*Benjamin Doistau, E-mail: benjamin.doistau@unige.ch

*Claude Piguet, E-mail: claude.piguet@unige.ch Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

Financial support from the Swiss National Science Foundation is gratefully acknowledged.


K. L. Buchwalder is acknowledged for performing elemental analysis. Financial support from the Swiss National Science Foundation is gratefully acknowledged.


(1) Lehn, J. M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations:

structure of an inorganic double helix. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 2565-2569.

(2) Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Helicates as Versatile Supramolecular Complexes. Chem. Rev. 1997, 97, 2005-2062.

(3) Albrecht, M. “Let's Twist Again”Double-Stranded, Triple-Stranded, and Circular Helicates.

Chem. Rev. 2001, 101, 3457-3498.

(4) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P. J. Self-Organization in Coordination-Driven Self-Assembly. Acc. Chem. Res. 2009, 42, 1554-1563.

(5) Piguet, C.; G. Bünzli, J.-C. Mono- and polymetallic lanthanide-containing functional assemblies: a field between tradition and novelty. Chem. Soc. Rev. 1999, 28, 347-358.

(6) Wei, C.; He, Y.; Shi, X.; Song, Z. Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry. Coord. Chem. Rev. 2019, 385, 1-19.

(7) Constable, E. C. Expanded ligands—An assembly principle for supramolecular chemistry.

Coord. Chem. Rev. 2008, 252, 842-855.

(8) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination: Self-Assembly

(9) Seidel, S. R.; Stang, P. J. High-Symmetry Coordination Cages via Self-Assembly. Acc.

Chem. Res. 2002, 35, 972-983.

(10) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Coordination Assemblies from a Pd(II)-Cornered Square Complex. Acc. Chem. Res. 2005, 38, 369-378.

(11) Dawe, L. N.; Shuvaev, K. V.; Thompson, L. K. Polytopic ligand directed self-assembly—

polymetallic [n×n] grids versus non-grid oligomers. Chem. Soc. Rev. 2009, 38, 2334-2359.

(12) Piguet, C.; Borkovec, M.; Hamacek, J.; Zeckert, K. Strict self-assembly of polymetallic helicates: the concepts behind the semantics. Coord. Chem. Rev. 2005, 249, 705-726.

(13) Balzani, V.; Ballardini, R. NEW TRENDS IN THE DESIGN OF LUMINESCENT METAL COMPLEXES*. Photochem. Photobiol. 1990, 52, 409-416.

(14) Treadway, J. A.; Meyer, T. J. Preparation of Coordinatively Asymmetrical Ruthenium(II) Polypyridine Complexes. Inorg. Chem. 1999, 38, 2267-2278.

(15) Newkome, G. R.; Wang, P.; Moorefield, C. N.; Cho, T. J.; Mohapatra, P. P.; Li, S.; Hwang, S.-H.; Lukoyanova, O.; Echegoyen, L.; Palagallo, J. A.; Iancu, V.; Hla, S.-W. Nanoassembly of a Fractal Polymer: A Molecular "Sierpinski Hexagonal Gasket". Science 2006, 312, 1782-1785.

(16) Li, Y.; Jiang, Z.; Wang, M.; Yuan, J.; Liu, D.; Yang, X.; Chen, M.; Yan, J.; Li, X.; Wang, P.

Giant, Hollow 2D Metalloarchitecture: Stepwise Self-Assembly of a Hexagonal Supramolecular Nut. J. Am. Chem. Soc. 2016, 138, 10041-10046.

(17) Liu, D.; Jiang, Z.; Wang, M.; Yang, X.; Liu, H.; Chen, M.; Moorefield, C. N.; Newkome, G.

R.; Li, X.; Wang, P. 3D helical and 2D rhomboidal supramolecules: stepwise self-assembly

and dynamic transformation of terpyridine-based metallo-architectures. Chem. Commun.

2016, 52, 9773-9776.

(18) Mede, T.; Jäger, M.; Schubert, U. S. “Chemistry-on-the-complex”: functional RuII polypyridyl-type sensitizers as divergent building blocks. Chem. Soc. Rev. 2018, 47, 7577-7627.

(19) Constable, E. C.; Thompson, A. M. W. C. Strategies for the assembly of homo- and hetero-nuclear metallosupramolecules containing 2,2[prime or minute] : 6[prime or minute],2[double prime]-terpyridine metal-binding domains. J. Chem. Soc., Dalton Trans.

1995, 1615-1627.

(20) Farran, R.; Le-Quang, L.; Mouesca, J.-M.; Maurel, V.; Jouvenot, D.; Loiseau, F.; Deronzier, A.; Chauvin, J. [Cr(ttpy)2]3+ as a multi-electron reservoir for photoinduced charge accumulation. Dalton Trans. 2019, 48, 6800-6811.

(21) Ajibola Adeyemo, A.; Shettar, A.; Bhat, I. A.; Kondaiah, P.; Mukherjee, P. S. Self-Assembly of Discrete RuII8 Molecular Cages and Their in Vitro Anticancer Activity. Inorg.

Chem. 2017, 56, 608-617.

(22) Samanta, D.; Shanmugaraju, S.; Adeyemo, A. A.; Mukherjee, P. S. Self-assembly of discrete metallamacrocycles employing half-sandwich octahedral diruthenium(II) building units and imidazole-based ligands. J. Organomet. Chem. 2014, 751, 703-710.

(23) Wang, M.; Vajpayee, V.; Shanmugaraju, S.; Zheng, Y.-R.; Zhao, Z.; Kim, H.; Mukherjee, P. S.; Chi, K.-W.; Stang, P. J. Coordination-Driven Self-Assembly of M3L2 Trigonal Cages

from Preorganized Metalloligands Incorporating Octahedral Metal Centers and Fluorescent Detection of Nitroaromatics. Inorg. Chem. 2011, 50, 1506-1512.

(24) Adeyemo, A. A.; Shettar, A.; Bhat, I. A.; Kondaiah, P.; Mukherjee, P. S. Coordination-driven self-assembly of ruthenium(ii) architectures: synthesis, characterization and cytotoxicity studies. Dalton Trans. 2018, 47, 8466-8475.

(25) Siddiqui, M. M.; Saha, R.; Mukherjee, P. S. Ruthenium(II) Metalla[2]catenanes and Macrocycles via Donor-Dependent Self-Assembly. Inorg. Chem. 2019, 58, 4491-4499.

(26) Rousset, E.; Ciofini, I.; Marvaud, V.; Hanan, G. S. Facile One-Pot Synthesis of Ruthenium(II) Quaterpyridine-Based Photosensitizers for Photocatalyzed Hydrogen Production. Inorg. Chem. 2017, 56, 9515-9524.

(27) Schulze, M.; Kunz, V.; Frischmann, P. D.; Würthner, F. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II. Nat Chem 2016, 8, 576-583.

(28) Balzani, V.; Credi, A.; Venturi, M. Photochemical Conversion of Solar Energy.

ChemSusChem 2008, 1, 26-58.

(29) Kärkäs, M. D.; Johnston, E. V.; Verho, O.; Åkermark, B. Artificial Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation. Acc. Chem. Res. 2014, 47, 100-111.

(30) Denisov, S. A.; Yu, S.; Pozzo, J.-L.; Jonusauskas, G.; McClenaghan, N. D. Harnessing Reversible Electronic Energy Transfer: From Molecular Dyads to Molecular Machines.

ChemPhysChem 2016, 17, 1794-1804.

(31) Torieda, H.; Nozaki, K.; Yoshimura, A.; Ohno, T. Low Quantum Yields of Relaxed Electron Transfer Products of Moderately Coupled Ruthenium(II)−Cobalt(III) Compounds on the Subpicosecond Laser Excitation. J. Phys. Chem. A 2004, 108, 4819-4829.

(32) Torieda, H.; Yoshimura, A.; Nozaki, K.; Sakai, S.; Ohno, T. Temperature-Independent Rate of Electron-Transfer between a Cobalt(II) and a Ruthenium(III) of Doublet Electronic Configuration. J. Phys. Chem. A 2002, 106, 11034-11044.

(33) Collin, J. P.; Guillerez, S.; Sauvage, J. P.; Barigelletti, F.; De Cola, L.; Flamigni, L.;

Balzani, V. Photoinduced processes in dyads and triads containing a ruthenium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups.

Inorg. Chem. 1991, 30, 4230-4238.

(34) Sauvage, J. P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.; Coudret, C.; Balzani, V.;

Barigelletti, F.; De Cola, L.; Flamigni, L. Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties. Chem. Rev.

1994, 94, 993-1019.

(35) Otto, S.; Grabolle, M.; Förster, C.; Kreitner, C.; Resch-Genger, U.; Heinze, K.

[Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue. Angew.

Chem. Int. Ed. 2015, 54, 11572-11576.

(36) Otto, S.; Dorn, M.; Förster, C.; Bauer, M.; Seitz, M.; Heinze, K. Understanding and exploiting long-lived near-infrared emission of a molecular ruby. Coord. Chem. Rev. 2018, 359, 102-111.

(37) Wang, C.; Otto, S.; Dorn, M.; Kreidt, E.; Lebon, J.; Sršan, L.; Di Martino-Fumo, P.;

Gerhards, M.; Resch-Genger, U.; Seitz, M.; Heinze, K. Deuterated Molecular Ruby with Record Luminescence Quantum Yield. Angew. Chem. Int. Ed. 2017, 57, 1112-1116.

(38) Jiménez, J.-R.; Doistau, B.; Besnard, C.; Piguet, C. Versatile heteroleptic bis-terdentate Cr(iii) chromophores displaying room temperature millisecond excited state lifetimes.

Chem. Commun. 2018, 54, 13228-13231.

(39) Barbour, J. C.; Kim, A. J. I.; deVries, E.; Shaner, S. E.; Lovaasen, B. M. Chromium(III) Bis-Arylterpyridyl Complexes with Enhanced Visible Absorption via Incorporation of Intraligand Charge-Transfer Transitions. Inorg. Chem. 2017, 56, 8212-8222.

(40) Jiménez, J.-R.; Doistau, B.; Cruz, C. M.; Besnard, C.; Cuerva, J. M.; Campaña, A. G.;

Piguet, C. Chiral Molecular Ruby [Cr(dqp)2]3+ with Long-Lived Circularly Polarized Luminescence. J. Am. Chem. Soc. 2019, 141, 13244-13252.

(41) Buldt, L. A.; Wenger, O. S. Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chem. Sci. 2017, 8, 7359-7367.

(42) Aboshyan-Sorgho, L.; Besnard, C.; Pattison, P.; Kittilstved, K. R.; Aebischer, A.; Bünzli, J.-C. G.; Hauser, A.; Piguet, J.-C. Near-Infrared→Visible Light Upconversion in a Molecular Trinuclear d–f–d Complex. Angew. Chem. Int. Ed. 2011, 50, 4108-4112.

(43) Suffren, Y.; Zare, D.; Eliseeva, S. V.; Guénée, L.; Nozary, H.; Lathion, T.; Aboshyan-Sorgho, L.; Petoud, S.; Hauser, A.; Piguet, C. Near-Infrared to Visible Light-Upconversion in Molecules: From Dream to Reality. J. Phys. Chem. C 2013, 117, 26957-26963.

(44) Zare, D.; Suffren, Y.; Guenee, L.; Eliseeva, S. V.; Nozary, H.; Aboshyan-Sorgho, L.;

Petoud, S.; Hauser, A.; Piguet, C. Smaller than a nanoparticle with the design of discrete polynuclear molecular complexes displaying near-infrared to visible upconversion. Dalton Trans. 2015, 44, 2529-2540.

(45) Aboshyan-Sorgho, L.; Cantuel, M.; Petoud, S.; Hauser, A.; Piguet, C. Optical sensitization and upconversion in discrete polynuclear chromium–lanthanide complexes. Coord. Chem.

Rev. 2012, 256, 1644-1663.

(46) Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Schonle, J.; Zampese, J. A. The surprising lability of bis(2,2[prime or minute]:6[prime or minute],2[prime or minute][prime or minute]-terpyridine)chromium(iii) complexes. Dalton Trans. 2014, 43, 7227-7235.

(47) Zare, D.; Doistau, B.; Nozary, H.; Besnard, C.; Guenee, L.; Suffren, Y.; Pele, A.-L.; Hauser, A.; Piguet, C. CrIII as an alternative to RuII in metallo-supramolecular chemistry. Dalton Trans. 2017, 46, 8992-9009.

(48) Barker, K. D.; Barnett, K. A.; Connell, S. M.; Glaeser, J. W.; Wallace, A. J.; Wildsmith, J.;

Herbert, B. J.; Wheeler*, J. F.; Kane-Maguire*, N. A. P. Synthesis and characterization of heteroleptic Cr(diimine)3 3+ complexes. Inorg. Chim. Acta 2001, 316, 41-49.

(49) Donnay, E. G.; Schaeper, J. P.; Brooksbank, R. D.; Fox, J. L.; Potts, R. G.; Davidson, R. M.;

Wheeler, J. F.; Kane-Maguire, N. A. P. Synthesis and characterization of tris(heteroleptic) diimine complexes of chromium(III). Inorg. Chim. Acta 2007, 360, 3272-3280.

(50) McDaniel, A. M.; Tseng, H.-W.; Damrauer, N. H.; Shores, M. P. Synthesis and Solution Phase Characterization of Strongly Photooxidizing Heteroleptic Cr(III) Tris-Dipyridyl Complexes. Inorg. Chem. 2010, 49, 7981-7991.

(51) Doistau, B.; Collet, G.; Bolomey, E. A.; Sadat-Noorbakhsh, V.; Besnard, C.; Piguet, C.

Heteroleptic Ter–Bidentate Cr(III) Complexes as Tunable Optical Sensitizers. Inorg. Chem.

2018, 57, 14362-14373.

(52) Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet, P.;

Cartier, C.; Villain, F. Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord. Chem. Rev. 1999, 190–192, 1023-1047.

(53) Akhter, L.; Clegg, W.; Collison, D.; Garner, C. D. Isolation and crystal structure of the cubane-like cluster [Cr4(OH)4(mhp)8] (mhp = 6-methyl-2-hydroxypyridinate. Inorg. Chem.

1985, 24, 1725-1728.

(54) Salidu, M.; Artizzu, F.; Deplano, P.; Mercuri, M. L.; Pilia, L.; Serpe, A.; Marchio, L.;

Concas, G.; Congiu, F. Self-assembly supramolecular architectures of chromium(III) complexes using croconate as building block. Dalton Trans. 2009, 557-563.

(55) Rinck, J.; Lan, Y.; Anson, C. E.; Powell, A. K. Coordination Cluster Nuclearity Decreases with Decreasing Rare Earth Ionic Radius in 1:1 Cr/Ln N-Butyldiethanolamine Compounds:

A Journey across the Lanthanide Series from Cr4IIILa4–Cr4IIITb4 via Cr3IIIDy3 and Cr3IIIHo3 to Cr2IIIEr2–Cr2IIILu2. Inorg. Chem. 2015, 54, 3107-3117.

(56) Springborg, J. In Adv. Inorg. Chem.; Sykes, A. G., Ed.; Academic Press: 1988; Vol. Volume 32, p 55-169.

(57) Androš Dubraja, L.; Jurić, M.; Lafargue-Dit-Hauret, W.; Pajić, D.; Zorko, A.; Ozarowski, A.; Rocquefelte, X. First crystal structures of oxo-bridged [CrIIITaV] dinuclear complexes:

spectroscopic, magnetic and theoretical investigations of the Cr–O–Ta core. New J. Chem.

2018, 42, 10912-10921.

(58) Murrie, M.; Parsons, S.; E. P. Winpenny, R.; M. Atkinson, I.; Benelli, C. Turning up the heat: synthesis of octanuclear chromium(III) carboxylates. Chem. Commun. 1999, 285-286.

(59) McInnes, E. J. L.; Timco, G. A.; Whitehead, G. F. S.; Winpenny, R. E. P. Heterometallic Rings: Their Physics and use as Supramolecular Building Blocks. Angew. Chem. Int. Ed.

2015, 54, 14244-14269.

(60) McInnes, E. J. L.; Piligkos, S.; Timco, G. A.; Winpenny, R. E. P. Studies of chromium cages and wheels. Coord. Chem. Rev. 2005, 249, 2577-2590.

(61) Timco, G. A.; McInnes, E. J. L.; Winpenny, R. E. P. Physical studies of heterometallic rings: an ideal system for studying magnetically-coupled systems. Chem. Soc. Rev. 2013, 42, 1796-1806.

(62) Cantuel, M.; Bernardinelli, G.; Imbert, D.; Bunzli, J.-C. G.; Hopfgartner, G.; Piguet, C. A kinetically inert and optically active CrIII partner in thermodynamically self-assembled heterodimetallic non-covalent d-f podates. J. Chem. Soc., Dalton Trans. 2002, 1929-1940.

(63) Cantuel, M.; Gumy, F.; Bunzli, J.-C. G.; Piguet, C. Encapsulation of labile trivalent

Synthesis, characterization, and divergent intramolecular energy transfers. Dalton Trans.

2006, 2647-2660.

(64) Imbert, D.; Cantuel, M.; Bünzli, J.-C. G.; Bernardinelli, G.; Piguet, C. Extending Lifetimes of Lanthanide-Based Near-Infrared Emitters (Nd, Yb) in the Millisecond Range through Cr(III) Sensitization in Discrete Bimetallic Edifices. J. Am. Chem. Soc. 2003, 125, 15698-15699.

(65) Aboshyan-Sorgho, L.; Nozary, H.; Aebischer, A.; Bünzli, J.-C. G.; Morgantini, P.-Y.;

Kittilstved, K. R.; Hauser, A.; Eliseeva, S. V.; Petoud, S.; Piguet, C. Optimizing Millisecond Time Scale Near-Infrared Emission in Polynuclear Chrome(III)–Lanthanide(III) Complexes.

J. Am. Chem. Soc. 2012, 134, 12675-12684.

(66) Marinescu, G.; Andruh, M.; Lloret, F.; Julve, M. Bis(oxalato)chromium(III) complexes:

Versatile tectons in designing heterometallic coordination compounds. Coord. Chem. Rev.

2011, 255, 161-185.

(67) Lescouëzec, R.; Marinescu, G.; Vaissermann, J.; Lloret, F.; Faus, J.; Andruh, M.; Julve, M.

[Cr(AA)(C2O4)2]− and [Cu(bpca)]+ as building blocks in designing new oxalato-bridged CrIII CuII compounds [AA=2,2′-bipyridine and 1,10-phenanthroline; bpca=bis(2-pyridylcarbonyl)amide anion]. Inorg. Chim. Acta 2003, 350, 131-142.

(68) Marinescu, G.; Andruh, M.; Lescouëzec, R.; Muñoz, M. C.; Cano, J.; Lloret, F.; Julve, M.

[Cr(phen)(ox)2]−: a versatile bis-oxalato building block for the design of heteropolymetallic systems. Crystal structures and magnetic properties of AsPh4[Cr(phen)(ox)2]ꞏH2O, [NaCr(phen)(ox)2(H2O)]ꞏ2H2O and {[Cr(phen)(ox)2]2[Mn2(bpy)2(H2O)2(ox)]}ꞏ6H2O.

New J. Chem. 2000, 24, 527-536.

(69) Androš, L.; Jurić, M.; Molčanov, K.; Planinić, P. Supramolecular architectures of novel chromium(iii) oxalate complexes: steric effects of the ligand size and building-blocks approach. Dalton Trans. 2012, 41, 14611-14624.

(70) Lescouëzec, R.; Toma, L. M.; Vaissermann, J.; Verdaguer, M.; Delgado, F. S.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Design of single chain magnets through cyanide-bearing six-coordinate complexes. Coord. Chem. Rev. 2005, 249, 2691-2729.

(71) Toma, L.; Lescouëzec, R.; Vaissermann, J.; Herson, P.; Marvaud, V.; Lloret, F.; Julve, M.

[Criii(L)(CN)4]−: a new building block in designing cyanide-bridged 4,2-ribbon-like chains {[Criii(L)(CN)4]2Mn(H2O)2}ꞏnH2O [L = 2-aminomethylpyridine (n = 6) and 1,10-phenanthroline (n = 4)]. New J. Chem. 2005, 29, 210-219.

(72) Alexandru, M.-G.; Visinescu, D.; Shova, S.; Andruh, M.; Lloret, F.; Julve, M. Synthesis, Crystal Structures, and Magnetic Properties of Two Novel Cyanido-Bridged Heterotrimetallic {CuIIMnIICrIII} Complexes. Inorg. Chem. 2017, 56, 2258-2269.

(73) Toma, L.; Toma, L. M.; Lescouëzec, R.; Armentano, D.; De Munno, G.; Andruh, M.; Cano, J.; Lloret, F.; Julve, M. Synthesis, crystal structures and magnetic properties of cyanide- and phenolate-bridged [MIIINiII]2 tetranuclear complexes (M = Fe and Cr). Dalton Trans. 2005, 1357-1364.

(74) Decurtins, S.; Gross, M.; Schmalle, H. W.; Ferlay, S. Molecular Chromium(III)−Lanthanide(III) Compounds (Ln = La, Ce, Pr, Nd) with a Polymeric, Ladder-Type Architecture:  A Structural and Magnetic Study. Inorg. Chem. 1998, 37, 2443-2449.

(75) Marinescu, G.; Andruh, M.; Julve, M.; Lloret, F.; Llusar, R.; Uriel, S.; Vaissermann, J.

Heteropolymetallic Supramolecular Solid-State Architectures Constructed from [Cr(AA)(C2O4)2]- Tectons, and Sustained by Coordinative, Hydrogen Bond and π−π Stacking Interactions (AA = 2,2‘-Bipyridine; 1,10-Phenanthroline). Cryst. Growth Des.

2005, 5, 261-267.

(76) Fortea-Pérez, F. R.; Pasán, J.; Pascual-Alvarez, A.; Ruiz-Pérez, C.; Julve, M.; Lloret, F.

One-dimensional oxalato-bridged heterobimetallic coordination polymers by using [the [Cr(pyim)(C2O4)2]− complex as metalloligand [pyim = 2-(2′-pyridyl)imidazole]. Inorg.

Chim. Acta 2019, 486, 150-157.

(77) Kou, H.-Z.; Zhou, B. C.; Gao, S.; Wang, R.-J. A 2D Cyano- and Oxamidato-Bridged Heterotrimetallic CrIII-CuII-GdIII Complex. Angew. Chem. Int. Ed. 2003, 42, 3288-3291.

(78) Ohba, M.; Usuki, N.; Fukita, N.; Ōkawa, H. [Mn(en)]3[Cr(CN)6]2⋅4 H2O: A Three-Dimensional Dimetallic Ferrimagnet (Tc=69 K) with a Defective Cubane Unit. Angew.

Chem. Int. Ed. 1999, 38, 1795-1798.

(79) Marvilliers, A.; Rivière, E.; Audière, J.-P.; Mallah, T.; Parsons, S. Ferromagnetic order in a µ-cyano CrIII–MnII assembly with an unusual branched architecture. Chem. Commun.

1999, 2217-2218.

(80) Freedman, D. E.; Jenkins, D. M.; Long, J. R. Strong magnetic exchange coupling in the cyano-bridged coordination clusters [(PY5Me2)4V4M(CN)6]5+ (M = Cr, Mo). Chem.

Commun. 2009, 4829-4831.

(81) Cadranel, A.; Oviedo, P. S.; Alborés, P.; Baraldo, L. M.; Guldi, D. M.; Hodak, J. H.

Electronic Energy Transduction from {Ru(py)4} Chromophores to Cr(III) Luminophores.

Inorg. Chem. 2018, 57, 3042-3053.

(82) Figuerola, A.; Diaz, C.; El Fallah, M. S.; Ribas, J.; Maestro, M.; Mahía, J. Structure and magnetism of the first cyano-bridged hetero-one-dimensional GdIII–CrIII complexes. Chem.

Commun. 2001, 1204-1205.

(83) Estrader, M.; Ribas, J.; Tangoulis, V.; Solans, X.; Font-Bardía, M.; Maestro, M.; Diaz, C.

Synthesis, Crystal Structure, and Magnetic Studies of One-Dimensional Cyano-Bridged Ln3+−Cr3+ Complexes with bpy as a Blocking Ligand. Inorg. Chem. 2006, 45, 8239-8250.

(84) L. Heinrich, J.; A. Berseth, P.; R. Long, J. Molecular Prussian Blue analogues: synthesis and structure of cubic Cr4Co4(CN)12 and Co8(CN)12 clusters. Chem. Commun. 1998, 1231-1232.

(85) Beltran, L. M. C.; Long, J. R. Directed Assembly of Metal−Cyanide Cluster Magnets. Acc.

Chem. Res. 2005, 38, 325-334.

(86) Berseth, P. A.; Sokol, J. J.; Shores, M. P.; Heinrich, J. L.; Long, J. R. High-Nuclearity Metal-Cyanide Clusters:  Assembly of a Cr8Ni6(CN)24 Cage with a Face-Centered Cubic Geometry. J. Am. Chem. Soc. 2000, 122, 9655-9662.

(87) Sokol, J. J.; Shores, M. P.; Long, J. R. Giant Metal−Cyanide Coordination Clusters: 

Tetracapped Edge-Bridged Cubic Cr12Ni12(CN)48 and Double Face-Centered Cubic Cr14Ni13(CN)48 Species. Inorg. Chem. 2002, 41, 3052-3054.

(88) Sanz, S.; O'Connor, H. M.; Pineda, E. M.; Pedersen, K. S.; Nichol, G. S.; Mønsted, O.;

Weihe, H.; Piligkos, S.; McInnes, E. J. L.; Lusby, P. J.; Brechin, E. K. [CrIII8MII6]12+

Coordination Cubes (MII=Cu, Co). Angew. Chem. Int. Ed. 2015, 54, 6761-6764.

(89) Muller, G.; Bünzli, J.-C. G.; Schenk, K. J.; Piguet, C.; Hopfgartner, G. Influence of Bulky N-Substituents on the Formation of Lanthanide Triple Helical Complexes with a Ligand Derived from Bis(benzimidazole)pyridine:  Structural and Thermodynamic Evidence. Inorg.

Chem. 2001, 40, 2642-2651.

(90) Suffren, Y.; Golesorkhi, B.; Zare, D.; Guénée, L.; Nozary, H.; Eliseeva, S. V.; Petoud, S.;

Hauser, A.; Piguet, C. Taming Lanthanide-Centered Upconversion at the Molecular Level.

Inorg. Chem. 2016, 55, 9964-9972.

(91) Mürner, H.-R.; Chassat, E.; Thummel, R. P.; Bünzli, J.-C. G. Strong enhancement of the lanthanide-centred luminescence in complexes with 4-alkylated 2,2′;6′,2′′-terpyridines J.

Chem. Soc., Dalton Trans. 2000, 2809-2816.

(92) Doistau, B.; Tron, A.; Denisov, S. A.; Jonusauskas, G.; McClenaghan, N. D.; Gontard, G.;

Marvaud, V.; Hasenknopf, B.; Vives, G. Terpy(Pt–salphen)2 Switchable Luminescent Molecular Tweezers. Chem. Eur. J. 2014, 20, 15799-15807.

(93) Doistau, B.; Rossi-Gendron, C.; Tron, A.; McClenaghan, N. D.; Chamoreau, L.-M.;

Hasenknopf, B.; Vives, G. Switchable platinum-based tweezers with Pt–Pt bonding and selective luminescence quenching. Dalton Trans. 2015, 44, 8543-8551.

(94) Crowston, B. J.; Shipp, J. D.; Chekulaev, D.; McKenzie, L. K.; Jones, C.; Weinstein, J. A.;

Meijer, A. J. H.; Bryant, H. E.; Natrajan, L.; Woodward, A.; Ward, M. D. Heteronuclear d–d

and d–f Ru(ii)/M complexes [M = Gd(iii), Yb(iii), Nd(iii), Zn(ii) or Mn(ii)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies. Dalton Trans. 2019, 48, 6132-6152.

(95) Cantuel, M.; Bernardinelli, G.; Muller, G.; Riehl, J. P.; Piguet, C. The First Enantiomerically Pure Helical Noncovalent Tripod for Assembling Nine-Coordinate Lanthanide(III) Podates. Inorg. Chem. 2004, 43, 1840-1849.

(96) Bochet, C. G.; Piguet, C.; Williams, A. F. Synthesis and Electronic Properties of Intensely Coloured Iron(II) complexes with new 4-substituted planar tridentate nitrogen ligands analogous to 2, 2′: 6′, 2″-terpyridine. Helv. Chim. Acta 1993, 76, 372-384.

(97) Hamilton, J. M.; Anhorn, M. J.; Oscarson, K. A.; Reibenspies, J. H.; Hancock, R. D.

Complexation of Metal Ions, Including Alkali-Earth and Lanthanide(III) Ions, in Aqueous Solution by the Ligand 2,2′,6′,2′′-Terpyridyl. Inorg. Chem. 2011, 50, 2764-2770.

(98) Hoang, T. N. Y.; Lathion, T.; Guénée, L.; Terazzi, E.; Piguet, C. Protonation and Complexation Properties of Polyaromatic Terdentate Six-Membered Chelate Ligands. Inorg.

Chem. 2012, 51, 8567-8575.

(99) Hoang, T. N. Y.; Humbert-Droz, M.; Dutronc, T.; Guénée, L.; Besnard, C.; Piguet, C. A Polyaromatic Terdentate Binding Unit with Fused 5,6-Membered Chelates for Complexing s-, p-, d-, and f-Block Cations. Inorg. Chem. 2013, 52, 5570-5580.

(100) Fan, X.; Yuan, J.; Bai, Y.; Kong, J.; Wu, H. Bis[2,6-bis(1-methyl-1H-benzimidazol-2-yl-[kappa]N3)pyridine-[kappa]N]zinc dipicrate methanol disolvate. Acta Crystallogr., Sect. E 2012, 68, m1072.

(101) Terazzi, E.; Rivera, J.-P.; Ouali, N.; Piguet, C. A justification for using NMR model-free methods when investigating the solution structures of rhombic paramagnetic lanthanide complexes. Magn. Reson. Chem. 2006, 44, 539-552.

(102) Rigault, S.; Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Combination of crystal-field dependent and independent paramagnetic NMR hyperfine shift analysis methods for investigating the solution structures of inert self-assembled heterodimetallic d–f supramolecular complexes J. Chem. Soc., Dalton Trans. 2000, 4587-4600.

(103) Tirado, M. M.; Martínez, C. L.; Torre, J. G. d. l. Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J. Chem. Phys. 1984, 81, 2047-2052.

(104) Hamelin, B.; Jullien, L.; Derouet, C.; Hervé du Penhoat, C.; Berthault, P. Self-Assembly of a Molecular Capsule Driven by Electrostatic Interaction in Aqueous Solution. J. Am. Chem.

Soc. 1998, 120, 8438-8447.

(105) Riis-Johannessen, T.; Bernardinelli, G.; Filinchuk, Y.; Clifford, S.; Favera, N. D.; Piguet, C. Self-Assembly of the First Discrete 3d−4f−4f Triple-Stranded Helicate. Inorg. Chem.

2009, 48, 5512-5525.

(106) Handbook of Chemistry and Physics 55th Edition; CRC Press, 1974-1975.

(107) Piguet, C.; Bernardinelli, G.; Williams, A. F.; Bocquet, B. Formation of the First Isomeric [2]Catenates by Self-Assembly about Two Different Metal Ions. Angew. Chem. Int. Ed.

1995, 34, 582-584.

(108) Rüttimann, S.; Moreau, C. M.; Williams, A. F.; Bernardinelli, G.; Addison, A. W.

Complexes of structural analogues of terpyridyl with iron and zinc; the x-ray crystal structure of bis[2,6-bis(benzimidazol2-yl)pyridine]iron(II) trifluoromethylsulphonate bis-ethanol solvate. Polyhedron 1992, 11, 635-646.

(109) Ryu, C. K.; Endicott, J. F. Synthesis, spectroscopy, and photophysical behavior of mixed-ligand mono- and bis(polypyridyl)chromium(III) complexes. Examples of efficient, thermally activated excited-state relaxation without back intersystem crossing. Inorg. Chem.

1988, 27, 2203-2214.

(110) Kirk, A. D. Photochemistry and Photophysics of Chromium(III) Complexes. Chem. Rev.

1999, 99, 1607-1640.

(111) Forster, L. S. The photophysics of chromium(III) complexes. Chem. Rev. 1990, 90, 331-353.

(112) Kirk, A. D.; Porter, G. B. Luminescence of chromium(III) complexes. J. Phys. Chem.

1980, 84, 887-891.

(113) Serpone, N.; Jamieson, M. A.; Henry, M. S.; Hoffman, M. Z.; Bolletta, F.; Maestri, M.

Excited-state behavior of polypyridyl complexes of chromium(III). J. Am. Chem. Soc. 1979, 101, 2907-2916.

(114) Ohno, T.; Kato, S.; Kaizaki, S.; Hanazaki, I. Singlet-triplet transitions of aromatic compounds coordinating to a paramagnetic chromium(III) ion. Inorg. Chem. 1986, 25, 3853-3858.

(115) König, E.; Herzog, S. Electronic spectra of tris(2,2′-bipyridyl) complexes—I: The chromium series [Cr(bipy)3]z, z = +3, +2, +1, 0. Journal of Inorganic and Nuclear Chemistry 1970, 32, 585-599.

(116) Perkovic, M. W.; Heeg, M. J.; Endicott, J. F. Stereochemical perturbations of the relaxation behavior of (2E)chromium(III). Ground-state x-ray crystal structure, photophysics, and molecular mechanics simulations of the quasi-cage complex [4,4',4''-ethylidynetris(3-azabutan-1-amine)]chromium tribromide. Inorg. Chem. 1991, 30, 3140-3147.

(117) Castelli, F.; Forster, L. S. Nonexponential luminescence decay in hexaureachromium(III).

J. Am. Chem. Soc. 1975, 97, 6306-6309.

(118) Tanner, P. A.; Zhou, L.; Duan, C.; Wong, K.-L. Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics. Chem. Soc. Rev. 2018, 47, 5234-5265.

(119) Nuida, T.; Hozumi, T.; Tokoro, H.; Hashimoto, K.; Ohkoshi, S.-i. Nonlinear magneto-optical effects and photomagnetism of electrochemically synthesized molecule-based magnets. J. Solid State Electrochem. 2007, 11, 763-772.

(120) Otto, S.; Scholz, N.; Behnke, T.; Resch-Genger, U.; Heinze, K. Thermo-Chromium: A Contactless Optical Molecular Thermometer. Chem. Eur. J. 2017, 23, 12131-12135.

(121) Isaacs, M.; Sykes, A. G.; Ronco, S. Synthesis, characterization and photophysical properties of mixed ligand tris(polypyridyl)chromium(III) complexes, [Cr(phen)2L]3+.

Inorg. Chim. Acta 2006, 359, 3847-3854.

(122) Bünzli, J.-C. G.; Chauvin, A.-S.; Kim, H. K.; Deiters, E.; Eliseeva, S. V. Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coord. Chem. Rev. 2010, 254, 2623-2633.

(123) Golesorkhi, B.; Guénée, L.; Nozary, H.; Fürstenberg, A.; Suffren, Y.; Eliseeva, S. V.;

Petoud, S.; Hauser, A.; Piguet, C. Thermodynamic Programming of Erbium(III) Coordination Complexes for Dual Visible/Near-Infrared Luminescence. Chem. Eur. J. 2018, 24, 13158-13169.

(124) Carlos, L. D.; Ferreira, R. A. S.; Bermudez, V. d. Z.; Ribeiro, S. J. L. Lanthanide-Containing Light-Emitting Organic–Inorganic Hybrids: A Bet on the Future. Adv. Mater.

2009, 21, 509-534.


A CrIIIN6 building block allows extremely rare NMR monitoring of successive coordinating equilibriums in solution, opening wide perspectives towards incorporation of a Cr(III) long-lived NIR chromophore in rational polymetallic architectures.

Graphical abstract

Dans le document Key Strategy for the Rational Incorporation of Long-Lived NIR Emissive Cr(III) Chromophores into Polymetallic Architectures (Page 24-44)