• Aucun résultat trouvé

Conclusions

Cette étude nous a permis d‘avoir une idée sur la composition de la flore microbiologique en bactéries lactiques du lait cru marocain et ses deux dérivés « Jben » et « Lben ». Ces produits montrent une très grande diversité d‘espèces qui dépend des régions et des fermes. Au total 24 espèces ont été identifiées avec des incidences différentes. La comparaison des résultats obtenus dans ce travail avec ceux des autres travaux sur des produits similaires, mais dans d‘autres pays, permet de conclure que le Maroc dispose d‘une biodiversité riche et particulière, et que ses produits laitiers traditionnels peuvent être une source précieuse de souches avec des propriétés technologiques intéressantes. Les profils obtenus par (GTG)5-PCR montrent que la grande majorité des souches isolées sont différentes

et qu‘il n‘y a pas de relation de clonalité entre elles, ce qui signifie qu‘on dispose d‘un ensemble de souches avec des propriétés potentielles différentes.

Grâce au statut « GRAS » «Generally Regarded As Safe» attribuée aux bactéries lactiques suite à leur utilisation pendant des années sans qu‘elles ne présentent aucun risque pour la santé, sauf dans certains cas ou le patient avait des antécédents de maladie sous- jacente et devrait être considéré comme immunodéprimé, on peut considérer la collection de bactéries lactiques isolée dans ce travail comme un réservoir national de bactéries a grande valeur nutritionnelle, biotechnologique et probiotique.

L‘identification des souches isolées dans cette étude a nécessité l‘utilisation de plusieurs techniques phénotypique et génotypique. La comparaison des résultats des deux types de techniques a montré que les méthodes phénotypiques ne donnent pas une identification fiable et sûre, et que les techniques génotypiques sont indispensables pour une meilleure identification mais là aussi, chacune d‘elles a un pouvoir discriminatoire spécifique. L‘utilisation de méthodes de typage moléculaire, que ce soit phénotypique ou génotypique, nécessite l‘utilisation d‘un grand nombre de souches de référence et une très grande base de données qui doit inclure des représentants de toutes les espèces et le maximum de variantes de chaque espèce.

Perspectives

Pour compléter ce travail sur la flore microbienne du lait cru et ses dérivés, nous proposons :

Sur le plan technique

L‘utilisation des techniques moléculaires non culture dépendante comme la Denaturing Gradient Gel Electrophoresis (DGGE) pour détecter même les bactéries non cultivables.

La généralisation du séquençage du gène codant pour l‘ARNt de la phenylalanine synthase pour bien caractériser le maximum de souches et pour pouvoir les comparer.

Sur le plan technologique

1) Les souches de bactéries lactiques isolées peuvent faire l‘objet:

- d‘une recherche de certaines propriétés biotechnologiques appréciées par le consommateur,

- d‘une recherche de souches probiotiques et d‘un criblage de souches qui produisent les bactériocines,

- d‘une étude de leur résistance aux antibiotiques.

2) les compétences acquises dans ce domaine peuvent être utilisées pour étudier la biodiversité des bactéries lactiques du lait cru d‘autres espéces animales (chévre, chamelle) et leurs dérivés traditionnels consommés au Maroc.

Références

Adesiyun, A.A. (1994). Bacteriological quality and associated public health riskof pre- processed bovine milk in Trinidad. Int. J. Food Microbiol. 21 : 253–261.

Afnor, (1975). Norme T90-110, Essai des eaux: dosage de l‘azote total kjeldahl.

Ahrne, S., Molin, G. and Stahl, S. (1989). Plasmids in Lactobacillus strains isolated from meat and meat products. Syst. Appl. Microbiol. 11:320-325.

Albenzio, M., Corbo, M.R., Rehman, S.U., Fox, P.F., De Angelis, M., Corsetti, A., Sevi, A. and Gobetti, M. (2001). Microbiological and biochemical characteristics of Canestrato Pugliese cheese made from raw milk, pasteurized milk or by heating the curd in hot whey. Int.

J. Food Microbiol. 67: 35–48.

Amarita, F., Requena, T., Taborda, G., Amigo, L. and Pelaez, C. (2001). Lactobacillus casei and Lactobacillus plantarum initiate catabolism of methionine transamination. J. Appl.

Microbiol. 90: 971–978.

Auldist, M.J., Walsh, B.J. and Thomson, N.A. (1998). Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 65: 401–411.

Avlami, A., Kordossis, T., Vrizidis, N. and Sipsas, N.V. (2001). Lactobacillus rhamnosus endocarditis complicating colonoscopy. British Infect. Soc. 42: 283–285.

Ben Amor, K., Vaughan, E.E. and De Vos, W.M. (2007). Advanced molecular tools for the identification of lactic acid bacteria. J. Nutr. 741S–747S.

Bennacir, M. (1985). Contribution à l‘étude de la qualité bactériologique et chimique des laits des centres de collecte dans la région du Gharb. Thése Doc. Inst. Agr. Vét. Hassan II. Rabat, Maroc.

Benkerroum, N., Tantaoui-Elaraki, A. and El Marrakchi, A. (1984). Qualité hygiénique du Iben marocain. Microbio. Aliment Nutr. 2: 199-206

Benkerroum, N., Oubel, H., Zahar, M., Dlia, S. and Filali-Maltouf, A. (2000). Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and application to control Listeria

monocytogenes in Moroccan jben. J . Appl. Microbiol. 89: 960– 968.

Benkerroum, N. and Tamime, A.Y. (2004). Technology transfer of some Moroccan traditional dairy products (lben, jben, smen) to small industrial scale. Food Microbiol. 21: 399–314.

Beresford, T. and Williams, A. (2004). The microbiology of cheese ripening In: Cheese Chemistry, Physics and Microbiology (Fox, McSweeney, Cogan and Guinee, Eds.), 3rd ed, pp. 287–318. Elsevier/Academic Press, Amsterdam/New York.

Berthier, F. and Ehrlich, S.D. (1999). Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA. Int. J. Syst. Bacteriol. 49: 997-1007.

Beukes, E.M., Bester, B.H. and Mostert, F.J. (2001). The microbiology of South African traditional fermented milks. Int. J. Food Microbiol. 63:189–197.

Bishop, J.R. and White, C.H. (1986). Assessment of dairy products quality and potential shelf-life—a review. J. Food Protect. 49: 739–753.

Bizzarro, R., Torri Tarelli, G., Giraffa, G. and Neviani, E. (2000). Phenotypic and genotypic characterization of lactic acid bacteria isolated from Pecorino Toscano cheese, Italian J. Food

Sci. 12: 303–316.

Björkroth, J. and Korkeala, H. (1996). rRNA gene restriction patterns as a characterisation tool for Lactobacillus sake producing ropy slime. Int. J. Food Microbiol. 30: 293–302.

Björkroth, K. J., Schillinger, U., Geisen, R., Weiss, N., Hoste, B., Holzapfel, W. H., Korkeala, H. J. and Vandamme, P. (2002). Taxonomic study of Weissella confusa and description of

Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol.

Blandino, A., Al-Aseeri, M.E., Pandiella, S.S., Cantero, D., and Webb, C. (2003). Cereal- based fermented foods and beverages. Food Res. Int. 36: 527–543.

Bonfoh, B., Wasem, A., Traore, A.N., Fane, A., Spillmann, H., Simbe, C.F., Alfaroukh, I.O., Nicolet, J., Farah, Z., and Zinsstag, J. (2003). Microbiological quality of cows‘ milktak en at different intervals from the udder to the selling point in Bamako (Mali). Food Control. 14 (7): 495–500.

Borgen, K., Wasteson, Y., Kruse, H. and Willems. R.J. (2002). Vancomycin-resistant Enterococcus faecium (VREF) from Norwegian poultry cluster with VREF from poultry from the United Kingdom and The Netherlands in an amplified fragment length polymorphism genogroup. Appl. Env. Microbiol. 68: 3133-3137.

Boubekri, C., Tantaoui Elaraki, A., Berrada, M. and Benkerroum, N. (1984). Caractérisation physico-chimique du Iben marocain. Lait. 64: 436-447

Brisabois, A., Lafarge, V., Brouillaud, A., De Buyser, M.L., Collette, C., Garin-Bastuji, B. and Thorel, M.F., (1997). Pathogenic micro-organisms in milk and dairy products: the situation in France and in Europe. Rev. Sci. Tech. OIE 16: 452–471.

Bruinsma, N., Willems, R.J., Van Den Bogaard, A.E., Van Santen-Verheuvel, M., London, N., Driessen, C. and Stobberingh, E.E. (2002). Different levels of genetic homogeneity in vancomycin- resistant and -susceptible Enterococcus faecium isolates from different human and animal sources analyzed by amplified fragment length polymorphism. Antimicrob. Agents

Chemother. 46: 2779-2783.

Caridi, A. (2003). Identification and first characterization of lactic acid bacteria isolated from the artisanal ovine cheese Pecorino del Poro, Int. J. Dairy Technol. 56: 105–110.

Chammas, G.I., Saliba, R. and Béal, C. (2006). Characterization of the fermented milk ―Laban‖ with sensory analysis and instrumental measurements. J. Food Sci. 71: S156–S162.

Cleveland, J., Montville, T. J., Nes, I. F. and Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation, Int. J. Food Microbiol. 71: 1-20.

Cocconcelli, P. S., Porro, D., Galandini, S. and Senini, L. (1995). Development of RAPD protocol for typing of strains of lactic acid bacteria and enterococci. Lett. Appl. Microbiol. 21: 376-379.

Cogan, T. M. (1996). History and taxonomy of starter cultures. InIn T. M. Cogan and J.-P. Accolas (ed.), Dairy starter cultures. VCH Publishers, Inc., New York, N.Y.

Cogan, T.M., Barbosa, M., Beuvier, E., Bianchi- Salvadori, B., Cocconcelli, P.S., Fernandes, I., Gomez, J., Gomez, R., Kalantzopoulos, G., Ledda, A., Medina, M., Reac, M.C. and Rodriguez, E. (1997). Characterization of lactic acid bacteria in artisanal dairy products. J.

Dairy Res. 64: 409–421

Coulon, J.B., Pradel, P. and Verdier, I. (1995). Effect of forage type on milk yield, chemical composition and clotting properties of milk. Lait 75: 513–521.

D‘Aoust, J-Y., Maurer, J.J. and Bailey, J.S. (2001). Salmonella species. In Food Microbiology: Fundamentals and Frontiers, 2nd eds. Doyle, M.P., Beuchat, L.R. and Montville, T.J. pp. 141–178. Washington D.C: ASM Press.

De Bruyne, K., Schillinger, U., Caroline, L., Bôhringer, B., Cleenwerck, I., Vancanneyt, M., De Vuyst, L., Franz, C.M.A.P. and Vandamme, P. (2007). Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int. J. Syst. Evol. Microbiol. 57: 2952–2959.

De Roissart, H. et Luquet, F.M. (1994). Les bactéries lactiques. Uriage, Lorica, France, vol. 1. pp. 1-286

Descheemaeker, P., Lammens, C., Pot, B., Vandamme, P. and Goossens, H. (1997). Evaluation of arbitrarily primed PCR analysis and pulsed-field gel electrophoresis of large

genomic DNA fragments for identification of enterococci important in human medicine. Int. J. Syst. Bacteriol. 47: 555-561.

De Vuyst, L. and Vancanneyt, M. (2007). Biodiversity and identification of surdough lactic acid bacteria. Food Microbiol. 24: 120–127.

Doyle, M.P. Beuchat, L.R. and Montville, T.J. (2001). Food Microbiology fundamentals and Frontiers. 2nd Ed. Michael P. Doyle, Larry R. Beuchat, Thomas J. Montville, eds. Washington, DC: ASM Press.

Drewnowski, A. (2005). Concept of a nutritious food: Towards a nutrient density score. Am.

J. Clin. Nutr. 82: 721–732.

Duboc, P. and Mollet, B. (2001). Applications of exopolysaccharides in the dairy industry.

Int. Dairy J. 11: 759–768.

Du Plessis, E.M. and Dicks, L.M.T. (1995). Evaluation of random amplified polymorphic DNA (RAPD)- PCR as a method to differentiate Lactobacillus acidophilus, L. crispatus, L.

amyglovorus, L. gallinarum, L. grasseri and L. johnsonii. Curr. Microbiol. 31: 114-118.

Dykes, G. A. and von Holy, A. (1994). Strain typing in the genus Lactobacillus. Lett. Appl. Microbiol. 19: 63-66.

El-Baradei, G., Delacroix-Buchet, A. and Ogier, J.C. (2008). Bacterial biodiversity of traditional Zabady fermented milk. Int. J. Food Microbiol. 121: 295–301.

Ercolini, D., Russo, F., Ferrocino, I. and Villani, F. (2009). Molecular identification of mesophilic and psychrotrophic bacteria from raw cow‘s milk. Food Microbiol. 26: 228–231

Flahetry, J.D., Levett, P.N., Dewhirst, F.E., Troe, T.E., Warren, J.R. and Johnson, S. (2003). Fatal case of endocarditis due to Weissella confusa. J. Clin. Microbiol. 41: 2237–2239.

denomination origin (PDO) Italian cheese, the Toma piemontese, Food Microbiol. 20: 397– 404.

Fox, G. E., Wisotzkey, J.D. and Jurtshuk, Jr. P. (1992). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol.

42:166-170.

Fox, A. T. and Thomson, M. (2007). Adverse reactions to cow‘s milk. Paediatr. Child

Health. 17(7): 288–294.

Franz, C.M.A.P., Holzapfel, W.H. and Stiles, M.E. (1999). Enterococci at the crossroads of food safety? In. .J. Food Microbiol. 47 : 1–24.

Gancheva, A., Pot B., Vanhonacker, K., Hoste, B. and Kersters, K. (1999). A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst. Appl. Microbiol. 22(4):573-585.

Gevers, D., Huys, G. and Swings, J. (2001). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205: 31–36.

Gevers, D. (2002). Tetracycline resistance in lactic acid bacteria isolated from fermented dry sausages. Thèse Doc. Univ. Gent. Fac. Sci. Gent. Belgium.

Giraffa, G. (2003). Functionality of Enterococci in dairy products. Int. J. Food Microbiol. 88: 215–222.

Hamama, A. (1997). Improvements of the manufacture of traditional fermented products in Morocco: case of Jben (Moroccan traditional fresh cheese) In: Emerging Technology Series- Food Processing Technologies for Africa (Dirar, H.a., Ed.), pp. 85–102. UNIDO, Vienna.

Harty, D.W.S., Patrikakis, M. and Knox, K.W. (1993). Identification of Lactobacillus strains isolated from patients with infective endocarditis and comparison of their surface-associated properties with those of other strains of the same species. Microb. Ecol. Health Dis. 6: 191– 201.

Haut Commissariat au Plan (2004). Enquête nationale de consommation des ménages (ENCDM).Royaume du Maroc. 225 p.

Heyndrickx, M., Herman, L., Vlaes, L., Butzler, J.P., Wildemauwe, C., Godard, C., and De Zutter, L. (2007). Multiple Typing for the Epidemiological Study of the Contamination of Broilers with Salmonella from the Hatchery to the Slaughterhouse. J. of Food Protect. 70: 323-334.

Hill, H. A. and Hill. J.E. (1986). The value of plasmid profiling in monitoring Lactobacillus plantarum in silage fermentations. Curr. Microbiol. 13:91-94.

Holzapfel, W.H., Haberer, P., Geisen, R., Björkroth, J. and Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr.

73(suppl): 365S–73S.

Hulton, C. S. J., Higgins, C. F. and Sharp. P.M. (1991). ERIC sequences: a novel family of repetitive elements I the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5 : 825-834.

Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. and Kersters, K. (1996). valutation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiol. 142: 1881–1893.

Johansson, M. L., Molin, G., Petersson, B., Uhlén, M. and Ahrné, S. (1995a). Characterization and species recognition of Lactobacillus plantarum strains by Restriction Fragment Length Polymorphism (RFLP) of the 16S rRNA gene. J. Appl. Bacteriol. 79:536- 541.

Johansson, M. L., Quednau, M., Molin, G. and Ahrné, S. (1995b). Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Lett. Appl.

Joint FAO/WHO Expert Consultation. (2003). Diet, nutrition and the prevention of chronic diseases. WHO technical report series 916 (pp. 3–108). Geneva, Switzerland: World Health Organization.

Kbibou, G. (1987). Etude bacteriologique des produits laitiers traditionnels. Thése Doc. Inst. Agr. Vét. Hassan II. Rabat, Maroc.

Khaled Daud, A.K., Neilan, B.A., Henriksson, A. and Conway, P.L. (1997). Identification and phylogenic analysis of Lactobacillus using multiplex RAPD-PCR. FEMS Microbiol. Lett. 53: 191–197.

Kim, J., Chun, J. and Han, H.U. (2000). Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50: 1915–1919.

Kovacs, L.G., ballati, P.A., Kroshman, H.B. and Pueppke, S.G. (1995). Tramscriptional arganisation and expression of nol XWBTUV. A locus that regulate cultivar-specific nodulation soybean by Rhizobium fredii USDA257. Mol. Microbiol. 17: 923-933.

Lafarge, V., Ogier, J.C., Girard, V., Maladen, V., Leveau, J.Y., Gruss, A. and Delacroix- Buchet, A. (2004). Raw cow milk bacterial population shifts attributable to refrigeration.

Appl. Environ. Microbiol. 70: 5644–5650.

Leroy, F. and De Vuyst, L. (2004). Functional lactic acid bacteria starter cultures for the food fermentation industry, Trends Food Sci. Technol. 15: 67–78.

Leveau, J-Y. and BOUIX, M. (1993). Microbiologie industrielle : les micro-organismes d'intérêt industriel. Tec et Doc Lavoisier, Paris, FRANCE

Lupski, J. R. and Weinstock, G.M. (1992). Short interspersed repetitive DNA sequences in prokaryotic genomes. J. Bacteriol. 174 : 4525-4529.

Lyhs, U., Bjorkroth, J. and Korkeala, H. (1999). Characterisation of lactic acid bacteria from spoiled, vacuum-packaged, cold-smoked rainbow trout using ribotyping. Int. J. Food

Microbiol. 52 : 77–84.

Martin, B., Garriga, M., Hugas, M. and Aymerich, T. (2005). Genetic diversity and safety aspects of Enterococci from slightly fermented sausages. J. Appl. Microbiol. 98: 1177– 1190.

Marty, D. S. and Kummar, K. A. (1995). Traditional uses of sorghum and millets. In D. A. V. Dendy (Ed.), Sorghum and Millet: Chemistry and Technology. St. Paul Minnesota: AACC: 185–221.

Mathara, J.M., Schillinger, U., Kutima, P.M., Mbugua, S.K. and Holzapfel, W.H. (2004). Isolation, identification and characterisation of the dominant microorganisms of Kule naoto: the Maasai traditional fermented milk in Kenya. Int. J. Food Microbiol. 94: 269–278.

McCartney, A. L. (2002). Application of molecular biological methods for studying probiotics and the gut flora. British J. Nutr. 88(Suppl. 1): S29–S37.

Menard, J.L., Roussel, P., Masselin-Silvin, S., Puthod, R., Hetreau, T., Foret, A., Houssin, B., Aracil, C. and Le Guenic, M., (2004). Contamination bactérienne d‘une litiére de stabulation libre paillée: effet de la fréquence de paillage et proposition d‘une méthode pour son évaluation. In: Rencontres sur les Recherches autour des Ruminants, vol. 11. Institut de l‘Elevage – INRA, Paris, pp.333–336.

Michaelidou, A. and Steijns, J. (2006). Nutritional and technological aspects of minor bioactive components in milk and whey: Growth factors, vitamins and nucleotides. Int. Dairy

J. 16: 1421–1426.

Michel, V., Hauwuy, A. et Chamba, J.-F. (2002). La flora microbienne de laits crus de vache : diversité et influence des conditions de production. Le lait. 81: 575 – 592.

Miller, G. D., Jarvis, J. K. and McBean, L. D. (2007). Contribution of dairy foods to health throughout the life cycle. In Handbook of dairy foods and nutrition (3rd ed.): 339–399. Boca

Mogensen, G. (1993). Starter cultures, In: J. Smith (Ed.), Technology of Reduced-additive Foods, Blackie Academic and Professional, London, UK, pp. 1–25.

Moschetti, G., Blaiotta, G., Villani, F,. Coppola, S. and Parente, E. (2001). Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecium from randomly amplified polymorphic DNA patterns. Appl. Env. Microbiol. 67:2156-2166.

Naser, S.M., Thompson, F.L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M. and Swings, J. (2005). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiol. 151: 2141– 2150.

Nigatu, A., Ahrné, S., Gashe, B.A. and Molin. G. (1998). Randomly amplified polymorphic DNA (RAPD) for discrimination of Pediococcus pentosaceus and Pediococcus acidilactici and rapid grouping of Pediococcus isolates. Lett. Appl. Microbiol. 26:412-416.

Nigatu, A., Ahrne, S. and Molin, G. (2001). Randomly amplified polymorphic DNA (RAPD) profils for the distinction of Lactobacillus species. Antonie Van Leeuwenhoek. 79:1-6.

Nzigamasabo, A. and Nimpagaritse, A. (2009). Traditional fermented foods and beverages in Burundi. Rev. Food Res. Int. 42: 588–594.

Oberman, H. and Libudzisz, Z. (1998). Fermented milks, In: B.J.B. Wood (Ed.), Microbiology of Fermented Foods, second ed., vol. 1, Blackie Academic & Professional, pp. 308–350.

Olson, J.C. and Mocquot, G. (1980). Milkand milkproduct . In:International Commission on Microbiological Specification for Foods (Ed.), Microbial Ecology of Foods: Food Commodities,Vol. 2. Academic Press, New York, pp. 470–490.

Ouadghiri, M., Vancanneyt, M., Amar, M. and Swings, J. (2005). Biodiversity of lactic acid bacteria in Moroccan soft white cheese (jben). FEMS Microbiol. Lett. 251: 267–271.

Ouadghiri, M., Vancanneyt, M., Vandamme, P., Naser, S., Gevers, G., Lefebvre, K. and Swings, J. (2009). Identification of lactic acid bacteria in Moroccan raw milk and traditionally fermented skimmed milk ‗lben‘. J. Appl. Microbiol. 106 : 486–495.

Patrignani, F., Lanciotti, R., Mathara, J. M., Guerzoni, M. E. and Holzapfel. W. H. (2006). Potential of functional strains, isolated from traditional Maasai milk, as starters for the production of fermented milks, Int. J. Food Microbiol. 107: 1 – 11

Paul Ross, R., Morgan, S. and Hill, C. (2002). Preservation and Fermentation: present and future. Int. J. Food. Microbiol. 79: 3 – 16.

Pérez, G., Cardell, E. and Zarate, V. (2000). Protein fingerprinting as a complementary analysis to classical phenotyping for the identification of lactic acid bacteria from Tenerife cheese. Lait . 80: 589–600.

Pfeiler, E.A. and Klaenhammer, T.R. (2007). The genomics of lactic acid bacteria, Trends

Microbiol. 12: 546-553.

Pot, B., Ludwig, W., Kersters, K. and Schleifer, K.-H. (1994). Taxonomy of lactic acid bacteria. In De Vuyst, L. and Vandamma, E.J. (Eds.), Bacteriocins of lactic acid bacteria; Microbiology, genetics and applications (pp. 13–90). London, UK: Chapman and Hall.

Poznanski, E., Cavazza, A., Cappa, F. and Cocconcelli, P. S. (2004). Alpine environment microbiota influences the bacterial development in traditional raw milk cheese. Int. J. Food

Microbiol. 92: 141–151.

Prescott, L.M., Harley, J.P. and Donald, A. (2003). Microbiologie, De boeck université, 2eme édition française. 128 : 28-29.

Rahali, V. and Menard, J.-L. (1991). Influence des variants génétiques de la B-lactoglobuline et de la k-caséine sur la composition du lait et son aptitude fromagère. Lait 71: 275–297.

Randazzo, C.L., Torriani, S., Akkermans, A.D.L., de Vos, W.M. and Vaughan, E.E. (2002). Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis, Appl. Environ. Microbiol. 68: 1882–1892.

Randazzo, C.L., Caggia, C. and Neviani, C.L.E. (2009). Application of molecular approaches to study lactic acid bacteria in artisanal cheeses. J. Microbiol. Methods 78: 1–9

Rastall, R.A., Gibson, G.R., Gill, H.S., Guarner, F., Klaenhammer, T.R., Pot, B., Reid, G., Rowland, I.R. and Sanders, M.E. (2005). Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications, FEMS Microbiol. Ecol. 52: 145–152.

Richter, R.L., Ledford, R.A. and Murphy, S.C. (1992). Milk and milk products. In: Vanderzant, C., Splittstoesser, D.F. (Eds.), Compendium of Methods for the Microbiological Examination of Foods, 3rd Edition. American Public Health Association, Washington, DC, pp. 837–838.

Rodtong, S. and Tannock, G. W. (1993). Differenciation of Lactobacillus strains by ribotyping. Appl. Environ. Microbiol. 59: 3480 – 3484.

Rossello-Mora, R. and Amann, R. (2001). The Species Concept for Prokaryotes. FEMS Microbiol. Rev. 25:39-67.

Roussel, Y., Colmin, C., Simonet, J.M. and Decaris, B. (1993). Strain characterization, genome size and plasmid content in the Lactobacillus acidophilus group (Hansen and Mocquot). J. Appl. Bacteriol. 74:549-556.

Salmeron, J., de Vega, C., Pérez-Elortondo, F. J., Albisu, M. and Barron, L.J.R. (2002). effect of pasteurisation and seasonal variations in the microflora of ewe‘s milk for cheese making.

Food Microbiol. 19: 167-174.

Savadogo, A., Ouattara, C.A.T., Bassole, I.H.N. and Traore, A.S. (2004). Antimicrobial activities of lactic acid bacteria strains isolated from Burkina Faso fermeted milk. Pakistan. J.

Schaafsma, G. and Steijns, J. M. (2000). Dairy ingredients as a source of functional foods. In Schmiddle, M.K. and Labuza, T.P. (Eds.), Essentials of functional foods (pp. 181–204). Gaithersburg, MD, USA: Aspen Publishers Inc.

Schaasfsma, G. (2008). Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int. Dairy Sci. 18(5): 458–465.

Scheirlinck, I., Van der Meulen, R., Van Schoor, A., Vancanneyt, M., De Vuyst, L., Vandamme, P. and Huys, G. (2007). Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. Appl. Environ. Microbiol.

73: 6262–6269.

Schleifer, K. H. and Ludwig, W. (1995). Phylogenetic relationships of lactic acid bacteria, p. 7-18. In B. J. B. Wood and W. H. Holzapfel (eds.), The lactic acid bacteria, vol.2: The genera of lactic acid bacteria. Blackie Academic and Professional, Glasgow.

Schleifer, K. H. and W. Ludwig. (1996). Phylogeny of the Genus Lactobacillus and Related Genera. Syst. Appl. Microbiol. 18:461-467.

Sevi, A., Massa, S., Muscio, A., Dell‘aquila, S.D.D. and Catalano, S. (1998). Litter treatment with bentonite or paraformaldehyde: effects on air quality and on milk yield of Comisana ewes. Zootec. Nutr. Anim. 24: 213–224.

Sevi, A., Albenzio, M., Muscio, A., Casamassima, D. and Centoducati, P. (2003). Effects of litter management on airborne particulates in sheep houses and on the yield and quality of ewe milk. Livest. Prod. Sci. 81: 1–9.

Sharples, G. J. and Lloyd, R. G. (1990). A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucl. Acid Research. 19 : 6503-6508.

Somers, E.B., Johnson, M.E. and Wong, A.C. (2001). Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in dairy environment. J. Dairy Sci. 84: 1926–1936.

Srairi, M.T., Hasni Alaoui, I., Hamama, A. and Faye, B. (2005). Relations entre pratiques d‘élevage et qualité globale du lait de vache en étables suburbaines au Maroc. Rev. Méd. Vét.

156 : 155–162.

Stanley, G. (1998). Cheeses, In: B.J.B. Wood (Ed.). Microbiology of Fermented Foods, second ed., vol. 1, Blackie Academic & Professional. pp. 263–307.

Steijns, J. M., and van Hooydonk, A. C. M. (2000). Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. British J. Nutr. 84(Suppl. 1): S11– S17

Steijns, J. M. (2001a). Milk ingredients as nutraceuticals. Int. J. Dairy Technol. 54: 81–88.

Steijns, J. M. (2001b). Proteins, peptides and amino acids. In J. Young (Ed.), Guide to functional food ingredients (pp. 235–275). Surrey, UK: Leatherhead Food RA Publishing.

Steijns, J. M. (2003). Dairy derived health promoting ingredients. Int. Rev. Food Sci. Technol.

Documents relatifs