• Aucun résultat trouvé

Conclusion générale

Dans le document Disponible à / Available at permalink : (Page 139-169)

ng/ml sCD14 recombinant

3/ Conclusion générale

Nos travaux nous ont permis d’étudier plus en détail les propriétés et modes d’action de deux molécules synthétiques présentant la caractéristique commune d’être des ligands du récepteur TLR4. Cette étude amène de ce fait à une meilleure compréhension des mécanismes d’action de ligands TLR4 distincts et ceci de manière plus globale.

Premièrement, les liposomes de diCn-amidine pourraient activer le récepteur TLR4 en interagissant avec son site actif. Les propriétés physicochimiques des liposomes de diCu-amidine pourraient constituer un atout pour la formulation et son association avec d'autres composés.

-81-L'entreprise pharmaceutique utilise effectivement des liposomes dans la formulation de certains vaccins.

Deuxièmement, le CRX-527 présente quant à lui la particularité d'activer le TLR4 sans que le co-récepteur CD 14 ne soit nécessaire, un avantage pour faire face notamment à certaines déficiences en CD14. Cet agoniste pourrait également nous aider à discriminer les rôles des CD14, soluble et membranaire, comme le suggèrent nos expériences.

Le CRX-527 qui est un agoniste du TLR4 particulièrement puissant, stimule fortement les réponses immunes. Il a donc l'avantage de l'efficacité et le désavantage du risque d'induire des réponses trop fortes qui pourraient aboutir à une inflammation excessive, ou à la possibilité de rompre la tolérance immunologique, et d'induire de l'autoimmunité. À l'opposé, la diCn-amidine induit des réponses moins fortes qui pourraient s'avérer utiles dans certaines situations, comme dans le cas d'un vaccin pédiatrique.

Ces deux molécules peuvent être obtenues par synthèse chimique. Tout composé synthétique apporte généralement un plus en matière de biosécurité (absence de contaminant biologique plus facilement contrôlée). La diCn-amidine est particulièrement facile à produire, comparé à la synthèse du CRX-527 qui est plus complexe. Mais rappelons que la production de l'adjuvant MPL, qui est la molécule biologique parente du CRX-527, présente des aléas encore bien plus importants.

Globalement, les deux molécules que nous avons étudiées, pourraient être utiles au développement de nouveaux vaccins, ou comme outil de recherche sur les vaccins. Chacune aurait des cibles vaccinales distinctes, au vu de leurs nombreuses propriétés différentes discutées précédemment dans ce travail, avec leurs avantages et leurs faiblesses.

-82-bIBLIOGRArMIL

1. Reed,S.G., Bertholet,S., Coler,R.N., and Friede,M., New horizons in adjuvants for vaccine development. Trends Immunol. 2009. 30: 23-32.

2. Medzhitovji., Récognition of microorganisms and activation of the immune response. Nature 2007. 449: 819-826.

3. Akira,S., Uematsu,S., and Takeuchi,O., Pathogen récognition and innate immunity. Cell2006. 124: 783-801.

4. Xu,D., Liu,H., and Komai-Koma,M., Direct and indirect rôle of Toll-like receptors in T cell mediated immunity. Cell Mol.Immunol.2004.1: 239-246.

5. BeutIer,B.A., TLRs and innate immunity. Blood2009.113: 1399-1407.

6. Wright,S.D., Ramos,R.A., Tobias,P.S., Ule\itch,R.J., and Mathison,J.C., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990. 249: 1431-1433. 7. Lemaitre,B., Nicolas,E., Michaut,L., Reichhart,J.M., and HofTmannyJ.A., The dorsoventral

regulatory gene cassette spatzle/Toll/cactus Controls the potent antifiingal response in Drosophila adults.

Cell1996. 86: 973-983.

8. Medzhitov,R., Preston-HurlburtJP-j and Janeway,C.A., Jr., A human homologue of the Drosophila Toll protein signais activation of adaptive immunity. Nature 1997. 388: 394-397.

9. Poltorak,A., He,X., Smimova,!., Liu,M.Y., Van Huffel,C., Du,X., BirdweII,D., Alejos,E., Silva,M., Galanos,C., Freudenberg,M., Ricciardi-Castagnoli,P., Layton,B., and Beutler,B., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science1998. 282: 2085-2088. 10. Pulendran,B., Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol.Rev.

2004. 199: 227-250.

11. Brightbill,H.D., Libraty,D.H., Krutzik,S.R., Yang,R.B., BeIisle,J.T., Bleharski,J.R., MaitIand,M., Norgard,M.V., Plevy,S.E., Smale,S.T., Brennan,P.J., Bloom,B.R., Godowski,P.J., and Modlin,R.L., Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors.

Science 1999. 285: 732-736.

12. Ozinsky,A., UnderhilI,D.M., Fontenot,J.D., Hajjar,A.M., Smith,K.D., Wilson,C.B., Schroeder,L., and Aderem,A., The répertoire for pattern récognition of pathogens by the innate immune System is defïned by coopération between toll-like receptors. Proc.Natl.AcadSci.U.S.A2000. 97: 13766-13771. 13. Hayashi,F., Smith,K.D., Ozinsky,A., Hawn,T.R., Yi,E.C., Goodlett,D.R., Eng,J.K., Akira,S.,

UnderhilLD.M., and Aderem,A., The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature2001.410: 1099-1103.

14. Kawai,T. and Akira,S., Pathogen récognition with Toll-like receptors. Curr.Opin.Immunol. 2005. 17:

15. Alexopoulou,L., Holt,A.C., Medzhitov,R., and Flavell,R.A., Récognition of double-stranded RNA and activation ofNF-kappaB by Toll-like receptor 3. Nature2001. 413: 732-738.

16. Heil,F., Hemnii,H., Hochrein,H., Ampenberger,F., Kirschning,C., Akira,S., Lipford,G., Wagner,H., and Bauer,S., Species-specific récognition of single-stranded RNA via toll-like receptor 7 and 8. Science2004. 303: 1526-1529.

17. Takeuchi,O., Kawai,T., Kaisho,T., Sato,S., Sanjo,H., Matsumoto,M., Hoshino,K., Wagner,H., Takeda,K., and Akira,S., A Toll-like receptor recognizes bacterial DNA. Nature 2000. 408: 740-745.

18. Gay,N.J. and GanglofT,M., Structure and fiinction of Toll receptors and their ligands.

Annu.Rev.Biochem.2007. 76: 141-165.

19. Akira,S., Toll-like receptors: lessons from knockout mice. Biochem.Soc.Trans.2000. 28: 551-556.

20. KrishnanJ., Selvarajoo,K., Tsuchiya,M., Lee,G., and Choi,S., Toll-like receptor signal transduction.

Exp.Mol.Med. 2007. 39: 421-438.

21. Kawai,T. and Akira,S., TLR signaling. Semin.Immunol. 2007.19: 24-32.

22. Rezaei,N., Therapeutic targeting of pattem-recognition receptors. Int.Immunopharmacol. 2006. 6: 863- 869.

23. Mills,K.H., Regulatory T cells: friend or foe in immunity to infection? Nat.Rev.Immunol.2004. 4: 841- 855.

24. Yoneyama,M., Kikuchi,M., Natsukawa,T., Shinobu,N., Imaizumi,T., Miyagishi,M., Taira,K., Akira,S., and Fujita,T., The RNA helicase RIG-I has an essential fiinction in double-stranded RNA- induced innate antiviral responses. Nat.Immunol.2004. 5: 730-737.

25. Yoneyama,M., Onomoto,K., and Fujita,T., Cytoplasmic récognition of RNA. Adv.Drug Deliv.Rev.

2008. 60: 841-846.

26. Takeuchi,0. and Akira,S., MDA5/RIG-I and virus récognition. Curr.Opin.Immunol. 2008. 20: 17-22.

27. Kato,H., Takeuchi,0., Sato,S., Yoneyama,M., Yamamoto,M., Matsui,K., Uematsu,S., Jung,A., Kawai,T., Ishü,K.J., Yamaguchi,0., Otsu,K., Tsujimura,T., Koh,C.S., Reis e Sousa, Matsuura,Y., Fujita,T., and Akira,S., Differential rôles of MDA5 and RIG-I helicases in the récognition of RNA viruses. Nature 2006. 441: 101-105.

28. Homung,V., Ellegast,J., Kim,S., Brzozka,K., Jung,A., Kato,H., Poeck,H., Akira,S., Conzelmann,K.K., Schlee,M., Endres,S., and Hartmann,G., 5'-Triphosphate RNA is the ligand for RIG-I. Science2006. 314: 994-997.

29. PichImair,A., Schulz,0., Tan,C.P., Naslund,T.L, Liljestrom,P., Weber,F., and Reis e Sousa, RIG-I- mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006. 314: 997-

1001.

30. Bowie,A.G. and Unterholzner,L., Viral évasion and subversion of pattem-recognition receptor signalling. Nat.Rev.Immunol. 2008. 8: 911-922.

31. Kato,H., Takeuchi,0., Mikamo-Satoh,E., Hirai,R., Kawai,T., Matsushita,K., Hiiragi,A., Dermody,T.S., Fujita,T., and Akira,S., Length-dependent récognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-1 and melanoma differentiation-associated gene 5. J.Exp.Med.

2008. 205: 1601-1610.

-84-32. Gitlin,L., Barchet,W., Gilfîllan,S., Cella,M., Beutler,B-> Flavell,R.A., Diamond,M.S., and Colonna,M., Essential rôle of mda-5 in type I IFN responses to polyriboinosinicrpolyribocytidylic acid and encephalomyocarditis picomavirus. Proc.Natl.AcadSci.U.S.A2006. 103: 8459-8464.

33. Takaoka,A., Wang,Z., Choi,M.K., Yanai,H., Negishi,H., Ban,T., Lu,Y., Miyagishi,M., Kodama,T., Honda,K., Ohba,Y., and Taniguchi,T., DAI (DLM-l/ZBPl) is a cytosolic DNA sensor and an activator of innate immune response. Nature2007. 448: 501-505.

34. BarraljP.M., Sarkar,D., Su,Z.Z., Barber,G.N., DeSalle,R., Racaniello,V.R., and Fisher,P.B., Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity.

Pharmacol.Ther.2009. 124: 219-234.

35. Thompson,A.J. and Locamini,S.A., Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol.CellBiol.2007. 85: 435-445.

36. Venkataraman,T., Valdes,M., Elsby,R., Kakuta,S., Caceres,G., Saijo,S., Iwakura,Y., and Barber,G.N., Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses.

J.Immunol.2007.178: 6444-6455.

37. Benko,S., Philpott,D.J., and Girardin,S.E., The microbial and danger signais that activate Nod-like receptors. Cytokine2008. 43: 368-373.

38. Rietdijk,S.T., Burwell,T., Bertin,J., and Coyie,A.J., Sensing intracellular pathogens-NOD-like receptors. Curr.Opin.Pharmacol.2008. 8: 261-266.

39. Kanneganti,T.D., Lamkanfi,M., and Nunez,G., Intracellular NOD-like receptors in host defense and disease. Immunity.2007. 27: 549-559.

40. Delbridge,L.M. and 0'Riordan,M.X., Innate récognition of intracellular bacteria.

Curr.Opin.Immunol. 2007. 19: 10-16.

41. Chamaillard,M., Hashimoto,M., Horie,Y., Masumoto,J., Qiu,S., Saab,L., Ogura,Y., Kawasaki,A., Fukase,K., Kusumoto,S., Valvano,M.A., Foster,S.J., Mak,T.W., Nunez,G., and Inohara,N., An essential rôle forNODl in host récognition of bacterial peptidoglycan containing diaminopimelic acid.

Nat.Immunol.2003. 4: 702-707.

42. Girardin,S.E., Boneca,I.G., Cameiro,L.A., Antignac,A., Jehanno^Vf., VialaJ., Tedin,K., Taha,M.K., Labigne,A., Zahringer,U., Coyle,A.J., DiStefano,P.S., Bertin,J., Sansonetti,P.J., and Philpott,D.J., Nodl detects a unique muropeptide Ifom gram-negative bacterial peptidoglycan. Science

2003.300: 1584-1587.

43. Girardin,S.E., Boneca,I.G., Viala,J., Chamaillard,M., Labigne,A., Thomas,G., Philpott,D.J., and Sansonetti,P.J., Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP)

détection. J.Biol.Chem. 2003. 278: 8869-8872.

44. Duncan^'A., Bergstralh,D.T., Wang,Y., Willingham,S.B., Ye,Z., Zimmennann,A.G., and Ting,J.P., Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to médiate inflammatory signaling. Proc.Natl.AcadSci.U.S.A2007.104: 8041-8046.

45. Inohara,N., Koseki,T., del Peso,L., Hu,Y., Yee,C., Chen,S., Carrio,R., Merino^J., Liu,D., Ni,J., and Nunez,G., Nodl, an Apaf-l-like activator of caspase-9 and nuclear factor-kappaB. J.Biol.Chem.

1999. 274: 14560-14567.

46. Park,J.H., Kim,Y.G., McDonald,C., Kanneganti,T.D., Hasegawa,M., Body-Malapel,M., Inohara,N., and Nunez,G., RICK/RIP2 médiates innate immune responses induced through Nodl and Nod2 but not TLRs. J.Immunol.2007. 178: 2380-2386.

47. Kobayashi,K., Inohara,N., Hernandez,L.D., Galan^-E-, Nunez,G., Janeway,C.A., Medzhitov,R., and Flavell,R.A., RICK/Rip2/CARDIAK médiates signalling for receptors of the innate and adaptive immune Systems. Nature2002. 416: 194-199.

48. Inobara,N., Koseki,T., Lin^J., del Peso,L., Lucas,P.C., Chen,F.F., Ogura,Y., and Nunez,G., An induced proximity model for NF-kappa B activation in the Nodl/RICK and RIP signaling pathways.

J.BioLChem.2000. 275: 27823-27831.

49. ShaWjM.H., Reimer,T., Kim,Y.G., and Nunez,G., NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr.Opin.Immunol. 2008. 20: 377-3i2.

50. Dostert,C., Meylan,E., and Tschopp^., Intracellular pattem-recognition receptors. Adv.Drug Deliv.Rev.2008. 60: 830-840.

51. Agostini,L., Martinon,F., Bums,K., McDermott,M.F., Hawkins,P.N., and Tschopp,J., NALP3 forms an IL-lbeta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004. 20: 319-325.

52. Martinon,F., Burns,K., and Tschopp,J., The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol.Cell2002. 10: 417-426.

53. Martinon,F., Agostini,L., Meylan,E., and Tschopp,J., Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr.Biol. 2004.14: 1929-1934.

54. Kanneganti,T.D., OzorenJV., Body-Malapel,M., Amer,A., Park,J.H., Franchi,L., Whitfield,J., BarchetjW., Colonna,M., Vandenabeele,P., Bertin^-, Coyle,A., Grant,E.P., Akira,S., and Nunez,G., Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3.

Nature2006. 440: 233-236.

55. Mariathasan,S., Weiss,D.S., Newton,K., McBride^-, 0'Rourke,K., Roose-Girma,M., Lee,W.P., Weinrauch,Y., Monack,D.M., and Dixit,V.M., Cryopyrin activâtes the inflammasome in response to toxins and ATP. Nature2006. 440: 228-232.

56. Martinon,F., Petrilli,V., Mayor,A., Tardivel,A., and Tschopp,J., Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature2006. 440: 237-241.

57. Eisenbarth,S.C., Colegio,O.R., 0'Connor,W., Sutterwala,F.S., and Flavell,R.A., Crucial rôle for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature2008. 453:

1122-1126.

58. Fritz,J.H., Ferrero,R.L., Philpott,D.J., and Girardin,S.E., Nod-like proteins in immunity, inflammation and disease. Nat.Immunol.2006. 7: 1250-1257.

59. Miao,E.A., Alpuche-Aranda,C.M., Dors,M., Clark,A.E., Bader,M.W., Miller,S.I., and Aderem,A., Cytoplasmic flagellin activâtes caspase-1 and sécrétion of interleukin Ibeta via Ipaf Nat.Immunol.

2006. 7: 569-575.

60. Franchi,L., Amer,A., Body-Malapel,M., Kanneganti,T.D., Ozoren,N., Jagirdar,R., Inohara,N., Vandenabeele,P., BertinvI., Coyle,A., Grant,E.P., and Nunez,G., Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin Ibeta in saimonella-infected macrophages. Nat.Immunol. 2006. 7: 576-582.

61. Ren,T., Zamboni,D.S., Roy,C.R., Dietrich,W.F., and Vance,R.E., Flagellin-deficient Légionella mutants évadé caspase-1- and Naip5-mediated macrophage immunity. PLoS.Pathog.2006. 2: el8.

-86-62. Amer,A., Franchi,L., Kanneganti,T.D., Body-Malapel,M., Ozoren,N., Brady,G., Meshinchi,S., Jagirdar,R., Gewirtz,A., Akira,S., and Nunez,G., Régulation of Légionella phagosome maturation and infection through flagellin and host Ipaf. J.Biol.Chem.2006. 281: 35217-35223.

63. Cook,D.N., Pisetsky,D.S., and Schwartz,D.A., Toll-like receptors in the pathogenesis of human disease. Nat.Immunol.2004. 5: 975-979.

64. Kawasaki,K., Akashi,S., Shimazu,R., Yoshida,T., Miyake,K., and Nishijima,M., Mouse toll-like receptor 4.MD-2 complex médiates lipopolysaccharide-mimetic signal transduction by Taxol.

J.Biol.Chem.2000. 275: 2251-2254.

65. Ohashi,K., Burkart,V., Flohe3-^ and KoIb,H., Cutting edge: beat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J.Immunol.2000. 164: 558-561.

66. Asea,A., Rehli,M., Kabingu,E., Boch,J.A., Bare,0., Auron,P.E., Stevenson,M.A., and Calderwood,S.K., Novel signal transduction pathway utilized by extracellular HSP70: rôle of toll-like receptor (TLR) 2 and TLR4. J.Biol.Chem.2002.111: 15028-15034.

67. 0’Brien,A.D., Rosenstreich,D.L., Scher,!., Campbell,G.H., MacDermott,R.P., and Formal,S.B., Genetic control of susceptibility to Salmonella typhimurium in mice: rôle of the LPS gene. J.Immunol.

1980.124: 20-24.

68. Roy,M.F., Lariviere,L., Wilkinson,R., Tam,M., StevensondVf.M., and Malo,D., Incrémental expression of Tlr4 correlates with mouse résistance to Salmonella infection and fine régulation of relevant immune genes. Genes Immun.2006. 7: 372-383.

69. Takeuchi,0., Kawai,T., Muhlradt,P.F., Morr,M., Radolf,J.D., Zychlinsky,A., Takeda,K., and Akira,S., Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int.Immunol. 2001. 13: 933- 940.

70. Takeuchi,0., Sato^v Horiuchi,T., Hoshino,K., Takeda,K., Dong,Z., Modlin,R.L., and Akira,S., Cutting edge: rôle of Toll-like receptor 1 in mediating immune response to microbial lipoproteins.

J.Immunol.2002. 169: 10-14.

71. Takeuchi,0., Hoshino,K., and Akira,S., Cutting edge: TLR2-deficient and MyD88-deficient mice are highiy susceptible to Staphylococcus aureus infection. 7.//Mmwwo/. 2000. 165: 5392-5396.

72. Echchannaoui,H., Frei,K., Schnell,C., Leib,S.L., Zimmerli,W., and Landmann,R., Toll-like receptor 2-deficient mice are highiy susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. 7/«/fec/.D/s. 2002. 186: 798-806.

73. Hawn,T.R., Verbon,A., Lettinga,K.D., Zhao,L.P., Li,S.S., Laws,R.J., Skerrett,S.J., Beutler,B., Schroeder,L., Nachman,A., Ozinsky,A., Smith,K.D., and Aderem,A., A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to légionnaires' àxstasc. J.Exp.Med.2003.198: 1563-1572.

74. Zhang,D., Zhang,G., Hayden,M.S., Greenblatt,M.B., Bussey,C., Flavell,R.A., and Ghosh,S., A toll-like receptor that prevents infection by uropathogenic bacteria. Science2004. 303: 1522-1526. 75. Rasmussen,S.B., Reinert,L.S., and PaIudan,S.R., Innate récognition of intracellular pathogens:

détection and activation of the first line of defense. APMIS2009. 117: 323-337.

76. Opitz,B., Forster,S., Hocke,A.C., Maass,M., Schmeck,B., Hippenstiel,S., Suttorp,N., and Krull,M., Nodl-mediated endothélial cell activation by Chlamydophila pneumoniae. Circ.Res. 2005. 96: 319-326.

77. Girardin,S.E., Tournebize,R., Mavris,M., Page^.L., Li^., Stark,G.R., Bertin,J., DiStefano,P.S., YanivJVI., Sansonetti,P.J., and Philpott,D.J., CARD4/Nodl médiates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2001.2: 736-742.

78. Kim^.G., Lee,S.J., and Kagnofr,M.F., Nodl is an essential signal transducer in intestinal épithélial cells infected with bacteria that avoid récognition by toll-like receptors. Infect.Immun. 2004. 72: 1487-

1495.

79. Zilbauer,M., Dorrell,N., Elmi,A., Lindley,K.J., Schuller,S., Jones,H.E., Klein,N.J., Nunez,G., Wren,B-W., and Bajaj-EIIiott,M., A major rôle for intestinal épithélial nucléotide oligomérization domain 1 (NODl) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell Microbiol. 2007. 9: 2404-2416.

80. Ferwerda,G., Girardin,S.E., Kullberg,B.J., Le Bourhis,L., de Jong,D.J., Langenberg,D.M., van CreveljR., Adema,G.J., Ottenhoff,T.H., Van der Meer^.W., and Netea,M.G., NOD2 and toll-like receptors are nonredundant récognition Systems of Mycobacterium tuberculosis. PLoS.Pathog. 2005. 1: 279-285.

81. Hasegawa^., Yang^., Hashimoto,M., Park^.H., Kim,Y.G., Fujimoto,Y., Nunez,G., Fukase,K., and Inohara,N., Differential release and distribution ofNodl andNod2 immunostimulatory molécules among bacterial species and environments. J.Biol.Chem. 2006. 281: 29054-29063.

82. Opitz,Bv PuscheI,A., Schmeck,B., Hocke,A.C., Rosseau,S., Hammerschmidt,S., Schumann,R.R., Suttorp,N., and Hippenstiel,S., Nucleotide-binding oligomérization domain proteins are innate immune receptors for intemalized Streptococcus pneumoniae. J.Biol.Chem. 2004. 279: 36426-36432. 83. Welter-StahljL., Ojcius,D.M., VialaJ., Girardin,S., Liu,W., Delarbre,C., Philpott,D., Kelly,K.A.,

and Darville,T., Stimulation of the cytosolic receptor for peptidoglycan, Nodl, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol. 2006. 8: 1047-1057.

84. Vialavl., Chaput,C., Boneca,I.G., Cardona,A., Girardin,S.E., Moran,A.P., Athman,R., Memet,S., Huerre,M.R., Coyle,A.J., DiStefano,P.S., Sansonetti,P.J., Labigne,A., Bertin,J., Philpott,D.J., and Ferrero,R.L., Nodl responds to peptidoglycan delivered by the Hélicobacter pylori cag pathogenicity

\ûmà. Nat.Immuriol. 2004. 5: 1166-1174.

85. Kobayashi,K.S., Chamaillard,M., Ogura,Y., Henegariu,0., Inohara,N., Nunez,G., and Flavell,R.A., Nod2-dependent régulation of innate and adaptive immunity in the intestinal tract.

Science 2005.307: 731-734.

86. WrightjE.K., Goodart,S.A., Growney^I-D., Hadinoto,V., Endrizzi,IVI.G., Long,E.M., Sadigh,K., Abney,A.L., Bernstein-Hanley,!., and Dietrich,W.F., Naip5 affects host susceptibility to the intracellular pathogen Légionella pneumophila. Curr.Biol. 2003.13: 27-36.

87. Diez,E., Lee,S.H., Gauthier,S., Yaraghi,Z., Tremblay,M., Vidal,S., and Gros,P., Bircle is the gene within the Lgnl locus associated with résistance to Légionella pneumophila. Nat.Genet. 2003. 33: 55- 60.

88. Zamboni,D.S., Kobayashi,K.S., Kohlsdorf,T., Ogura,Y., Long,E.M., Vance,R.E., Kuida,K., Mariathasan,S., Dixit,V.M., Flavell,R.A., Dietrich,W.F., and Roy,C.R., The Bircle cytosolic pattem-recognition receptor contributes to the détection and control of Légionella pneumophila infection. Nat.Immunol. 2006. 7: 318-325.

89. Molofsky,A.B., Byme,B.G., Whitfield,N.N., Madigan,C.A., Fuse,E.T., Tateda,K., and Swanson,M.S., Cytosolic récognition of flagellin by mouse macrophages restricts Légionella pneumophila infection. J.EJcp.Med. 2006. 203: 1093-1104.

-88-90. Saito,T. and Gale,1Vl., Jr., Principles of intracellular viral récognition. Curr.Opin.Immurtol. 2007. 19: 17-23.

91. Takeuchi,O. and Akira,S., Récognition of viruses by innate immunity. Immunol.Rev. 2007. 220: 214-224.

92. ChijH. and Flavell,R.A., Innate récognition of non-self nucleic acids. Genome Biol. 2008. 9: 211. 93. Beutler,B., Eidenschenk,C., Crozat,K., Imler,J.L., Takeuchi,0., Hoffmann,J.A., and Akira,S.,

Genetic analysis of résistance to viral infection. Nat.Rev.Immunol. 2007. 7: 753-766.

94. Tabeta,K., Georgel,P., Janssen,E., Du,X., Hoebe,K., Crozat,K., Mudd,S., Shamel,L., Sovath,S., GoodeyJ., Alexopoulou,L., Flavell,R.A., and Beutler,B., Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomégalovirus infection.

Proc.Natl.AcadSci.U.S.A 2004. 101: 3516-3521.

95. Edelmann,K.H., Richardson-Burns,S., Alexopoulou,L., Tyler,K.L., Flavell,R.A., and Oldstone,M.B., Does Toll-like receptor 3 play a biological rôle in virus infections? Virology 2004. 322: 231-238.

96. Schroder,M. and Bowie,A.G., TLR3 in antiviral immunity: key player or bystander? Prends Immunol.

2005. 26: 462-468.

97. Wang,T., Town,T., Alexopoulou,L., Anderson,J.F., Fikrig,E., and FIavell,R.A., Toll-like receptor 3 médiates West Nile virus entry into the brain causing léthal encephalitis. Nat.Med. 2004. 10: 1366- 1373.

98. Gowen,B.B., Hoopes,J.D., Wong,M.H., Jung,K.H., Isakson,K.C., Alexopoulou,L., Flavell,R.A., and Sidwell,R.W., TLR3 délétion limits mortality and disease severity due to Phlebovirus infection.

J Immunol. 2006.177: 6301-6307.

99. Le Gofflc,R., Balloy,V., Lagranderie,M., Alexopoulou,L., Escriou,N., Fiavell,R., Chignard,M., and Si-Tahar,M., Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus- induced acute pneumonia. PLoS.Pathog. 2006. 2: e53.

100. Kato,H., Sato,S., Yoneyama,M., Yamanioto,M., Uematsu,S., Matsui,K., Tsujimura,T., Takeda,K., Fujita,T., Takeuchi,0., and Akira,S., Cell type-specific involvement of RIG-I in antiviral response.

Immunity. 2005.23: 19-28.

101. Diebold,S.S., Kaisho,T., Hemmi,H., Akira,S., and Reis e Sousa, Innate antiviral responses by means of TLR7-mediated récognition of single-stranded RNA. Science 2004. 303: 1529-1531.

102. LundyJ., Sato,A., Akira,S., Medzhitov,R., and Iwasaki,A., Toll-like receptor 9-mediated récognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J.Exp.Med. 2003. 198: 513-520.

103. Hochrein,H., Schlatter,B., 0'Keeffe,M., Wagner,C., Schmitz,F., Schiemann,M., Bauer,S., Suter,M., and Wagner,H., Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc.Natl.AcadSci.U.S.A 2004.101: 11416-11421. 104. Krug,A., French,A.R., Barchet,W., Fischer,J.A., Dzionek,A., Pingel,J.T., Orihuela,M.M.,

Akira,S., Yokoyama,W.M., and Colonna,M., TLR9-dependent récognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity. 2004. 21: 107-119.

105. Krug^., Luker,G.D., Barchet,W., Leib,D.A., Akira,S., and CoIonna,M., Herpes simplex virus type 1 activâtes murine natural interferon-producing cells through toll-like receptor 9. Blood 2004. 103: 1433-1437.

106. Kurt-Jones,E.A., Popova,L., Kwinn,L., Haynes,L.M., Jones,L.P., Tripp,R.A., Walsh,E.E., Freeman,M.W., Golenbock,D.T., Anderson,L.J., and Finberg,R.W., Pattern récognition receptors TLR4 and CD14 médiate response to respiratory syncytial virus. Nat.Immunol. 2000.1: 398-401. 107. Medzhitov,R., Origin and physiological rôles of inflammation. Nature 2008. 454: 428-435.

108. O'NeilljL.A. and Bowie,A.G., The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat.Rev.Immunol. 2007. 7: 353-364.

109. WatterSjT.M., Kenny,E.F., and 0'Neill,L.A., Structure, function and régulation of the Toll/IL-1 receptor adaptor proteins. Immunol.Cell Biol. 2007. 85: 411-419.

110. BeII,J.K., Askins,J., Hall,P.R., Davies,D.R., and SegaI,D.M., The dsRNA binding site of human Toll- like receptor 3. Proc.Natl.AcadSci.U.S.A 2006. 103: 8792-8797.

111. Kim,Y.M., Brinkmann,M.M., and Ploegh,H.L., TLRs bent into shape. Nat.Immunol. 2007. 8: 675- 677.

112. Latz,E., Verma,A., Visintin,A., Gong,M., Sirois,C.M., Klein,D.C., Monks,B.G., McKnight,C.J., Lamphier,M.S., Duprex,W.P., Espevik,T., and Golenbock,D.T., Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat.Immunol. 2007. 8: 772-779.

113. HuItmark,D., Macrophage différentiation marker MyD88 is a member of the Toll/IL-1 receptor family.

Biochem.Biophys.Res.Commun. 1994.199: 144-146.

114. Wesche,H., Henzel,W.J., Shillinglaw,W., Li,S., and Cao,Z., MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997. 7: 837-847.

115. Medzhitov,R., Preston-Hurlburt,P., Kopp,E., Stadlen,A., Chen,C., Ghosh,S., and Janeway,C.A., Jr., MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol.Cell 1998. 2: 253-258.

116. Muzio,M., Natoli,G., Saccani,S., Levrero,M., and Mantovani,A., The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J.Exp.Med. 1998.187: 2097-2101.

117. Kumar,H., Kawai,T., and Akira,S., Toll-like receptors and innate immunity.

Biochem.Biophys.Res.Commun. 2009. 388: 621-625.

118. Kawai,T., Takeuchi,0., Fujita,T., Inoue^v Muhlradt,P.F., Sato,S., Hoshino,K., and Akira,S., Lipopolysaccharide stimulâtes the MyD88-independent pathway and results in activation of IFN- regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J.Immunol.

2001.167: 5887-5894.

119. Horng,T., Barton,G.M., and Medzhitov,R., TIRAP: an adapter molécule in the Toll signaling pathway. Nat.Immunol. 2001.2: 835-841.

120. Fitzgerald,K.A., Palsson-McDemiott,E.M., Bowie,A.G., Jefferies,C.A., Mansell,A.S., Brady,G., Brint,E., Dunne,A., Gray,P., Harte,M.T., McMurray,D., Smith,D.E., Sims,J.E., Bird,T.A., and 0'Neill,L.A., Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature

2001.413:78-83.

90-121. Horng,T., Barton,G.M., FIavell,R.A., and Medzhitov,R., The adaptor molécule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002. 420: 329-333.

122. Yamanioto,M., Sato,S., Sanjo,H., Uematsu,S., Kaisho,T., Hoshino,K., Takeuchi,O., Kobayashi,M., Fujita,T., Takeda,K., and Akira,S., Essential rôle for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002. 420: 324-329.

123. Yamamoto,M., Sato,S., Moii,K., Hoshino,K., Takeuchi,0., Takeda,K., and Akira,S., Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activâtes the IFN-beta promoter in the Toll-like receptor signaling. J.Immunol. 2002. 169: 6668-6672.

124. Yamamoto,M., Sato,S., Hemmi,H., Hoshino,K., Kaisho,T., Sanjo,H., Takeuchi,0., Sugiyama,IVl., Okabe,M., Takeda,K., and Akira,S., Rôle of adaptor TRIE in the MyD88-independent toll-like receptor signaling pathway. Science 2003. 301: 640-643.

125. Hirotani,T., Yamamoto,M., Kumagai,Y., Uematsu,S., Kawase,!., Takeuchi,0., and Akira,S., Régulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-beta. Biochem.Biophys.Res.Commun. 2005. 328: 383-392.

126. Shamia,S., tenOever,B.R., Grandvaux,N., Zhou,G.P., Lin,R., and Hiscott,J., Triggering the

Dans le document Disponible à / Available at permalink : (Page 139-169)

Documents relatifs