. 2008;20:1369-1379. 103. Le Portier L, Bendaoud B, Dueymes M, et al. BAFF, a new target for intravenous

immunoglobulin in autoimmunity and cancer. J Clin Immunol. 2007;27:257-265. 104. Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from

peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20:785-798.

105. Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci. 2005; 1050:34- 39.

106. Rigal D, Vermot-Desroches C, Heitz S, Bemaud J, Alfonsi F, Monier JC. Effects of intravenous immunoglobulins (IVIG) on peripheral blood B, NK, and T cell

subpopulations in women with recurrent spontaneous abortions: specific effects on LFA-1 and CD56 molecules. Clin Immunol Immunopathol. 1994;71:309-314. 107. Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ. B cells drive early T cell

autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J Immunol. 2006;177:4481-4487.

108. Tanaka-Watanabe Y, Matsumoto I, Iwanami K, et al. B cells play a crucial role as antigen-presenting cells and collaborate with inflammatory cytokines in glucose-6- phosphate isomerase-induced arthritis. Clin Exp Immunol. 2009;155:285-294. 109. Lemieux R, Bazin R, Neron S. Therapeutic intravenous immunoglobulins. Mol

Immunol. 2005;42:839-848.

110. Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513-533.

111. Bussel JB. Fc receptor blockade and immune thrombocytopenic purpura. Semin Hematol. 2000;37:261-266.

112. Ott VL, Fong DC, Cambier JC. Fc gamma RUB as a potential molecular target for intravenous gamma globulin therapy. J Allergy Clin Immunol. 2001;108:S95-98. 113. Lazams AH. Mechanism of action of IVIG in ITP. Vox Sang. 2002;83 Suppl 1:53-

55.

114. Lemieux R, Bazin R. Autoantibody-induced formation of immune complexes in normal human serum. Curr Pharm Des. 2006;12:173-179.

115. Aktas O, Zipp F. Regulation of self-reactive T cells by human immunoglobulins— implications for multiple sclerosis therapy. Curr Pharm Des. 2003;9:245-256.

116. Sigman K, Ghibu F, Sommerville W, et al. Intravenous immunoglobulin inhibits IgE production in human B lymphocytes. J Allergy Clin Immunol. 1998;102:421-427. 117. Rabinovitch N, Gelfand EW. Expression of functional activating and inhibitory

Fcgamma receptors on human B cells. Int Arch Allergy Immunol. 2004;133:285-294. 118. Roy A, Krzykwa E, Lemieux R, Neron S. Increased efficiency of gamma-irradiated

versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res. 2001;10:873-880.

119. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-686.

120. Ross JA, Nagy ZS, Kirken RA. The PHB 1/2 phosphocomplex is required for mitochondrial homeostasis and survival of human T cells. J Biol Chem. 2008;283:4699-4713.

121. Bossi G, Griffiths GM. CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin Immunol. 2005;17:87-94.

122. Ugrinova I, Monier K, Ivaldi C, et al. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol. 2007;8:66.

123. Crow AR, Song S, Freedman J, et al. IVIg-mediated amelioration of murine ITP via FcgammaRIIB is independent of SHIP 1, SHP-1, and Btk activity. Blood.

124. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1- dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 2003;18:573-581.

125. Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P. CD40- stimulated B lymphocytes pulsed with tumor antigens are effective antigen-

presenting cells that can generate specific T cells. Cancer Res. 2003;63:2836-2843. 126. Schaub A, Wymann S, Heller M, et al. Self-reactivity in the dimeric intravenous

immunoglobulin fraction. Ann N Y Acad Sci. 2007; 1110:681-693.

127. Zhu X, Meng G, Dickinson BL, et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol. 2001;166:3266-3276.

128. Ronda N, Gatti R, Orlandini G, Borghetti A. Binding and internalization of human IgG by living cultured endothelial cells. Clin Exp Immunol. 1997; 109:211-216. 129. Carter SD, Bacon PA, Hall ND. Characterisation of activated lymphocytes in the

peripheral blood of patients with rheumatoid arthritis. Ann Rheum Dis. 1981;40:293- 298.

130. Ichikawa Y, Shimizu H, Yoshida M, Arimori S. Activation antigens expressed on T- cells of the peripheral blood in Sjogren's syndrome and rheumatoid arthritis. Clin Exp Rheumatol. 1990;8:243-249.

131. Blum JH, Stevens TL, DeFranco AL. Role of the mu immunoglobulin heavy chain transmembrane and cytoplasmic domains in B cell antigen receptor expression and signal transduction. J Biol Chem. 1993;268:27236-27245.

132. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol. 1997;15:821-850.

Documents relatifs